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Bayesian Inversion of Seismic Attributes for Geological Facies 

using a Hidden Markov Model 

Muhammad Atif Nawaz1 and Andrew Curtis1 

1 School of Geosciences, Grant Institute, University of Edinburgh, Edinburgh, UK 

Abstract 

Markov chain Monte-Carlo (McMC) sampling generates correlated random samples such that their 

distribution would converge to the true distribution only as the number of samples tends to infinity. In 

practice, McMC is found to be slow to converge, convergence is not guaranteed to be achieved in finite 

time, and detection of convergence requires the use of subjective criteria. Although McMC has been used 

for decades as the algorithm of choice for inference in complex probability distributions, there is a need 

to seek alternative approaches, particularly in high dimensional problems. Walker & Curtis (2014) 

developed a method for Bayesian inversion of two-dimensional spatial data using an exact sampling 

alternative to McMC which always draws independent samples of the target distribution. Their method 

thus obviates the need for convergence and removes the concomitant bias exhibited by finite sample sets. 

Their algorithm is nevertheless computationally intensive and requires large memory. 

We propose a more efficient method for Bayesian inversion of categorical variables, such as geological 

facies that requires no sampling at all. The method is based on a 2D Hidden Markov Model (2D-HMM) over 

a grid of cells where observations represent localized data constraining each cell. The data in our example 

application are seismic attributes such as P- and S-wave impedances and rock density; our categorical 

variables are the hidden states and represent the geological rock types in each cell – facies of distinct 

subsets of lithology and fluid combinations such as shale, brine-sand and gas-sand. The observations at 

each location are assumed to be generated from a random function of the hidden state (facies) at that 

location, and to be distributed according to a certain probability distribution that is independent of hidden 

states at other locations – an assumption referred to as localized likelihoods. The hidden state (facies) at 

a location cannot be determined solely by the observation at that location as it also depends on prior 

information concerning the spatial distribution of other hidden states elsewhere. The prior information is 

included in the inversion in the form of a training image which represents a conceptual depiction of local 

geologies that might be expected, but other forms of prior information can be used in the method as 

desired. The method provides direct estimates of posterior marginal probability distributions over each 
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variable, so these do not need to be estimated from samples such as in McMC. Nevertheless, in case 

samples are desired, these can be generated. On a 2-dimensional test example the method is shown to 

outperform previous methods significantly, at a fraction of the computational cost. In many foreseeable 

applications there are therefore no serious impediments to extending the method to 3-dimensional cases. 

1. Introduction 

Geological phenomena always exhibit some degree of spatial correlation and continuity, but also apparent 

randomness in space at various scales. Such spatial variability may be described by a geological continuity 

model that is ultimately governed by geological processes. Geoscientists are usually able to build plausible 

models of spatial distributions of facies in a certain area or volume using prior knowledge about the local 

geological model. The spatial variability in geophysically detectable rock properties (e.g., elastic or 

electromagnetic properties or density) generally follows the spatial distribution of rock facies (distinctly 

classifiable rock types) but is often more complex than the spatial variability of the facies themselves. For 

this reason, geoscientists can provide better a priori constraints on the spatial distribution of geological 

facies than on the variability in rock properties. 

Herein we describe a method to estimate facies in a subsurface geological volume, a process which we 

refer to as geological modelling. The general approach used in geological modelling is to classify various 

facies from available seismic data based on inferred seismic attributes such as P- and S-wave impedances, 

Poisson's ratio or amplitude variations with reflection angle. Although such attributes have been used 

successfully to discriminate various facies defined in terms of lithology and fluid type, such a classification 

method does not produce the expected geologically realistic spatial correlations of facies. An alternative 

approach is therefore required to combine prior knowledge about expected facies distributions in space, 

with information in the data given in terms of facies probabilities derived from discriminative seismic 

attributes. 

The prior information about realistic spatial distributions of facies is usually represented in terms of joint 

or conditional probability distributions of various facies over a graphical structure called a neighbourhood, 

which in turn is often defined as a rectangular array of cells in 2D models. These probabilities are 

conveniently embodied in the form of training images. A training image is a conceptual and pictorial 

spatial depiction of facies patterns that are likely to exist in the subsurface based on the subjective opinion 

of a geoscientist, or on other objective data about the local geology. Training images allow statistical 
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information about the spatial correlations of facies to be estimated from graphical representations of 

their spatial distribution. 

There is always uncertainty in the estimation of geological facies from the observed data at a given 

location. The uncertainty is either due to uncertainty in the estimates of seismic attributes or due to the 

intrinsic uncertainty in the relationship between facies and the seismic attributes, or both. This implies 

that the seismic attributes inferred at a given location are related to a certain facies at that location 

according to some probability distribution. Although the actual observation in a seismic experiment is the 

raw seismic data, the inferred seismic attributes are referred to as ‘observed data’ or ‘observations’ 

herein. This explicitly distinguishes them from the geological facies which are treated as ‘hidden’ (not 

observed) variables. The probability of observing (or inferring) a specific set of seismic attributes at a fixed 

location given that a particular facies exists at that location, is called the data likelihood. Uncertainty in 

the attributes is accounted for within the likelihood. Since spatial correlation of facies is controlled by the 

prior probabilities it is commonly assumed that the data likelihood is localized: that is, given the facies at 

a location, the seismic attributes at that location are conditionally independent of both facies and the 

seismic attributes at all other locations. This assumption is henceforth referred to as the condition of 

localized likelihoods. 

The contextual information expressed as prior probabilities of spatial correlations of facies may be 

combined with the local information provided by likelihood probabilities in a Bayesian framework. Thus 

we obtain posterior probabilities of the spatial distribution of geological facies that conform to both the 

observed data (seismic attributes) and prior constraints. However, a major problem is that the full 

posterior distribution is usually analytically intractable for standard high-dimensional models and must be 

explored through simulation and sampling based inference, e.g., by using Markov-chain Monte Carlo 

(McMC) methods. McMC based sampling is computationally demanding as it requires many samples to 

converge to the true distribution (see Walker & Curtis 2014). The problem escalates in high dimensional 

models such that convergence is not guaranteed to be achieved even when a very large but finite number 

of samples are generated: the chain of samples generated may be confined to a region of locally-high 

probability in the sample space. The samples are then strongly dependent on the initial steps in the McMC 

random walk, which may lead to false apparent convergence to the posterior probability distribution. As 

a consequence of this, any fixed finite set of samples may be biased in the sense that they do not represent 

the true Bayesian posterior distribution. This bias is related to the use of subjective stopping criteria to 

detect convergence of the chain. To address these challenges, researchers have suggested McMC 
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methods for posterior distributions that can be expressed in factorizable forms, which allow more efficient 

and reliable sampling than a naïve implementation of McMC in such cases (e.g., Rimstad et al. 2012; 

Gallagher et al. 2009; Sambridge & Mosegaard, 2002).  

Walker & Curtis (2014) developed a method for Bayesian inversion of two-dimensional spatial data using 

an exact sampling alternative to McMC. This allows independent samples of the target distribution to be 

drawn without requiring convergence, thus circumventing convergence related biases. They developed a 

method for Bayesian inversion of geological facies from seismic data that incorporates prior geological 

information extracted from a training image and the localized data likelihood computed using a Gaussian 

Mixture Model (GMM) based on neural networks (Meier et al. 2007a & b; Shahraeeni & Curtis 2011; 

Shahraeeni et al. 2012). Their algorithm computes the posterior distribution 𝒫(𝑮 | 𝑫) of geological facies 

given data from the partial conditional posterior distributions 𝒫(𝑔𝑖 | 𝑫, 𝑮<𝑖) as 

 𝒫(𝑮 | 𝑫) =  ∏ 𝒫(𝑔𝑖  | 𝑫, 𝑮<𝑖)𝑀
𝑖=1      (1) 

where  𝒫 represents probability,  𝑀 is the total number of cells in the model, 𝑖 represents a cell index 

according to a linear indexing scheme, 𝑔𝑖 represents model parameters (geological facies) in cell  𝑖, < 𝑖 

represents the set of indices from 1 to  𝑖 − 1, 𝑮 = [ 𝑔1, … , 𝑔𝑖 , … , 𝑔𝑀 ] is the set of model parameters, and 

𝑫 is the set of observed data in all cells in the model. The partial conditionals (right hand terms in the 

above equation) must also usually be calculated since prior information often comes in the form of full 

conditional representations, 𝒫(𝑮𝑖 | 𝑫, 𝑮\𝑖)  where  𝑮\𝑖 = 𝑮 \ { 𝑔𝑖 } (where \ stands for set theoretic 

difference). Their algorithm computes partial conditional distributions of facies in each cell in the model 

in turn, given the facies in all previously sampled cells. This process requires large memory and is 

computationally intensive for real-scale seismic data and geological modelling problems. If distribution 

functions such as marginals of the posterior distribution are required, these must then be calculated from 

the set of samples generated. 

Here we take a different approach: we compute marginal posterior distributions of facies in each cell in 

the model directly. This incorporates prior geological knowledge and the data likelihood in a similar 

manner to Walker & Curtis (2014). However, computation of marginal posterior distributions in each cell 

in the model is computationally more efficient and requires less memory, compared to the computation 

of partial conditional distributions used in the previous work.  
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Before we proceed, we present the notation used in this paper. We use boldface capital letters for sets, 

such as 𝑮 for the set of geological facies and 𝐃 for the set of data in each cell in the model. We use 

boldface small letters for vectors, for example, 𝒅𝑖𝑗  represents a vector of data values in cell (𝑖, 𝑗); and we 

use regular small letters for scalar variables, for example, 𝑔𝑖𝑗  represents geological facies in cell (𝑖, 𝑗), 

where the indexing refers to a two-dimensional indexing scheme followed in this paper. However, at a 

later stage in this paper, we define the notion of a partition of the set of cells represented by  𝑃, and we 

use a linear indexing of cells within a partition, such that 𝑔𝑃,𝑖  (note the comma in the subscript) represents 

the geological facies in the 𝑖th cell within the partition 𝑃. We also define ordered relationships between 

cells, such as < and >, which are described below. 

