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A note on Maximum Likelihood Estimation for

cubic and quartic canonical toric del Pezzo

Surfaces

Dimitra Kosta

February 29, 2016

Abstract

In this article a closed-form for the Maximum Likelihood Estimate of

algebraic statistical models which correspond to cubic and quartic toric

del Pezzo surfaces with Du Val singular points is given.

1 Introduction

Maximum likelihood estimation (MLE) is a standard approach to parameter
estimation and inference, and a fundamental computational task in statistics.
It consists of the following problem: given the observed data and a model of
interest, find the probability distribution that is most likely to have produced
the data. In the past decade, algebraic techniques for the computation of max-
imum likelihood estimates have been developed with some success for algebraic
statistical models for discrete data (see [1], [3], [4]).

This article is concerned with the problem of Maximum Likelihood Estima-
tion for algebraic statistical models with singularities, in particular those which
correspond to toric del Pezzo surfaces with Du Val singular points. The impor-
tance of algebraic statistical models corresponding to toric varieties is due to
their relation to log-linear statistical models which are widely used in Statistics
([2]). Another reason for studying the MLE for such algebraic statistical models,
is that they correspond to singular varieties. Singularities play an important
role in statistical inference as the commonly assumed smoothness of algebraic
statistical models is very restrictive and is almost never satisfied for models of
statistical relevance (see [[2], p. 100], [8]).

The relevant definitions to this problem are given bellow.

The author would like to thank Ivan Cheltsov, Alexander Davie and Milena Hering for

valuable comments and corrections.
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1.1 Maximum Likelihood Estimation

Consider the complex projective space Pn with coordinates (p0, p1, ..., pn). In
our setting the coordinate pi represents the probability of the i-event therefore
p0 + p1 + ... + pn = 1. The set of points in P

n with positive real coefficients is
identified with the probability simplex

∆n = {(p0, p1, ..., pn) ∈ R
n+1 : p0, p1, ..., pn ≥ 0 and p0 + p1 + ...+ pn = 1} .

An algebraic statistical model is a closed subset M of the complex projective
space Pn, with the model itself being the intersection of M with the probability
simplex ∆n. The data is given by a non-negative integer vector (u0, u1, ..., un) ∈
Nn+1, where ui is the number of times the i-event is observed.

The maximul likelihood estimation problem consists of finding a model point
p which maximises the likelihood of observing the data. This amounts to max-
imising the corresponding Likelihood Function

L(p0, p1, ..., pn) =
pu0

0 · pu1

1 · ... · pun
n

(p0 + p1 + ...+ pn)(u0+u1+...+un)

over the model M, where here we ignore a multinomial coefficient. Statistical
computations are usually implemented in the affine n-plane p0+p1+...+pn = 1.
However, including the denominator makes the likelihood function a well-defined
rational function on the projective space Pn, enabling one to use projective
algebraic geometry to study its restriction to the variety M.

The likelihood function might not be convex, so it can have many local
maxima and the problem of finding and certifying a global maximum is diffi-
cult. Therefore, in most recent works the problem of finding all critical points of
the likelihood function is considered, with the aim of identifying all local max-
ima (see [1], [3] and [4]). This corresponds to solving a system of polynomial
equations and these equations, defining the critical points of the likelihood func-
tion L, are called likelihood equations. The number of complex solutions to the
likelihood equations equals the number of complex critical points of the restric-
tion of the likelihood function L to the model M, which is called the Maximum
Likelihood (ML) degree of the variety M.

1.2 Toric models

In this article we are studying the Maximum Likelihood Estimation problem for
toric models which are models with a well behaved likelihood function. Toric
models are known as log-linear models in statistics, because the logarithms of the
probabilities are linear functions in the logarithms of the parameters θi. They
have the property that maximum likelihood estimation is a convex optimization
problem. Assuming that the parameter domain Θ is bounded, it follows that the
likelihood function has exactly one local maximum. We introduce toric models
following the notation used in Chapter 1.2 of [6].
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Let A = (aij) be a non-negative integer d×m matrix with the property that
all column sums are equal:

d
∑

i=1

ai1 =

d
∑

i=1

ai2 = ... =

d
∑

i=1

aim .

The j-th column vector aj of the matrix A represents the monomial

θaj := θ
a1j

1 · θ
a2j

2 · · · θ
adj

d for all j = 1, ...m.

and the assumption that the column sums of the matrix A are all equal means
these monomials all have the same degree.

Definition 1.1 The toric model of A is the image of the orthant Θ = Rd
>0

under the map

f : Rd → R
m, θ 7→

1
∑m

j=1 θ
aj

· (θa1 , θa2 , ..., θam) .

Maximum likelihood estimation for the toric model means solving the opti-
mization problem of maximising the function

pu1

1 · pu2

1 · ... · pum

m

subject to the constrains f(Rd
>0). This is equivallent to maximising function

θA·u subject to θ ∈ R
d
>0 and

m
∑

j=1

θaj = 1,

where

θAu =

d
∏

i=1

θai1u1+ai2u2+...+aimum

i and θaj =

d
∏

i=1

θ
aij

i .

Let b := Au denote the sufficient statistic, then the optimisation problem above
becomes

Maximise θb subject to θ ∈ R
d
>0 and

m
∑

j=1

θaj = 1 .

Proposition 1.2 Fix a toric model A and data u ∈ N
m with sample size N =

u1 + + um and sufficient statistic b = Au. Let p̂ = f(θ̂) be any local maximum

for the equivalent optimization problems above. Then

A · p̂ =
1

N
· b.

Given a matrix A ∈ N
d×m and any vector b ∈ R

d, we consider the set

PA(b) = {p ∈ R
m : A · p =

1

N
· b and pj > 0 for all j}.

This is a relatively open polytope and Birch’s theorem below asserts that it is
either empty or meets the toric model in precisely one point.
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Theorem 1.3 (Birch’s Theorem) Fix a toric model A and let u ∈ Nm
>0 be a

strictly positive data vector with sufficient statistic b = Au. The intersection of

the polytope PA(b) with the toric model f(Rd
>0) consists of precisely one point.

That point is the maximum likelihood estimate p̂ for the data u.

In the next section we will determine a closed form for the Maximum Like-
lihood Estimates for all algebraic statistical models corresponding to toric del
Pezzo surfaces of degree three and four with Du Val singularities. The cor-
responing polytope of a toric del Pezzo surface with Du Val singularities is a
reflexive polytope. According to the classification results of reflexive polytopes
(see [5], [7]), there are 16 isomorphism classes of such two-dimensional reflexive
polytopes, a list of which we provide bellow.

Proposition 1.4 There are exactly 16 isomorphism classes of two-dimensional

reflexive polytopes given in the list bellow. The number in the labels is the number

of lattice points on the boundary.
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2 Main Calculation

In this section we determine a closed form for the Maximum Likelihood estimates
for all algebraic statistical models corresponding to cubic and quartic toric del
Pezzo surfaces with Du Val singularities.

2.1 Cubic del Pezzo with three singular points of type A2

Consider the case of a reflexive polytope with three lattice points on the bound-
ary, as in the graph below. This corresponds to a cubic surface with three Du
Val singular points of type A2.

This polytope generated by the lattice points (1, 0), (0, 1), (−1,−1) in Z2

gives the same toric variety as the polytope which is generated by the lattice
points (2, 1, 0), (1, 2, 0), (0, 0, 3) in Z3.

We are interested in the algebraic statistical model given by the matrix

A =





2 1 0
1 2 0
0 0 3



 .

This non-negative integer matrix A corresponds to a toric algebraic variety
which is the topological closure f(C3) of the image f(C3) ⊂ C3 under the map

f : C3 → C
3 , (θ1, θ2, θ3) 7→

1

(θ21θ2 + θ1θ
2
2 + θ33)

(θ21θ2, θ1θ
2
2 , θ

3
3) .

According to Birch’s theorem there is a unique maximum likelihood estimate
p̂ for the data u = (u1, u2, u3) with N = u1+u2+u3. This unique MLE satisfies
the equation

A · p̂ =
1

N
· A · u .