2. Model 

2.1. Hidden Markov Chain (1D-HMM) 

A stochastic process is a non-deterministic method to generate random variables as a function of an 

independent variable, such as time or space. A Hidden Markov Model (HMM) is a graphical model that 

represents a dual stochastic process: a stochastic process representing observations with an underlying 

stochastic process representing hidden states or model parameters. Hidden Markov Chains, or 1D-HMM, 

are one-dimensional representations of a more general class of HMM’s and are used to represent 

probability distributions over sequences of observations (Figure 1) – see Stratonovich (1960), Baum & 

Eagon (1967), Baum & Petrie (1966), Baum et al. (1970), and Baum (1972). The observations are produced 

by underlying unobserved (hidden) states that represent local (in time or space) instances of the 

underlying stochastic process. In a 1D-HMM, the observations and the underlying hidden states are 

indexed with a parameter 𝑡, which commonly refers to time but may also refer to some other 

measurement index such as space. A 1D-HMM assumes that the observation 𝑑𝑡 at time 𝑡 was generated 

by a stochastic process whose state 𝑥𝑡 is hidden from the observer. It also assumes that the hidden states 

are sequentially distributed according to an underlying stochastic process that satisfies the Markov 

property: given the hidden state 𝑥𝑡−1 at time 𝑡 − 1, the current state 𝑥𝑡 at time 𝑡 is conditionally 

independent of all of the previous states 𝑥1, … , 𝑥𝑡−2 at times prior to 𝑡 − 1: 
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𝒫( 𝑥𝑡  | 𝑥1, … , 𝑥𝑡−1 ) =  𝒫( 𝑥𝑡  | 𝑥𝑡−1 )     (2) 

This means that a HMM is a memory-less process: the state 𝑥𝑡−1 at time 𝑡 − 1 is assumed to encapsulate 

all of the history of the current state 𝑥𝑡 at time 𝑡, and knowing the current state 𝑥𝑡 is sufficient to generate 

the future states at times 𝑡 + 1 and beyond. Another fundamental assumption of a HMM is that for a 

given state, the observation from that state is conditionally independent of all other observations and 

hidden states in the model. This assumption is similar to the assumption of localized likelihoods and is 

called the 1st order Markov Property with respect to data. HMM has found applications in computational 

biology (e.g., Krogh et al. 1994; Liang et al. 2007; Pachter et al. 2002; Shih et al. 2015; Yoon 2009), natural 

language processing (e.g., Collins 2002; Nivre 2002; Sun et al. 2012), speech recognition (e.g., Dymarski 

2011; Rabiner 1989), computer vision (e.g., Li et al. 2000; Othman & Aboulnasr 2003; Baumgartner et al. 

2013), earthquake seismology (e.g., Alasonati et al. 2006; Beyreuther & Wassermann 2008; Can et al. 

2014), petroleum geoscience (e.g., Eidsvik et al. 2004; Lindberg & Omre 2014 & 2015) and many other 

fields of research. 

 

Figure 1: An illustration of a Hidden Markov chain (1D-HMM). Arrow directions represent the directions of probabilistic 

influence between hidden states 𝑥 and observations  𝑑. Subscripts represent the index (time) of the corresponding 

state or observation. 

Previous work in the field of petroleum geoscience used Markov-chains and Hidden Markov Models for 

inversion of seismic data for geological facies (e.g., Larsen et al. 2006; Ulvmoen & Omre 2010; Ulvmoen 

et al. 2010; Hammer & Tjelmeland 2011; Rimstad & Omre 2013; Lindberg & Omre 2014 & 2015). Larsen 

et al. (2006) inverted pre-stack seismic data using a 1D Markov-chain prior model of lithology-fluid classes 

along vertical profiles through a reservoir zone. Ulvmoen & Omre (2010) and Ulvmoen et al. (2010) 

extended the model of Larsen et al. (2006) by introducing lateral alignments among neighbouring 1D 

vertical Markov-chains to model lateral coupling of lithology-fluid classes as commonly found in geological 

strata. Such a graphical structure is called a profile Markov random field (see e.g., Eddy 1998). Rimstad & 

Omre (2013) also used a profile Markov random field based prior but with a different parametrization. 

Rimstad et al. (2012) inverted seismic AVO data for lithology/fluid classes, elastic properties and porosity 
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using a MRF prior model.  Lindberg & Omre (2015) used a convolved two-level 1D-HMM for inversion of 

categorical variables (such as lithology-fluid classes) represented as the bottom hidden-layer of the model, 

continuous system response variables (such as reflection coefficients) represented as the middle hidden-

layer, and the measured convolved data represented in the observation layer. A common feature among 

all of these approaches for facies inversion is that they are based on inference from full posterior 

distribution which must be explored through simulation (sampling) based inference, e.g., using McMC 

methods which suffer from the convergence and bias problems described earlier. 

By contrast, in our approach, we derive analytic expression for marginal posterior distributions of 

geological facies conditioned on the seismic attribute data using a 2D-HMM (Section 3.3 below) which is 

computationally efficient and allows for exact sampling (without using McMC) using a copula function 

(Section 4.1). 

2.2. 2D Hidden Markov Model (2D-HMM) 

Many extensions of hidden Markov-chains to 2D have been proposed in the literature for applications to 

2D data such as images in computer vision, but these either convert 2D data into 1D and then apply a 

pseudo-2D approach (e.g., Abend et al. 1965; Daleno et al. 2010; Ma et al. 2008; Bevilacqua et al. 2007), 

or attempt to obtain approximate results by introducing assumptions which limit the spatial dependence 

among neighbouring cells (locations) in the model (e.g., Li et al. 2000; Othman & Aboulnasr 2003; 

Baumgartner et al. 2013). The main contribution of this paper is that it presents analytic, closed-form 

solutions for approximate marginal posterior distributions of hidden geological states conditioned on the 

seismic data using a 2D-HMM which incorporates the full 2D coupling of hidden states. 

We build a 2D hidden Markov model (2D-HMM) over a rectangular two-dimensional grid where hidden 

states correspond to the geological facies, and observations correspond to localized seismic attributes 

such as P- and S-wave impedances. In order to overcome the computational limitations of probabilistic 

dependence in 2D, we assume that the geological facies in a given cell is conditionally independent of the 

seismic attributes in cells outside of a certain predefined region around that cell, given the seismic 

attributes and geological facies within the pre-defined region. This assumption does not limit any spatial 

dependence among neighbouring locations, and is almost always valid for all types of models defined with 

the localized likelihoods assumption. The hidden states in a 2D-HMM form a special case of a Markov 

random field (MRF), called a hidden Markov mesh or a causal MRF (Abend et al. 1965; Cressie & Davidson, 
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1998).  Causality is induced in the grid by directional conditional dependence among the cells in the model, 

and allows the analytic derivation of marginal posterior distributions. 

In a 2D-HMM, the geological facies are assumed to follow a geological continuity model reflecting the 

joint spatial distribution of geologically plausible facies patterns over a rectangular 2D grid. Marginal 

posterior distributions of facies were computed in each cell while incorporating prior knowledge about 

the spatial distribution of facies presented in the form of a training image, and the localized data likelihood 

is computed in each cell using neural networks similar to Shahraeeni & Curtis (2011) and Shahraeeni et al. 

(2012). We use a conditional copula function computed from the training image to use the marginal 

posterior distributions to draw random samples from the joint posterior distribution of facies in a 

predefined neighbourhood structure. 

In this paper, we first introduce some definitions and notation which are used in the rest of the paper. 

These definitions allow a 1D-like treatment of the 2D-HMM, while fully acknowledging the higher 

dimensional spatial dependence among cells in the model. We analytically derive expressions for marginal 

posterior distributions at each location in the model given the data and the neighbouring geological facies, 

followed by the spatial sampling method using a conditional copula function. Then we present test results 

of spatial stochastic sampling and of computing marginal probability distributions from an application of 

this method to a synthetic geological model of siliciclastic-filled river channels in shale, with three 

geological facies – shale, brine-sand and gas-sand. We finally provide a brief discussion comparing this 

method with previous research with reference to the test results, before concluding. 

3. Computation of Marginal Posterior Distribution in a 2D-HMM 

3.1. Some Relevant Definitions 

Herein a 2D-HMM is represented by a rectangular grid of cells with horizontal, vertical and diagonal 

neighbours defined for each cell in the grid. Causality is induced on the graph by defining ordered 

relationships that introduce the notions of past and future with respect to a given cell (e.g., see Figure 2). 

The causality also defines the flow of probabilistic influence across all of the cells in the model. A 2D-HMM 

therefore defines a directed acyclic graph 𝔾(𝑮, ℰ) over the set of vertices (or cells) 𝑮 defining hidden 

states and ℰ is the set of directed edges (relationships) where each edge connects exactly one vertex (or 

cell) to another in the graph. Being a directed graph, 𝔾 defines a relationship → on its vertices such that 
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for any two vertices 𝑥 and 𝑦, the relationship 𝑥 → 𝑦 ∈  ℰ holds when there exists a direct path from 𝑥 to 𝑦 

in 𝔾. The graph 𝔾 defines an order < on its vertices such that for any two vertices  𝑥 and  𝑦,  𝑥 < 𝑦 when 

there exists an unblocked path from 𝑥 to 𝑦 in 𝔾; i.e. when the probabilistic influence may flow from 𝑥 to 𝑦 

either directly or indirectly through any other vertices. Similarly, 𝔾 also defines a partial order ≤ which is 

similar to the order < except that it also allows that 𝑥 = 𝑦. The orders > and ≥ are similarly defined such 

that 𝑥 > 𝑦 implies that there exists no direct or indirect path from 𝑥 to 𝑦 in 𝔾; and 𝑥 ≥ 𝑦 implies that 

either there is no direct or indirect path from 𝑥 to 𝑦 in 𝔾, or that  𝑥 = 𝑦. Since there is a one-to-one 

mapping between each cell (𝑖, 𝑗) ∈ 𝑮 in the model and the corresponding hidden state 𝑔𝑖𝑗, we denote 

the cells in the model with the corresponding hidden state so we use the same notation 𝑮 to denote the 

set of vertices (cells) in the model as well as the set of geological states in the model. 