Since det(A) 6= 0, the inverse A−1 exists and by multiplying the above matrix
equation with A−1 from the left we get

p̂ =
1

N
· u .
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This gives us the equations

θ̂21 θ̂2 =
1

N
u1 ,

θ̂1θ̂
2
2 =

1

N
u2 ,

θ̂33 =
1

N
u3.

and we can compute (θ̂1, θ̂2, θ̂3) = ( 3

√

u2

1

N ·u2
,

3

√

u2

2

N ·u1
, 3

√

u3

N
).

2.2 Quartic del Pezzo with four singular points of type A1.

Again consider the case of a reflexive polytope with four lattice points on the
boundary, as in the graph below.

Again the polytope generated by the lattice points (1, 0), (0, 1), (−1, 0), (0,−1)
in Z2 gives rise to the same toric variety as the polytope generated by the lattice
points (2, 1, 0), (1, 2, 0), (1, 0, 2), (0, 1, 2) in Z3.

The non-negative integer matrix

A =





2 1 1 0
1 2 0 1
0 0 2 2





corresponds to a toric algebraic variety which is the topological closure f(C3)
of the image f(C3) ⊂ C4 under the map

f : C3 → C
4 , (θ1, θ2, θ3) 7→

1

(θ21θ2 + θ1θ
2
2 + θ1θ

2
3 + θ2θ

2
3)
(θ21θ2, θ1θ

2
2, θ1θ

2
3 , θ2θ

2
3) .

According to Birch’s theorem there is a unique maximum likelihood estimate
θ̂ for the data u = (u1, u2, u3, u4) which satisfies the equation

A · p̂ =
1

N
· A · u ,

6



where N = u1+u2+u3+u4 and p̂ is the probability distribution corresponding
to the parameter values (θ̂1, θ̂2, θ̂3). This gives us the equations

θ̂21 θ̂2 − θ̂2θ̂
2
3 =

1

N
(u1 − u4)

θ̂1θ̂
2
2 + θ̂2θ̂

2
3 =

1

N
(u2 + u4)

θ̂1θ̂
2
3 + θ̂2θ̂

2
3 =

1

N
(u3 + u4) ,

and these equations give us

p̂1 =
(u1 + u2)(u1 + u3)

N2

p̂2 =
(u1 + u2)(u2 + u4)

N2

p̂3 =
(u1 + u3)(u3 + u4)

N2

p̂4 =
(u2 + u4)(u3 + u4)

N2
.

We can compute the unique maximum likelihood estimate θ̂ for the data u, which

is (θ̂1, θ̂2, θ̂3) = ( 3

√

(u1+u2)(u1+u3)2

N2(u2+u4)
, 3

√

(u1+u2)(u2+u4)2

N2(u1+u3)
, 6

√

(u1+u3)(u2+u4)(u3+u4)3

N4(u1+u2)
).

2.3 Quartic del Pezzo with one A2 and two A1 type singu-

lar points

Again consider the case of a reflexive polytope with four lattice points on the
boundary, as in the graph below.

The polytope generated by the lattice points (1, 0), (0, 1), (−1, 1), (0,−1) in Z2 is
the same as the polytope generated by the lattice points (2, 1, 0), (1, 2, 0), (1, 0, 2), (0, 2, 1)
in Z3.

The non-negative integer matrix

A =





1 0 1 2
0 2 2 1
2 1 0 0
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corresponds to a toric algebraic variety which is the topological closure f(C3)
of the image f(C3) ⊂ C4 under the map

f : C3 → C
4 , (θ1, θ2, θ3) 7→

1

(θ1θ23 + θ22θ3 + θ1θ
2
2 + θ21θ2)

(θ1θ
2
3 , θ

2
2θ3, θ1θ

2
2 , θ

2
1θ2) .

According to Birch’s theorem there is a unique maximum likelihood estimate
θ̂ for the data u = (u1, u2, u3, u4) which satisfies the equation

A · p̂ =
1

N
· A · u ,

where N = u1+u2+u3+u4 and p̂ is the probability distribution corresponding
to the parameter values (θ̂1, θ̂2, θ̂3).

This gives us the equations

2θ̂1θ̂
2
3 + θ̂21 θ̂2 =

1

N
(2u1 + u4)

θ̂22 θ̂3 − θ̂21 θ̂2 =
1

N
(u2 − u4)

2θ̂1θ̂
2
2 + 3θ̂21 θ̂2 =

1

N
(2u3 + 3u4) .