The neighbourhood of a cell 𝑥, denoted as 𝑁𝑒(𝑥), is the set of cells which are directly connected to cell x 

according to the underlying graphical model. This implies that the facies in a given cell is either directly 

influenced by the facies in the neighbouring cells, or it directly influences the facies in the neighbouring 

cells, or both. A cell x is said to be a neighbour of cell y if 𝑥 ∈ 𝑁𝑒(𝑦). This also implies that 𝑦 ∈ 𝑁𝑒(𝑥) – in 

words, that 𝑦 is also a neighbour of 𝑥. It should be noted that the cell 𝑥 is not defined to be a neighbour 

of itself so  𝑥 ∉ 𝑁𝑒(𝑥). The definition of neighbourhood implies that a given cell is conditionally 

independent of all other cells outside of its neighbourhood 

𝒫(𝑔𝑖𝑗 | 𝑮\𝑖𝑗) =  𝒫(𝑔𝑖𝑗  | 𝑮𝑁𝑒(𝑖,𝑗))    (3) 

where 𝒫 is probability, 𝑔𝑖𝑗  represents geological facies in some cell (𝑖, 𝑗) ∈ 𝑮,  𝑮\𝑖𝑗 represents the set of 

geological facies in all cells in the model except cell (𝑖, 𝑗), and  𝑮𝑁𝑒(𝑖,𝑗) represents the set of geological 

facies in all cells in the neighbourhood of cell (𝑖, 𝑗). 

Define neighbourhood cardinality, denoted as 𝒞𝑁𝑒(𝑥), as the number of cells in the neighbourhood of a 

given cell 𝑥. The neighbourhood cardinality of a cell at the boundary of a model is usually lower than that 

of a cell further away from the model boundaries. 

Now define a partition element or simply a partition as a non-empty ordered set of cells (nodes) where 

each cell is a neighbour of the next cell in the set, and the first and last cells in the set lie at the boundary 

of the model.  A non-empty ordered set of disjoint partitions can be defined such that all of the neighbours 

of any cell in one partition lie either in the same, the previous or the next partition. Such a family of non-

empty, ordered, disjoint partition elements defines a partition family over the (graphical) model. 
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Figure 2: An example of a causal 2D-HMM. The arrow directions represent the directions of probabilistic dependence 

between various cells (circles) in the model. Circles with – sign, blank and + sign in their interior represent cells in the 

past partition 𝑮𝑃
−, the current partition 𝑮𝑃, and the future partition 𝑮𝑃

+ , respectively.  

In order to create a recursive formulation of the marginal posterior distribution 𝑃(𝑔𝑖𝑗  | 𝑫) of facies 𝑔𝑖𝑗  in 

a cell (𝑖, 𝑗) ∈ 𝑮 conditioned to data 𝑫, we define a partition 𝑮𝑃 as a set of cells ordered from 1 to 𝑛,  such 

that  𝑔𝑖𝑗 ∈  𝑮𝑃; that is, ∃ 𝑔𝑃,𝑘 ∈  𝑮𝑃 such that 𝑔𝑃,𝑘 = 𝑔𝑖𝑗, for some k, and  

𝑮𝑃 =  { 𝑔𝑃,1, 𝑔𝑃,2, … , 𝑔𝑃,𝑘, … , 𝑔𝑃,𝑛 ∶  𝑔𝑃,𝑘 = 𝑔𝑖𝑗   𝑓𝑜𝑟  𝑠𝑜𝑚𝑒  𝑘}   (4) 

Just as the notation with double letters 𝑖𝑗 in the subscript represents the location of a cell in the model, 

the notation 𝑔𝑃,∙  (with a 𝑃,∙ in the subscript) is used in equation 4 to represent ordering of cells within 

the partition 𝑮𝑃. Since by definition of a partition, the first and the last cell (viz. 𝑔𝑃,1 and  𝑔𝑃,𝑛 ) must lie 

on the boundary of the model, we must have 𝒞𝑁𝑒(𝑔𝑃,1) < 𝑐𝑚𝑎𝑥 and 𝒞𝑁𝑒(𝑔𝑃,𝑛) < 𝑐𝑚𝑎𝑥, where 𝑐𝑚𝑎𝑥 is 

the maximum neighbourhood cardinality of a cell inside the model boundaries. So by definition of a 

partition 𝑔𝑃,1 ∈  𝑁𝑒(𝑔𝑃,2),   𝑔𝑃,2 ∈  𝑁𝑒(𝑔𝑃,3), … ,   𝑔𝑃,𝑛−1 ∈  𝑁𝑒(𝑔𝑃,𝑛). 

A partition may be defined as a row, a column or an arbitrary set of cells that satisfies equation 4. The 

shape of the partition is chosen with consideration of computational convenience, the size and shape of 

the computational model, and the neighbourhood structure. It is preferable to define the partition along 

the shorter dimension of the model in order to limit the partition size, as the memory required to store 

the joint distribution of facies within a partition grows exponentially with the partition size. 
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Figure 3: Examples of a partition defined over a graphical model as a set of nodes that divides the model into two non-

overlapping parts. An ordered set of such partitions defines a partition family over the graphical model. (a) An arbitrary 

partition, and (b) a partition (element) defined over a column (or the shorter dimension) in the model.  The cells shown 

with symbol “-“ form the previous (past) partition 𝑮𝑃
−, the cells shown with symbols “o” form the current partition 𝑮𝑃, 

and the cells shown with symbol “+” form the next (future) partition 𝑮𝑃
+. The black “o” cell represents the cell (𝑖, 𝑗) 𝜖 𝑮𝑃 

for which marginal posterior probability is being computed. 

We define 𝑮𝑃
− as the set of cells which constitute the immediate past of the partition 𝑮𝑃 based on the 

direction induced by causality (Figure 3) 

𝑮𝑃
− =  { 𝑔𝑘𝑙 ∶  ∃ 𝑔𝑖𝑗 ∈  𝑮𝑃 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔𝑘𝑙 →  𝑔𝑖𝑗 ∈ ℰ }   (5) 

Similarly, define 𝑮𝑃
+ as the set of cells which constitute the immediate future of the partition 𝑮𝑃 based on 

the direction induced by causality (Figure 3) 

𝑮𝑃
+ =  { 𝑔𝑘𝑙 ∶  ∃ 𝑔𝑖𝑗 ∈  𝑮𝑃 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔𝑖𝑗 →  𝑔𝑘𝑙 ∈ ℰ }   (6) 

By definition   𝑮𝑃
−  ∩  𝑮𝑃 =  𝑮𝑃 ∩  𝑮𝑃

+ =  𝑮𝑃
−  ∩  𝑮𝑃

+ =  ∅ and 𝑮 =  ⋃ 𝑮𝑃𝑃 , ∀ 𝑃, where  ∩  represents 

intersection, ∪𝑃  represents union over all P, and  ∅  is the empty set. 
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Figure 4: Illustration of partitions 𝑮≤𝑃 and 𝑮>𝑃. The cells with dashed border represent the partition 𝑮𝑃, which are also 

part of partition 𝑮≤𝑃. 

Also, define 𝑮≤𝑃 as 

𝑮≤𝑃 =  { 𝑔𝑘𝑙 ∶  ∃ 𝑔𝑖𝑗 ∈  𝑮𝑃 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔𝑘𝑙 ≤  𝑔𝑖𝑗}   (7) 

It follows that 𝑮𝑃 ⊂  𝑮≤𝑃. Similarly, define 𝑮>𝑃 as 

𝑮>𝑃 =  { 𝑔𝑘𝑙 ∶  ∃ 𝑔𝑖𝑗 ∈  𝑮𝑃 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔𝑖𝑗 <  𝑔𝑘𝑙}   (8) 

Figure 3 shows examples of partitions 𝑮𝑃
−, 𝑮𝑃 and 𝑮𝑃

+ defined (a) arbitrarily, and (b) as a column of cells 

in the model. Figure 4 shows the regions corresponding to 𝑮≤𝑃 and 𝑮>𝑃 for a partition defined as a column 

of cells in the model. Similarly define 

𝑫𝑃 =  { 𝒅𝑘𝑙 ∶  ∃ 𝑔𝑘𝑙 ∈  𝑮𝑃 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑃(𝒅𝑘𝑙  | 𝑮) =  𝑃(𝒅𝑘𝑙  | 𝑔𝑘𝑙)}   (9) 

𝑫≤𝑃 =  { 𝒅𝑘𝑙 ∶  ∃ 𝑔𝑘𝑙 ∈  𝑮≤𝑃 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑃(𝒅𝑘𝑙  | 𝑮) =  𝑃(𝒅𝑘𝑙  | 𝑔𝑘𝑙)}   (10) 

𝑫>𝑃 =  { 𝒅𝑘𝑙 ∶  ∃ 𝑔𝑘𝑙 ∈  𝑮>𝑃 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃(𝒅𝑘𝑙  | 𝑮) =  𝑃(𝒅𝑘𝑙 | 𝑔𝑘𝑙)}   (11) 

A key assumption in our algorithm for computing marginal posterior distributions using a 2D-HMM is that 

𝑫>𝑃 and 𝑫≤𝑃 are conditionally independent given the geology 𝑮. Note that the data 𝒅𝑘𝑙 in a cell (𝑘, 𝑙) 

may be vector, hence the bold-face notation. 

3.2. Conditional Dependence between Partitions 

Due to causality, the probability of a facies being present in a given cell depends on the facies in the 

previous partition 𝑮𝑃
− as well as in the current partition 𝑮𝑃 . Such a dependence can be computed from 

the conditional probabilities of facies in the current partition 𝑮𝑃 given the facies in the previous partition 
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𝑮𝑃
−. From the above definitions it follows that (allowing for different numbers of cells in 𝑮𝑃 and 𝑮𝑃

− in 

general) 

 𝒫(𝑮𝑃 | 𝑮𝑃
−) =  𝒫(𝑔𝑃,1, 𝑔𝑃,2, … , 𝑔𝑃,𝑛 | 𝑔𝑃,1

− , 𝑔𝑃,2
− , … , 𝑔𝑃,𝑟

− ),  

where  𝑔𝑃,∙ and 𝑔𝑃,∙
−  represent the ordering of elements within partitions 𝑮𝑃 and 𝑮𝑃

− respectively. Then, 

𝒫(𝑮𝑃 | 𝑮𝑃
−) =  𝒫(𝑔𝑃,1 | 𝑔𝑃,2, … , 𝑔𝑃,𝑛, 𝑔𝑃,1

− , 𝑔𝑃,2
− , … , 𝑔𝑃,𝑟

− )   

∙ 𝒫( 𝑔𝑃,2, … , 𝑔𝑃,𝑛 |  𝑔𝑃,1
− , 𝑔𝑃,2

− , … , 𝑔𝑃,𝑟
− ) 

=  𝒫 (𝑔𝑃,1 | 𝑮𝑁𝑒
− (𝑃, 1)) ∙ 𝒫( 𝑔𝑃,2, … , 𝑔𝑃,𝑛 |  𝑔𝑃,1

− , 𝑔𝑃,2
− , … , 𝑔𝑃,𝑟

− )   

=  𝒫 (𝑔𝑃,1 | 𝑮𝑁𝑒
− (𝑃, 1))  ∙ 𝒫( 𝑔𝑃,2 |  𝑔𝑃,3, … , 𝑔𝑃,𝑛, 𝑔𝑃,1

− , 𝑔𝑃,2
− , … , 𝑔𝑃,𝑟

− ) 

 ∙ 𝒫( 𝑔𝑃,3, … , 𝑔𝑃,𝑛 |  𝑔𝑃,1
− , 𝑔𝑃,2

− , … , 𝑔𝑃,𝑟
− )   

=  𝒫 (𝑔𝑃,1 | 𝑮𝑁𝑒
− (𝑃, 1)) ∙ 𝒫( 𝑔𝑃,2 | 𝑮𝑁𝑒

− (𝑃, 2)\ {𝑔𝑃,1} )   

∙ 𝒫( 𝑔𝑃,3 |  𝑔𝑃,4, … , 𝑔𝑃,𝑛, 𝑔𝑃,1
− , 𝑔𝑃,2

− , … , 𝑔𝑃,𝑟
− ) 

∙ 𝒫( 𝑔𝑃,4, … , 𝑔𝑃,𝑛 |  𝑔𝑃,1
− , 𝑔𝑃,2

− , … , 𝑔𝑃,𝑟
− ) 

=  𝒫 (𝑔𝑃,1 | 𝑮𝑁𝑒
− (𝑃, 1)) ∙ 𝒫( 𝑔𝑃,2 | 𝑮𝑁𝑒

− (𝑃, 2)\ {𝑔𝑃,1} ) 

∙ 𝒫( 𝑔𝑃,3 | 𝑮𝑁𝑒
− (𝑃, 3)\ {𝑔𝑃,1, 𝑔𝑃,2} ) 

… 

∙ 𝒫( 𝑔𝑃,𝑛 | 𝑮𝑁𝑒
− (𝑃, 𝑛)\ {𝑔𝑃,1,  𝑔𝑃,2, … , 𝑔𝑃,𝑛−1}) 

and therefore, 

𝒫(𝑮𝑃 | 𝑮𝑃
−) = ∏ 𝒫( 𝑔𝑃,𝑖 | 𝑮𝑁𝑒

− (𝑃, 𝑖)\ {𝑔𝑃,<𝑖} )𝑛
𝑖=1    (12) 

where  {𝑔𝑃,<𝑖} =  { 𝑔𝑃,ℎ ∶ ℎ < 𝑖}  and  𝑮𝑁𝑒
− (𝑃, 𝑖) =  (𝑮𝑃

−  ∪  𝑮𝑃)  ∩ 𝑁𝑒(𝑃, 𝑖).  
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The conditional probabilities on the right-hand side of equation 12 represent the prior information on the 

spatial correlation of geological facies. These can be computed directly from the patterns of facies 

distributions depicted in the training image which correspond to the various shapes and sizes of partitions 

and the neighbourhood structure. As an example, see Toftaker & Tjelmeland (2013) for a proposed 

method to build a prior model from a training image using a binary MRF and its partially ordered 

approximation, and Arnesen & Tjelmeland (2016) for a proposed prior distribution for parameters and 

structure of a binary MRF. For spatial inversion of geological facies, we stipulate that the spatial 

correlations read from the training image are assumed to be stationary, i.e., they are assumed to be 

independent of location within the model. 

3.3. Derivation of Marginal Posterior Distribution 

The idea of a partition 𝑮𝑃 thus imposes a natural ordering which (in the following) allows 1D-like 

treatment of the underlying 2D-HMM while fully acknowledging the 2D structure of probabilistic 

dependence between cells in the model. Using the above definitions, we can derive the recursive 

formulation for the marginal posterior distribution conditioned to the data 𝑫 because  𝑃(𝑔𝑖𝑗  | 𝑫)  ∝

 𝑃(𝑔𝑖𝑗 , 𝑫) since the data 𝑫 is measured and fixed. Setting  𝑔𝑖𝑗 =  𝑔𝑃,𝑞, 

𝒫(𝑔𝑖𝑗 | 𝑫) ∝ 𝒫(𝑔𝑃,𝑞 , 𝑫) 

=  ∑ 𝒫(𝑮𝑃 , 𝑫)𝐺𝑃\ {𝑔𝑃,𝑞}   

[by definition of a marginal distribution over 𝑔𝑃,𝑞] 

=  ∑ 𝒫(𝑮𝑃 , 𝑫≤𝑃)𝑃(𝑫>𝑃 | 𝑮𝑃)𝐺𝑃\ {𝑔𝑃,𝑞}   

[since 𝑫≤𝑃 is independent of 𝐷>𝑃] 

=  ∑  𝑮𝑃\ {𝑔𝑃,𝑞}  𝛼(𝑮𝑃) 𝛽(𝑮𝑃)      (13) 

where 𝛼(𝑮𝑃) =  𝒫(𝑮𝑃 , 𝑫≤𝑃) and 𝛽(𝑮𝑃) =  𝒫(𝑫>𝑃 | 𝑮𝑃) are the equivalent 2D forward and backward 

probabilities as those used for 1D hidden Markov chains in the dynamic programming based algorithms 

of Baum (1972), Baum and Petrie (1966), Baum et al. (1970), Viterbi (1967) and Forney Jr. (1973). Note 

that the summation in equation 13 represents summations over all of the cells 𝑔𝑃,∙ in the partition 𝑮𝑃 

except the cell 𝑔𝑖𝑗 = 𝑔𝑃,𝑞.  
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Since 𝑮𝑃’s, by definition, form a partition over the model space, 𝛼(𝑮𝑃) can be expressed using the 

recursive formulation of Baum’s forward-backward algorithm (Baum 1972) for a 1D hidden Markov chain 

as 

𝛼(𝑮𝑃)  = 𝒫(𝑮𝑃 , 𝑫≤𝑃)    

= 𝒫(𝑫𝑃 | 𝑮𝑃) ∑   𝒫( 𝑮𝑃 | 𝑮𝑃
−)  𝛼(𝑮𝑃

−) 𝑮𝑃
−       (14) 

where summation is over all of the facies in all of the cells in 𝑮𝑃
−. On substitution from equation (12 for 

𝒫(𝑮𝑃 | 𝑮𝑃
−) and assuming localized likelihoods, equation 14 takes the form 

𝛼(𝑮𝑃) =  ∏ 𝒫( 𝒅𝑃,𝑖 |  𝑔𝑃,𝑖 )𝑛
𝑖=1 ∙ ∑ (  ∏ 𝒫( 𝑔𝑃,𝑗 | 𝑮𝑁𝑒

− (𝑃, 𝑗) \ {𝑔𝑃,<𝑗} )𝑛
𝑗=1   ) ∙ 𝛼(𝑮𝑃

−) 𝑮𝑃
−     (15) 

The factors 𝒫( 𝑫𝑃 | 𝑮𝑃) = ∏ 𝒫( 𝒅𝑃,𝑖  |  𝑔𝑃,𝑖 )𝑛
𝑖=1  in equation 15 represent the data likelihood given the 

geological facies in each cell assuming localized likelihoods. The data likelihood is given by the probabilistic 

forward model and is explained in the next section.  

Similarly, 𝛽(𝑮𝑃) can be expressed in a recursive formulation as 

𝛽(𝑮𝑃)  = 𝒫(𝑫>𝑃 | 𝑮𝑃)    

= ∑ 𝒫( 𝑮𝑃
+ | 𝑮𝑃) 𝒫( 𝑫𝑃

+ | 𝑮𝑃
+)  𝛽(𝑮𝑃

+)𝑮𝑃
+      (16) 

where the summation is over all possible combinations of facies in all of the cells in 𝑮𝑃
+. On substitution 

from equation 12 for 𝒫( 𝑮𝑃
+ | 𝑮𝑃) and assuming localized likelihoods, equation 16 takes the form 

𝛽(𝑮𝑃) =  ∑   (
 

( ∏ 𝒫( 𝒅𝑃+,𝑖 |  𝑔𝑃+,𝑖 )𝑛
𝑖=1  ) ∙ (∏ 𝒫( 𝑔𝑃+,𝑗 | 𝑮𝑁𝑒

− (𝑃+, 𝑗) \ {𝑔𝑃+,>𝑗} )𝑛
𝑗=1 ) ∙ 𝛽(𝑮𝑃

+) )𝑮𝑃
+   (17) 

Substituting equations 15 and 17 into equation 13 gives a recursive formulation for the marginal posterior 

distribution in a given cell in the model. 𝛼(𝑮𝑃) in equation 15 is computed in the forward direction 

(increasing  𝑃) while 𝛽(𝑮𝑃) in equation 17 is computed in the backward direction (decreasing  𝑃). This 

process is repeated for each cell of interest (𝑖, 𝑗) in the model.  