Then the unique maximum likelihood estimate θ̂ for the data u is (θ̂1, θ̂2, θ̂3) =

( 3

√

p2

4

p3
, 3

√

p2

3

p4
, 6

√

p3

3p2

4

[p3 +
3u1−u3

N
]). The probability distribution p̂3 and p̂4 are

given by the quartic equations

aip
4
i + bip

3
i + cip

2
i + dipi + ei = 0 for i = 3, 4

where

a4 = 19N4

b4 = 2N3(19(u2 − u4)− 27N)

c4 = 9N2(2u3 + 3u4)(6N − 6(u2 − u4)− 2(2u3 + 3u4))− 8N2(u2 − u4)
2

d4 = N(2u3 + 3u4)
2[8(2u3 + 3u4)− 9(2N − 2(u2 − u4))]

e4 = (2u3 + 3u4)
3[2N − 2(u2 − u4)− (2u3 + 3u4)] ,

and

a3 = 11N4

b3 = 48N4 − 11N3(−3u1 + u3)

c3 = 36N2(u2 − u4)
2 − 8N2(3u2 + 2u3)(2u3 + 3u4)

d3 = −4N3(3N − 3u1 + u3)

e4 = (3u2 + 2u3)
2(2u3 + 3u4)

2 .

8



2.4 Quartic Del Pezzo surface with one A3 and two A1 type

singular points.

Again consider the case of a reflexive polytope with four lattice points on the
boundary, as in the graph below.

We once more we can see that the polytope generated by the lattice points
(1, 1), (0, 1), (−1, 1), (0,−1) in Z2 gives the same toric variety as the polytope
generated by the lattice points (1, 0, 3), (2, 2, 0), (1, 2, 1), (0, 2, 2) in Z3.

The non-negative integer matrix

A =





1 2 1 0
0 2 2 2
3 0 1 2





corresponds to a toric algebraic variety which is the topological closure f(C3)
of the image f(C3) ⊂ C4 under the map

f : C3 → C
4 , (θ1, θ2, θ3) 7→

1

(θ1θ33 + θ21θ
2
2 + θ1θ

2
2θ3 + θ22θ

2
3)
(θ1θ

3
3, θ

2
1θ

2
2, θ1θ

2
2θ3, θ

2
2θ

2
3) .

According to Birch’s theorem there is a unique maximum likelihood estimate
θ̂ for the data u = (u1, u2, u3, u4) which satisfies the equation

A · p̂ =
1

N
· A · u ,

where N = u1+u2+u3+u4 and p̂ is the probability distribution corresponding
to the parameter values (θ̂1, θ̂2, θ̂3).

This gives us the equations

θ̂1θ̂
3
3 =

1

N
u1

θ̂21 θ̂
2
2 − θ̂22 θ̂

2
3 =

1

N
(u2 − u4)

θ̂1θ̂
2
2 θ̂3 + 2θ̂22 θ̂

2
3 =

1

N
(u3 + 2u4) .

and these equations give us

p̂1 =
u1

N

9



We can compute the unique maximum likelihood estimate θ̂ for the data u,
which is

θ̂1 =
4

√

√

√

√u1(u2 − u4)3

8N

( 2

√

(u2−u4)2+4(u3+2u2)(u3+2u4)
(u2−u4)2

− 1)3

(u3 + 2u2)3

θ̂2 = 4

√

(u2 + u3 + u4)(u3 + 2u4)3

Nu1(u2 + 2u3 + 3u4)2

θ̂3 =
4

√

√

√

√

u1(u2 − u4)

2N(u3 + 2u4)
(1 + 2

√

(u2 − u4)2 + 4(u3 + 2u2)(u3 + 2u4)

(u2 − u4)2
)

2.5 Toric Del Pezzo surfaces of degree greater than five.

When the degree of the Del Pezzo surface is greater than five, the defining
equations of the probability distribution (p̂1, p̂2, p̂3, p̂4) have degree 5 and we
cannot obtain a closed form for the Maximum Likelihood Estimate. Although a
closed-form formula for maximum likelihood estimates is not achieved for these
log-linear models, the log-likelihood function is convex for these models, and
any hill-climbing algorithm can be used to compute the ML estimates.
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