The number of summations in equations 13 to 17 increases exponentially with the model size. This means 

that a naïve recursive computation of forward and backward probabilities becomes intractable for models 

of practical size. In order to limit the computational time and memory, an approximate marginal posterior 

distribution can be obtained by limiting the grid size considered around each cell. This introduces a 
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practical and fundamental assumption that the facies at a given cell (𝑖, 𝑗) is conditionally independent of 

data observed at locations outside of a certain region of influence ℛ(𝑖, 𝑗) around the cell (𝑖, 𝑗), that is 

𝒫(𝑔𝑖𝑗 | 𝑫) =  𝒫(𝑔𝑖𝑗  | 𝑫ℛ(𝑖,𝑗))     (18) 

where  𝑫ℛ(𝑖,𝑗) represents the set of data within ℛ(𝑖, 𝑗). Figure 5 shows an illustration of the concept of a 

region of influence. Also, the choice of size of a partition allows us to further limit the number of 

summations required in equations 13 to 17 by summing over only the plausible geological facies, for 

example, by summing over only those facies configurations which are found in the training image. This 

was achieved by directly scanning the training image for the facies configurations in a manner similar to 

that used in so-called direct sampling (Mariethoz et al. 2010).  Tjelmeland & Austad (2012) used a different 

approach to approximate recursive calculations in a binary MRF by approximating the interaction 

parameters between neighbouring nodes to zero when they are very small. 

 

Figure 5: Illustration of the complete model, region of influence ℛ(𝑖, 𝑗) shown as grey shaded cells defined over a sub-

set of the model around cell (𝑖, 𝑗), and the cell (𝑖, 𝑗) shown in black colour. The marginal posterior distribution of cell 

 (𝑖, 𝑗) is computed with the assumption that the facies at cell  (𝑖, 𝑗) depends on the facies in the neighbouring cells 

which in turn depend on their neighbours and so on. Thus the facies at cell  (𝑖, 𝑗) show a spatial correlation with facies 

across the complete model. The assumption of ℛ(𝑖, 𝑗) in the algorithm, however, removes the conditional dependence 

of the facies at (𝑖, 𝑗) on data observed at locations outside of this region.  

4. Generating Random Samples – Stochastic Realizations 

The theory above shows how posterior probability of each facies in each cell can be computed directly, 

rather than being estimated indirectly through sampling algorithms such as in McMC. However, in case 
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samples are desired, we now show how stochastic realizations of the joint distribution can be computed 

from the marginal distributions using the copula function determined from the prior continuity model (in 

our case, from the statistical information in the training image). Before we describe the sampling method, 

we give a brief introduction to copula functions below. 

4.1. Copula 

A copula is a function 𝐶 of 𝑑 variables on the unit 𝑑-cube [0, 1]𝑑 representing a multivariate distribution 

of any random vector 𝑼 =  (𝑢1, … , 𝑢𝑑) that has univariate standard Uniform marginal distributions (on 

the unit 𝑑-cube). A copula therefore represents a multivariate probability distribution with standard 

Uniform marginal (univariate) distributions, and describes the complete joint dependence among the 

various random variables in 𝑼 (Frechet 1951). 

Sklar's theorem states that a joint multivariate cumulative distribution function (CDF) equals the copula 

function of all univariate marginal CDFs (Sklar 1959; Sklar 1973). In other words, any multivariate 

distribution can be completely described by its copula and its marginal distributions. This implies that for 

the joint CDF 𝐹(𝒁) of a 𝑑-variate random vector 𝒁 =  (𝑧1, … , 𝑧𝑑) with marginal CDFs 𝐹1(𝑧1), … , 𝐹𝑑(𝑧𝑑), 

there exists a 𝑑-copula 𝐶 such that 

𝐹(𝒁) = 𝐶(𝐹1(𝑧1), … , 𝐹𝑑(𝑧𝑑))     (19) 

which can be defined as follows. If 𝐹1
−1, 𝐹2

−1, … , 𝐹𝑑
−1 represent inverse marginal distributions defined as 

𝐹𝑖
−1(𝑥) = inf  {𝑦 | 𝐹𝑖(𝑦)  ≥ 𝑥}     (20) 

where inf is the infimum function, which provides the largest possible lower bound for the set on the right 

side. Then for 𝑼 =  (𝑢1, 𝑢2, … , 𝑢𝑑) in the unit 𝑑-cube, 

𝐶(𝑼) = 𝐹 (𝐹1
−1(𝑢1), … , 𝐹𝑑

−1(𝑢𝑑))    (21) 

Equation 21 shows that a copula expresses the conditional dependence of multivariate random variables 

in terms of conditional dependence of Uniformly distributed random variables. A copula can be 

determined uniquely if all of the marginal distributions are continuous. If any of the marginal distributions 

is discrete, the copula function becomes non-unique as the inverse distribution of a discrete variable 

cannot be uniquely determined (see Figure 6). Nevertheless, the infimum function in equation 20 defines 
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a consistent way of computing inverse distribution functions (and hence copula functions) for discrete 

variables. 

 

Figure 6: Illustration of possible non-unique values of the inverse-cdf for discrete variables. A cumulative probability of 

0.46 cannot be uniquely assigned to a discrete (integer) variable in the interval [1, 5] since the cdf of variable 2 is 0.25 

(< 0.46) and that of variable 3 is 0.57 (> 0.46). Use of the infimum function for this case assigns the value 3 which is 

the minimum value of the discrete variable for which the cumulative probability is ≥ 0.46. Another possibility could be 

to assign the output of the inverse-cdf equal to the variable whose cumulative probability is closest to the input value 

0.46. In this example, the result would still be 3. It is therefore important to use any preferred definition for the inverse-

cdf for discrete variables consistently.  

Since a copula encompasses only the joint dependence of multivariate random variables, it remains 

unchanged even if the scale or the location of their joint distribution changes. So, given a copula and the 

marginal distributions of individual random variables, the complete joint dependence structure embodied 

in the copula may be harnessed to yield multivariate samples from the univariate marginal distributions. 

Multivariate random numbers 𝒁 =  (𝑧1, 𝑧2, … , 𝑧𝐷) can be generated from their marginal distributions by 

generating multivariate uniform random variables 𝑼 =  (𝑢1, 𝑢2, … , 𝑢𝐷) from the copula, then applying 

the inverse marginal distribution function to each component of 𝑈 independently. A copula, therefore, 

allows the joint multivariate probability distribution to be reconstructed from the known univariate 

marginal distributions of individual variables. 

A conditional copula function 𝐶𝑑(𝑢𝑑 |  𝑢1, … , 𝑢𝑑−1) represents a univariate distribution function for a 

random variable 𝑢𝑑 ∈ [ 0, 1 ] given the uniform random variables 𝑢𝑖 ∈ [ 0, 1 ], 𝑖 = 1, … , 𝑑 − 1. The 

inverse copula function 𝐶𝑑
−1 can be computed from the copula function 𝐶𝑑 using equation 20. A 

conditional copula function allows a random variable to be sampled from a combination of its marginal 

probability distribution and the marginal probability distributions of conditioning variables. We illustrate 

this with the following example. 
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Example Consider two random variables  𝑧1 and  𝑧2, a conditional copula function  𝐶2(𝑢2 | 𝑢1) which 

encodes the probability distribution  𝒫(𝑧2 | 𝑧1), and marginal probabilities  𝐹1(𝑧1) and  𝐹1(𝑧2). We 

can generate samples from  𝒫(𝑧2 | 𝑧1) which honour the marginal distributions as well as the joint 

distribution of the two variables as follows: 

1. Compute u1 = F1(z1) 

2. Draw a random sample u ~ U(0,1) 

3. Compute u2 = C2-1(u | u1), where C2-1 is the inverse 

conditional copula defined by equation 20 

4. Compute z2 = F2-1(u2)  

We can extend the above sampling procedure for two variables to a more general case of d variables. 

Given a conditional copula function  𝐶𝑑(𝑢𝑑  |  𝑢1, … , 𝑢𝑑−1), marginal distributions 𝐹𝑖(𝑧𝑖), 𝑖 =  1, … , 𝑑, 

and known random variables  𝑧1, … , 𝑧𝑑−1, conditional samples for the random variable 𝑧𝑑  may be 

generated using the following algorithm: 

Algorithm Generation of conditional samples for 𝑧𝑑 from the conditional distribution 

𝐹𝑑(𝑧𝑑  | 𝑧1, … , 𝑧𝑑−1) using conditional copula function 𝐶𝑑(𝑢𝑑 |  𝑢1, … , 𝑢𝑑−1) and marginal 

distributions 𝐹𝑖(𝑧𝑖), 𝑖 =  1, … , 𝑑: 

1. Compute ui = Fi(zi), ui ∊ [0, 1], i= 1,…,d-1 

2. Draw a random sample u ~ U(0,1) 

3. Compute ud = Cd-1(u | ui), i= 1,…,d-1, where Cd-1 is the 

inverse conditional copula defined by equation 20 

4. Compute zd = Fd-1(ud)  

 

4.2. Sampling from computed marginal distributions using a conditional 

copula function 

A conditional copula function can be derived from the joint spatial distribution of geological facies 

depicted in the training image within a predefined neighbourhood structure around each cell in the model. 
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The geological facies in a given cell may then be simulated from the marginal posterior distribution in that 

cell conditioned on the previously sampled neighbouring cells, using the algorithm described above. The 

samples of facies generated in this fashion are conditionally dependent on the facies in the 

neighbourhood of each of the sampling locations. Stochastic posterior realizations of the geological cross-

section may be generated by sequentially drawing random samples for each cell in the model following 

any linear path. 

5. Synthetic Test 

In order to test the algorithm and to benchmark it against pre-existing algorithms we applied it to the 

same synthetic inverse problem as was used by Walker & Curtis (2014). The synthetic example is based 

on two 2D geological cross-sections extracted from a 3D geological process model of channels with filled 

and overbank sand deposits emplaced in background shale. Most of the channels are filled with brine. Gas 

is introduced in some of the channels while obeying gravitational ordering of the two fluids. The sample 

space of the facies in each cell is therefore given by 

𝒢 =  { shale, brine-sand, gas-sand } 

One of the geological cross-sections (with dimensions of 200 x 200 model cells) defines the training image 

(Figure 7), while the other was used as a target cross-section (with dimensions of 100 x 100 model cells)  

representing the true Earth (Figure 8(a)). The training image was used to define the prior spatial 

conditional distributions of facies and the conditional copula function in order to be able to sample from 

the marginal posterior distributions computed using the main algorithm. The size of the region of 

influence  ℛ(i, j) was arbitrarily taken to be 7 and 9 model cells in each dimension and the partition 𝐺𝑃 

was defined as a column of 7 cells. The size of the partition was chosen arbitrarily whereas its shape was 

chosen with computational convenience in mind. The conditional copula function was computed for a 

square 3x3 neighbourhood template for  𝑁𝑒(∙). This allowed us to sample the joint posterior distribution 

within a 3x3 matrix of cells given the marginal posterior distributions in each of these cell. The size of the 

neighbourhood template could easily be increased without incurring any computational limitations. While 

a 3x3 neighbourhood template may not be sufficient to reproduce more complex patterns of facies 

distributions such as a map view of channels in a deltaic environment, we found that the shape of 

geological features in the target cross-section could easily be recovered with a 3x3 neighbourhood 

template. 
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Figure 7: Training image (TI) extracted as a 2D cross-section from a 3D geological process model containing channels 

with filled and overbank sand deposits with shale in the background. The sand is filled with brine or gas, obeying 

gravitational ordering of the two fluids. The training image represents only a conceptual picture that preserves typical 

forms of expected types of structures and facies. It lacks any location-specific information about the real geology of 

the target subsurface in Figure 8(a).  It was used to obtain prior information related to the lateral and vertical continuity 

and association of various geological facies in the form of the conditional probability distributions 𝒫(𝑮𝑃  | 𝑮𝑃
−) =

∏ 𝒫( 𝑔𝑃,𝑖  | 𝑮𝑁𝑒
− (𝑃, 𝑖)\ {𝑔𝑃,<𝑖} )𝑛

𝑖=1  in equation 12. 

The prior information is extracted from the training image in the form of prior probabilities 

𝒫(𝑔𝑖𝑗 | 𝑮𝑁𝑒(𝑖,𝑗)) and 𝒫(𝑮𝑃 | 𝑮𝑃
−). The expression 𝒫(𝑔𝑖𝑗  | 𝑮𝑁𝑒(𝑖,𝑗)) represents the probability of existence 

of a facies 𝑔𝑖𝑗  in a cell (𝑖, 𝑗)  ∈ 𝑮 given facies configuration 𝑮𝑁𝑒(𝑖,𝑗) in the neighbourhood of cell (𝑖, 𝑗), and 

𝒫(𝑮𝑃 | 𝑮𝑃
−) represents the spatial correlation of facies configurations in consecutive partitions GP

− and GP. 

We assume that the prior information extracted from the training image is stationary over the model 

space and the probabilities computed therefrom encapsulate the expected spatial correlations of facies. 

In order to confirm that, we generated realizations from prior probabilities (see Figure 9). Given that the 

prior realizations were generated using a partition of size 7 cells along a column, we expect the prior 

information (and hence these realizations) to preserve small-scale geometrical features and fluid 

orderings but not the large-scale shapes of the channels. In Figure 9 we observe that this is the case. 

Where gas exists it is never beneath oil, flat tops of channels are preserved, but the overall semi-circular 

valley-style channel shape is not. This means that by incorporating prior information we are only 

constraining the spatial correlations of various facies, and not the shapes of the channels – which ideally 

          Gas-sand                    Brine-sand                 Shale 
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should come from the data likelihoods. If so, the prior probabilities combined with the data-derived 

likelihoods might produce subsurface structures with geologically plausible spatial correlations of facies. 

 

 

 

Figure 8: (a) A 2D cross-section that represents the true geological model which is the target for spatial facies inversion. 

It is extracted from the 3D geological process model using the same process parameters (facies distributions) as the 

training image in Figure 7. (b & c) P- and S-wave impedance attributes generated independently in each cell in the 

target cross-section using a probabilistic forward model based on the Yin-Marin shaly-sand rock physics model (Marion 

1990; Yin et al. 1993; Avseth et al. 2005) with added Gaussian noise. 

The target cross-section (Figure 8(a)) was extracted from the same 3D geological process model as the 

training image, and it therefore contains similar spatial distributions of facies as the training image. The 

target cross-section was used as a model to generate synthetic seismic attributes which were used to 

represent real data-derived attributes in our example. These were then inverted for facies using our 

algorithm with the aim to reproduce the original target cross-section. 

Collocated synthetic seismic attributes, P- and S-wave impedances  𝒅𝑖𝑗, were generated independently in 

each cell (𝑖, 𝑗) in the target cross-section using the localized likelihood assumption and a probabilistic 

forward model  𝒫( 𝒅𝑖𝑗  |  𝑔𝑖𝑗 ). The Yin-Marion shaly-sand model (Marion 1990; Yin et al. 1993; Avseth et 

al. 2005) was used to predict P- and S-wave impedances from the given geological facies 𝐺𝑖, where 

𝐺𝑖  ∈  𝒢 =  { shale, brine-sand, gas-sand } 

   (a) Target Geology                                     (b) P-wave Impedance                                     (c) S-wave Impedance 

    Gas-sand          Brine-sand          Shale 
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Figure 9: Three realizations generated from prior probabilities computed from the training image shown in Figure 7 

using partition defined as a column of 7 cells. 

The Yin-Marion model is defined by rock-physics parameters  𝒎𝑘 = [  𝑉𝑐𝑙𝑎𝑦, 𝜑𝑠𝑎𝑛𝑑 , 𝑆𝑤 ]
𝑘

 where  𝑉𝑐𝑙𝑎𝑦 

is the volume of clay, 𝜑𝑠𝑎𝑛𝑑 is the matrix porosity of sand, 𝑆𝑤 is the water saturation (with gas saturation 

given by 𝑆𝑔 = 1 −  𝑆𝑤), and the subscript 𝑘 refers to each facies. Gaussian random noise was then added 

to the predicted model in order to formulate the model probabilistically as 𝑃( 𝒅𝑖𝑗  | 𝒎𝑘  ). The likelihood 

𝑃( 𝒅𝑖𝑗  | 𝑔𝑖𝑗 ) is then given in terms of rock-physics parameters 𝒎𝑘 by 

𝒫( 𝒅𝑖𝑗  | 𝑔𝑖𝑗  ) =  ∭ 𝒫( 𝒅𝑖𝑗 | 𝒎𝑘  )  𝒫( 𝒎𝑘  | 𝑔𝑖𝑗 )  𝑑𝒎𝑘  
𝑩

𝑳
   (22) 

where L and B (bold-face letters to represent vector bounds) respectively represent the lower and upper 

bounds on each parameter in 𝒎𝑘. The conditional distribution 𝒫( 𝒎𝑘  | 𝑔𝑖𝑗 ) describing the probabilistic 

relationship between rock-physical parameters 𝒎𝑘 and the geological facies  𝑔𝑖𝑗  in each cell of the target 

cross-section, was set to Uniform within predefined lower and upper bounds [L, B] on each parameter in 

𝒎𝑘 given in Table 1. The distribution 𝒫( 𝒅𝑖𝑗  | 𝒎𝑘  ) is given by the deterministic Yin-Marion shaly-sand 

model 𝒇( 𝒎𝑘  ) and a stochastic component in the form of Gaussian random noise 𝒆 added to the 

predicted model in order to formulate the model probabilistically 

 𝒅𝑖𝑗 = 𝒇( 𝒎𝑘  ) + 𝒆,  where  𝒆 ~ 𝝋( 𝒆; 𝟎, ∑𝒅 ),  and  ∑𝒅 =  [
𝝈𝑷

𝟐 𝟎

𝟎 𝝈𝑺
𝟐]  (23) 

Here 𝝋 represents the Gaussian function, and ∑𝒅 represents the data covariance matrix with P-wave 

standard deviation 𝝈𝑷 = 1.5 x 104 s-1 m-2 kg, S-wave standard deviation 𝝈𝑺 = 1.0 x 104 s-1 m-2 kg, and off-

diagonal elements equal to zero. 

    Prior Realization-1                                           Prior Realization-2                                            Prior Realization-3 

          Gas-sand                    Brine-sand                 Shale 
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Table 1: Lower and Upper bounds used to define Uniform distributions 𝑃( 𝒎𝑘  | 𝑔𝑖𝑗  ) [same as those used in Walker & 

Curtis (2014)]. 

The distribution 𝑃( 𝒅𝑖𝑗 | 𝑔𝑖𝑗 )  in equation 22 was sampled sequentially: first for 𝒎𝑘 from 𝑃( 𝒎𝑘  | 𝑔𝑖𝑗 ) 

and then for  𝒅𝑖𝑗  from 𝑃( 𝒅𝑖𝑗  | 𝒎𝑘  ), to obtain synthetic data  𝒅𝑖𝑗  given the facies 𝑔𝑖𝑗  in each cell in the 

model (target cross-section). The data thus obtained is shown in Figure 8 (b & c). 

 

 

Figure 10: Likelihood functions 𝑃(𝒅𝑖𝑗  | 𝑔𝑖𝑗) for each of the geological facies, (a) shale, (b) brine-sand and (c) gas-sand, 

given the seismic attributes. Results are computed from a Gaussian Mixture-Model using neural networks (Meier et al. 

2007a & b; Shahraeeni & Curtis 2011; Shahraeeni et al. 2012). In each plot, white is high probability (close to 1) and 

black is low probability (close to 0). The likelihoods are normalized so that the sum of likelihoods for each of the facies 

in any cell equals 1. 

The likelihood  𝒫( 𝒅𝑖𝑗  |  𝑔𝑖𝑗 ) was computed for each of the geological facies (Figure 10) from a Gaussian 

Mixture-Model (GMM) using neural networks (Meier et al. 2007a & b; Shahraeeni & Curtis 2011; 

Shahraeeni et al. 2012). Since the likelihood only uses attributes to discriminate between the facies it 

allows reasonable discrimination between sand and shale (Figure 10a), but could hardly discriminate 

between brine-sand and gas-sand (Figure 10b & c). Also, the likelihood functions are noisy and do not 

adhere to the statistical spatial distribution of facies as depicted in the training image. This corroborates 

the need to introduce prior geological knowledge incorporating the spatial correlation of facies.  

(a) Likelihood of Shale                                (b) Likelihood of Brine-sand                     (c) Likelihood of Gas-sand 
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Figure 11: Comparison of marginal posterior distributions computed using 2D-HMM (a, c & e) and the marginal 

posterior distributions estimated stochastically from 15 realizations (b, d & f) for each of the facies: shale (top row), 

brine-sand (middle row) and gas-sand (bottom row). 

The marginal posterior distributions for each of the facies in each cell in the model were computed (left 

column in Figure 11a, c & e) incorporating both the prior geological knowledge elicited from training image 

(Figure 7) and the likelihood functions (Figure 10).  

              (a) Computed marginal-posterior (Shale)        (b) Stochastic marginal-posterior (Shale) 

   (c) Computed marginal-posterior (Brine-sand)       (d) Stochastic marginal-posterior (Brine-sand) 

      (e) Computed marginal-posterior (Gas-sand)      (f) Stochastic marginal-posterior (Gas-sand) 
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Stochastic realizations were then generated by sequentially drawing random samples for each cell in the 

model using Algorithm 1 and a linear path traversing a row at a time. The random samples were drawn in 

each cell (i, j) using the conditional copula function as discussed in Section 4.1 which was derived from 

the training image (Section 4.2), and the marginal posterior distributions 𝒫( 𝑔𝑖𝑗  | 𝑫 ) computed in that 

cell (Figure 11a, c & e) from equations 13, 15 and 17. Figure 12 shows 4 of a total of 15 stochastic 

realizations that were generated with the aim to reproduce the target cross-section (Figure 8(a)). The 

comparison of sampled realizations and the target cross-section shows that the quality of realizations is 

more accurate in our method compared to those generated by Walker & Curtis (2014); we return to this 

in the discussion below. 

 

 

 

 

 

Figure 12: Four realizations of the target cross-section drawn from the conditional copula computed using equations 

13, 15 and 17 from a combination of the training image and the marginal posterior distributions 𝑃(𝑔𝑖𝑗  | 𝑫) in each 

cell (𝑖, 𝑗) in the grid. 

In order to assess the quality of samples taken using our method, we also estimated stochastic marginal 

posterior distributions in each cell in the model by constructing histograms from the 15 simulated 

stochastic realizations. These are compared with the marginal posterior distributions computed using 2D-

HMM in Figure 11. In summary, the left column in Figure 11a, c, e shows the marginal posterior 

                                           Posterior Realization-1                           Posterior Realization-2 

                                           Posterior Realization-3                           Posterior Realization-4 

          Gas-sand                    Brine-sand                 Shale 
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distributions for shale, brine-sand and gas-sand, computed from equation 13 (with the forward and 

backward probabilities computed using equations 15 and 17, respectively). The right column in Figure 

11b, d, f shows the corresponding marginal posterior distributions for shale, brine-sand and gas-sand 

estimated from 15 stochastic samples, out of which 4 such randomly selected samples are displayed in 

Figure 12. The marginal posterior distributions show an excellent match with the original model as shown 

in Figure 8(a). 

6. Computational Efficiency 

The computational cost of this algorithm may be expressed mathematically as the maximum number of 

floating point operations required to compute the posterior marginal distributions in each cell in the 

model: 

4 ×  r2  × (r − 1)  × c ×  |𝒢|r     (24) 

where 𝑟 is the number of rows and 𝑐 is the number of columns in the region of influence ℛ(𝑖, 𝑗) around 

the cell (𝑖, 𝑗) under consideration, and |𝒢| represents the size of the sample space of geological facies (i.e., 

the number of geological facies considered). It is assumed in deriving the above expression that the 

partition 𝑮𝑃 is defined as a column of 𝑟 cells. The variable 𝑟 has the maximum order 3 in equation 24 and 

it also appears in the exponent of  |𝒢|. This means that it is desirable to define the partition 𝐺𝑃 along the 

shorter dimension of ℛ(𝑖, 𝑗). 

The size of the space of geological facies (i.e., the number of discrete facies classes)  |𝒢| is an important 

factor in the above expression. Because of its exponentiation it must be chosen to be as small as possible. 

Typically a small number of facies are estimated in previous studies, e.g., Walker & Curtis (2014) inverted 

for the same 3 classes as above, and Rimstad & Omre (2010) inverted for 4 classes. If the range of relevant 

rock facies is too large in a given subsurface volume, one can reduce the number of classes considered in 

the inversion by nesting various facies within one another, e.g., limestone and dolomite lithologies may 

be considered as a single class of carbonates. If the number of facies is large and cannot be reduced, or if 

the size of the partition (or the shorter dimension of the region of influence) is large, the number of 

required floating point operations can be significantly reduced by limiting the facies configuration over a 

partition to those observed in the training image. Journel (2004) and Mariethoz & Caers (2014) provide a 

detailed account of the incorporation of prior geological knowledge in the form a training image, whereas 

Toftaker & Tjelmeland (2013) and Arnesen & Tjelmeland (2016) proposed methods to build prior models 
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from a training image using a binary MRF. As the size of the partition increases, a naïve approach to storing 

the joint distribution of facies would require an exponential amount of computer memory. However, since 

a training image may only depict a finite number of facies configurations, it limits the shapes and scales 

of the facies configurations that are considered geologically plausible. As a consequence, we only need to 

compute probabilities and perform sampling for a limited number of configurations. The partition size 

can, therefore, be taken as large as any one of the dimensions of the training image, thus allowing this 

method to be easily extensible to 3D without becoming computationally intractable. 

The number of floating point operations in the above expression shows a computational efficiency that is 

many times faster than that of the joint probability computation method of Walker & Curtis (2014) (based 

on expression 16 in Walker & Curtis 2014). As a comparison, the computation of marginal distributions in 

each cell in a 5x7 grid on a processor with speed 1 GHz takes 0.2 sec while the computation of the joint 

distribution (as in Walker & Curtis 2014) in each cell in the same grid and on the same processor takes 7.5 

sec whereafter marginal posterior distributions could be computed. Although this comparison is not fair 

because the two algorithms compute different quantities, it is clear that if our goal is to generate marginal 

posterior distributions then our method can do so using far lower computation power. 

The memory required to store the marginal distributions of facies in each cell is proportional to the 

number of facies considered. Walker & Curtis (2014) did not present an expression to evaluate the 

memory required to store the partial conditional distributions in each cell, however, it can be assessed to 

be exponential in the smallest dimension of the grid (number of columns in their implementation). The 

memory required by our algorithm to store the marginal distributions of facies in each cell requires far 

less memory compared to that required to store conditional distributions of facies conditioned upon the 

previously sampled cells. Also, defining a region of influence around each cell in the model makes the 

working memory of the algorithm insignificant for modern computers. 

7. Discussion 

The computation of a full joint distribution 𝒫(𝑮 | 𝑫) of geological facies conditioned to seismic and well 

data is computationally intractable even for small synthetic models. Previous research in probabilistic 

seismic inversion by Walker & Curtis (2014) relied on the computation of approximate posterior 

conditional distributions of facies. We took a different approach and computed marginal posterior 

distributions for each of the facies in each cell in the model, conditioned to the data in that cell and to 
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prior facies distributions. Computation of marginal posteriors is orders of magnitude faster than the 

previous approach, and requires far lower memory. Also, because Walker & Curtis (2014) used a one-

dimensional underlying graphical model, sampling of each cell had to be conditioned on a large number 

of previously sampled cells in one of the model dimensions, well beyond the neighbourhood structure. 

Since our graphical model is two-dimensional, we do not have any such limitation and sampling only needs 

to be conditioned on the previous sampled cells within the neighbourhood structure. The previous work 

generates samples from the partial conditional distributions whereas our method generates samples from 

the computed marginal posterior distributions. In terms of quality of prior information incorporated into 

the inversion process, our method clearly outperforms the method of Walker & Curtis (2014): the 

realizations from prior distributions (Figure 9) and the computed marginal posterior distributions (Figure 

12) show flat tops of channels in our example model, whereas the previous method could not produce 

flat tops in samples from the same example. The main reason for this difference is that our method 

computes prior probabilities of spatial distribution of facies over partitions (7 cells in a column in our 

example) as compared to the neighbourhood structure (3x3 cells as was used in previous work). The size 

of partition is typically larger than the size of neighbourhood structure in the same dimension (7 cells 

versus 3 cells). 

Other previously existing methods that invert seismic data for geological facies using hidden Markov or 

similar models (e.g., Larsen et al. 2006; Ulvmoen & Omre 2010; Ulvmoen et al. 2010; Hammer & 

Tjelmeland 2011; Rimstad & Omre 2013; Lindberg & Omre 2014 & 2015) rely on sampling from full 

posterior distributions using McMC methods. As described earlier in Section 1, McMC based methods are 

slow to converge for high dimensional problems and they suffer from convergence related bias. For this 

reason, a comparison of our method with McMC based methods in terms of computational efficiency 

would be essentially meaningless. Nonetheless, a comparison can be made in terms of the amount and 

quality of prior information incorporated in the inversion process. Since our method is based on full 2-

dimensional relationships among cells in neighbouring partitions, it incorporates more prior information 

as compare to the 1D Markov-chain based methods (e.g., Larsen et al. 2006). However, the amount and 

quality of prior information incorporated is comparable between our 2D-HMM based priors and the 

profile Markov random field based priors of Ulvmoen & Omre (2010) and Ulvmoen et al. (2010). The 

advantage of our method over the latter methods remains that we perform inference directly for 

posterior marginal distributions (in contrast to the full joint distribution) while avoiding the use of McMC. 
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The localized likelihood assumption is a fundamental assumption in this algorithm as the observations 

(here seismic attributes) must be conditionally independent given the hidden states (geological facies) in 

a 2D-HMM. The localized likelihood assumption also allowed us to factorize the likelihood probability 

𝑃( 𝑫𝑃 | 𝑮𝑃) = ∏ 𝑃( 𝒅𝑃,𝑖 |  𝑔𝑃,𝑖 )𝑛
𝑖=1  as a product of factors each involving the local likelihood in each cell 

in the model, as used in equations 15 and 17. This means that the seismic attributes are assumed to 

possess spatial correlations that are only due to the spatial correlations present in the geology (facies and 

rock properties). However, spatial correlations are also induced in the seismic attributes by the non-

localized nature and limited resolution of seismic data, and by correlated noise that was not accounted 

for during the process that estimated the attributes. Since we used seismic attributes as discriminators of 

geological facies under a localized likelihoods assumption, it is of paramount importance that the seismic 

attributes are as localized as possible. This means that they must be derived from seismic data which has 

been processed carefully and corrected for non-localizing effects of seismic wave propagation such as 

attenuation, Fresnel zone smearing, etc. This in turn requires that the input seismic attributes are 

computed after proper de-noising and migration of seismic data in which all wave propagation effects 

have been accounted for. 

Spatial correlations in attributes due to the correlations in geology, on the other hand, are exploited in 

the inference to improve the spatial correlations in the inverted facies. Therefore, although the 

assumption of localized likelihoods allows us to compute approximate marginal posterior distributions in 

a closed form solution, it effectively limits the amount of information present in the seismic attributes 

that could otherwise be useful in the reconstruction of spatial correlations of facies (specifically, our 

method ignores correlations in the attributes between cells). As a consequence, our method relies 

significantly on the prior information, rather than the data, to reconstruct the spatial correlations 

expected in the geology. The data, therefore, provides the location specific information and the prior 

knowledge provides information on the spatial correlations to be recovered in the inversion. An advantage 

of using prior information in this way is that it reduces sensitivity to random noise in the data. However, 

a more sophisticated approach would exploit the fact that the seismic attributes at neighbouring locations 

are spatially correlated, depending on the temporal and spatial resolution of the seismic data. We leave 

such an approach as a direction for future research. 

The incorporation of prior information from a training image is dependent on the configuration of pixels 

that are scanned to compute spatial conditional probabilities. Since we scan the training image with a 

stencil that is the same as the partition  𝐺𝑃, it is important to define the shape and size of the partition 
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such that the information gathered can reproduce structures present in the training image up to any 

desired accuracy. In our synthetic case we defined a partition as a column of 7 cells as we found that the 

prior information thus gathered from the training image was sufficient to reconstruct the actual marginal 

distributions with reasonable accuracy. This was because the vertical variations in facies in our training 

image are correlated over smaller length scales than the lateral variations, and hence 7 cells were 

sufficient. Because we compute the conditional probabilities of facies patterns by sampling from the 

training image using a direct sampling approach (Mariethoz et al. 2010), we can easily extend the size of 

the neighbourhood structure within the memory limits of modern computers. A reasonably large 

neighbourhood structure increases the computational time but still remains tractable. The shape of the 

partition can also be chosen with arbitrary complexity to model complex spatial distributions of facies 

provided the ordering of partitions can still be defined as required by the algorithm. Since the size of 

partition defines the size of the region of influence along any one of the dimensions, the partition size 

should be chosen large enough that the region of influence may contain any large scale recoverable 

features in the training image. 

The assumption of the region of influence  ℛ(𝑖, 𝑗) around each cell (𝑖, 𝑗) in the model is based on the 

observation that the facies at any location in the sub-surface have probabilistic dependence only on the 

data observed in a certain region around it. This region can be taken reasonably large but finite. In fact it 

could be as large as the size of the training image. If the region-of-influence is large enough to capture the 

large scale facies patterns depicted in the training image, this assumption only limits the data correlations 

outside this region and not the correlation of geological facies. As a consequence, the concept of region-

of-influence not only makes the algorithm tractable without limiting the size of the overall model, it also 

offers a reliable estimation of posterior marginal distributions of facies at the point of interest. Since this 

assumption is no stricter than the assumption of localized likelihoods, it is therefore valid for all models 

that are built with the assumption of localized likelihoods. This also applies to models in various other 

fields of research, such as image and video processing. Other researchers who used two-dimensional 

extensions of HMM either limited the spatial interactions of neighbouring cells in the model, or they 

assumed a 1D underlying graphical model (pseudo 2D HMM). Both of these approaches prohibited 

incorporation of full two-dimensional interactions of cells (facies correlations in our synthetic example). 

The assumption of the region of influence allowed us to derive the equations to compute marginal 

posterior distributions with full two-dimensional spatial interactions among neighbouring cells in the 

model. 

 at U
niversity of E

dinburgh on N
ovem

ber 15, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Bayesian Inversion of seismic attributes for geological facies using HMM 
 

Nawaz & Curtis, 2016     32 

Although we demonstrated the use of a 2D-HMM for spatial inversion of geological facies from seismic 

data, extension of the method to 3D or higher dimensions is straightforward. Since marginal posterior 

distributions can be computed in each cell independently, this approach can be parallelized on 

heterogeneous computer architectures to exploit the maximum efficiency deliverable from the modern 

day computational and graphical processors. 

Sampling using a conditional copula ensures that each sampled location is conditionally dependent upon 

previously sampled locations in the neighbourhood of the location being sampled. A copula function can 

be determined uniquely if all of the marginal distributions are unique. This is not the case for the 

distribution of facies since these are discrete variables, so a consistent approach is required when defining 

the copula. Equation 20 addresses this problem by using the infimum function. 

The realizations generated using our method (see Figure 12) conform to the marginal posteriors better 

compared to the method of Walker & Curtis (2014). They used an underlying graphical model based on 

Markov Random Fields, and stipulated that the so-called positivity condition is satisfied in their 

formulation of the algorithm as is required by the Hammersley-Clifford theorem (proved by Besag 1974). 

However, they could not prove that their graphical model conforms to this requirement. This might be 

the reason that their sampling results do not conform so well to the spatial correlations of facies depicted 

in the training image, but we cannot prove this; on the other hand, in our method the Hammersley-Clifford 

theorem is not applicable, making the point moot. 

8. Conclusions 

This paper introduces a method to compute marginal posterior probabilities of geological facies from prior 

knowledge of spatial facies correlations and data likelihoods by using a 2D hidden Markov model. The 

prior knowledge is incorporated in terms of spatial statistics of facies distributions in space, and can be 

represented in the form of a training image or otherwise. The prior information is assumed to be non-

localized and is interpreted as the conceptual depiction of geology. The prior probabilities are therefore 

independent of data, and only contribute non-localized contextual information. Since the data are 

observed, they are fixed and the data likelihood is computed as the probability of observing the measured 

data at any point given that the geological facies at that point is known. The observed data represents any 

type of data (e.g., P-wave and S-wave impedances) that can discriminate between geological facies 

present at any point in the model to some degree of confidence. The likelihood is therefore assumed to 
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be localized; such an assumption is called the condition of localized likelihoods. This implies that the data 

values observed at any point are assumed to depend only on the geological facies present at that point, 

and are assumed to be independent of the presence of geological facies and data observed at any other 

point in the model.  Our algorithm, in essence, inverts seismic attributes for geological facies by combining 

the localized likelihoods with the conceptual prior knowledge about spatial correlations of geological 

facies. The implication of the localized likelihoods assumption is that the seismic data is assumed to be 

processed and corrected for any non-localized effects of seismic wave propagation. 

Previous researchers have used 2D hidden Markov models to solve problems in various fields such as 

computational biology and computer vision. They made assumptions that limit the interaction between 

neighbouring cells. Our method makes no such assumptions and models the full 2D interactions between 

neighbouring cells in the model. However, our method does assume that there lies a region of influence 

around each cell in the model such that any observations (data) outside of this region have no correlation 

with the observation in the cell under consideration. Such an assumption does not limit the spatial 

correlations among the hidden states, and is therefore valid for any model that is based on the localized 

likelihoods assumption. 

This paper also describes an approach for stochastic simulation of geological facies where samples are 

generated from the computed marginal posterior distributions by using a copula function, without 

requiring partial conditional posterior distributions. The simulation results based on marginal posterior 

distributions are shown to provide a significant improvement over methods from previous research in this 

field. As opposed to sampling partial conditional posterior distributions, sampling from marginal posterior 

distributions is many orders of magnitude faster and does not involve normalization approximations. 
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