

Edinburgh Research Explorer

ALLEGRO: Belief-Based Programming in Stochastic Dynamical
Domains

Citation for published version:
Belle, V & Levesque, HJ 2015, ALLEGRO: Belief-Based Programming in Stochastic Dynamical Domains. in
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015. IJCAI Inc, pp. 2762-2769.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/77047713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/allegro-beliefbased-programming-in-stochastic-dynamical-domains(01e89fce-85d9-403c-8e0f-20c068c03312).html

ALLEGRO: Belief-based Programming in Stochastic Dynamical Domains

Vaishak Belle⇤
Dept. of Computer Science

KU Leuven
Belgium

vaishak@cs.kuleuven.be

Hector J. Levesque
Dept. of Computer Science

University of Toronto
Canada

hector@cs.toronto.edu

Abstract
High-level programming languages are an influential
control paradigm for building agents that are purpose-
ful in an incompletely known world. GOLOG, for ex-
ample, allows us to write programs, with loops, whose
constructs refer to an explicit world model axiomatized
in the expressive language of the situation calculus. Over
the years, GOLOG has been extended to deal with many
other features, the claim being that these would be use-
ful in robotic applications. Unfortunately, when robots
are actually deployed, e↵ectors and sensors are noisy,
typically characterized over continuous probability dis-
tributions, none of which is supported in GOLOG, its
dialects or its cousins. This paper presents ALLEGRO,
a belief-based programming language for stochastic do-
mains, that refashions GOLOG to allow for discrete and
continuous initial uncertainty and noise. It is fully im-
plemented and experiments demonstrate that ALLEGRO
could be the basis for bridging high-level programming
and probabilistic robotics technologies in a general way.

1 Introduction
High-level program execution, as seen in golog [Levesque et
al., 1997] and flux [Thielscher, 2005] among others, o↵ers
an attractive alternative to automated planning for the control
of artificial agents. This is especially true for the dynamic
worlds with incomplete information seen in robotics, where
planning would have to generate complex behavior that in-
cludes branches and loops. One of research goals of the area
of cognitive robotics [Lakemeyer and Levesque, 2007] is to
understand what sorts of high-level behavior specifications
would be both useful and tractable in settings like these.

A major criticism leveled at much of this work, how-
ever, is that it makes unrealistic assumptions about the robots
themselves, whose sensors and e↵ectors are invariably noisy
and best characterized by continuous probability distribu-
tions [Thrun et al., 2005]. When a robot is executing a golog
program involving some condition � about the world, for ex-
ample, it is unreasonable to expect that it will either know
� to be true, know it to be false, or know nothing about it.
To remedy this, we [Belle and Levesque, 2013a] proposed a
logical account for reasoning about probabilistic degrees of

⇤Partially funded by the FWO project on Data Cleaning and KU
Leuven’s GOA on Declarative Modeling for Mining and Learning.

belief against noise in a continuous setting, building on an
earlier discrete model [Bacchus et al., 1999]. In a more re-
cent paper [Belle and Levesque, 2014b], we then presented
a system called prego that is able to e↵ectively calculate the
degree of belief in � as a function of the initial beliefs of the
robot, the noisy physical actions that have taken place, and the
noisy sensing results that have been obtained. From a logical
point of view, prego’s handling of probabilistic features goes
beyond the capabilities of popular knowledge representation
action languages. From a probability point of view, prego
allows successor state and sensing axioms that can be arbi-
trarily complex [Reiter, 2001a], making it significantly more
expressive than standard probabilistic formalisms.

The prego system, however, is not a programming formal-
ism. First, it must be given the actual sequence of physical
actions and sensing results, so these must be known ahead of
time. Second, it works by regression: to calculate belief in
� after the actions and sensing, it regresses � to a formula �0
about the initial state (using the machinery of the situation
calculus), and then calculates the initial belief in �0. This re-
gression to the initial state leads to an expression involving
the integration of a large number of variables (one for each
fluent, and one for each noisy action), and so is simply not
feasible for an iterative program that has to evaluate belief in
� repeatedly after thousands or even millions of actions.

In this paper, we propose a new programming formalism
called allegro (= algol in prego) that is intended as an alter-
native to golog for high-level control in robotic applications.
Following prego, the user provides a basic action theory (or
BAT) [Reiter, 2001a] to describe the domain in terms of flu-
ents, actions and sensors, possibly characterized by discrete
and continuous distributions. Given such a BAT, allegro ad-
ditionally allows the user to specify iterative programs that
appeal to the robot’s beliefs, and is equipped with an e�cient
methodology for program execution. Overall, the proposal
incorporates the following advances in this line of work:

• Unlike prego, allegro is not just a projection system: it
interprets standard golog constructs (e.g., while-loops)
while adapting golog’s primitive programs for noise and
outcome unknowns. An implementation-independent
semantic characterization of programs is provided.

• Unlike prego, which can be used only in an o✏ine man-
ner (i.e., knowing sensed outcomes in advance), alle-

gro can be used in o✏ine, online (i.e., sense as the
robot is acting in an unknown environment) and network
(e.g., controlling a robot over TCP) modes.
• To handle iterative programs involving noisy actions, al-
legro is realized in terms of an e�cient interpreter based
on sampling and progression. Inspired by particle filter-
ing systems [Thrun et al., 2005], the interpreter main-
tains a database of sampled states corresponding to the
agent’s initial uncertainty and updates these as the pro-
gram executes. For one thing, this allows belief-level
queries in programs to be evaluated e�ciently in an on-
line setting. For another, sampling admits a simple strat-
egy for handling the nondeterminism in noisy actions.
Nonetheless, the interpreter is argued to be correct using
limits. To our knowledge, no other golog implementa-
tion embodies such techniques, and such a correctness
notion is new to the high-level programming literature.
• Empirical evaluations are then discussed that demon-

strate the promise of the system.
In terms of organization, we first introduce allegro, before
turning to its foundations and empirical behavior.

2 The allegro System
The allegro system is a programming language with a simple
LISP-like syntax.1 In this section, we (very briefly) recap
domain axiomatizations, introduce the grammar of allegro
programs, and discuss how allegro is used.

2.1 Domain Axiomatization
As noted above, a allegro domain is modeled as in prego.
As a small example, Figure 2 shows a BAT for the domain
illustrated in Figure 1, which can be read as follows:2

1. The domain has a single fluent h, the distance to the wall,
whose initial value is taken by the agent to be drawn
from a (continuous) uniform distribution on [2, 12].

2. The successor state axiom for h says that it is a↵ected
only by the nfwd action. The first argument of nfwd is
the amount the agent intends to move, and the second
is the amount that is actually moved (which determines
how much the value of h is to be reduced).

3. The alt axiom is used to say that if an action of the form
(nfwd 2 2.79) occurs, the agent will only know that
(nfwd 2 z) happened for some value of z.

1Like prego, allegro is realized in the racket dialect of the
scheme family (racket-lang.org). We use racket arithmetic
freely, such as the max function, as well as any other function that
can be defined in racket, like GAUSSIAN. However, the technical
development does not hinge on any feature unique to that language.

2For ease of exposition, we limit discussions in the following
ways. First, we omit any mention of action preconditions here. Sec-
ond, fluents are assumed to be real-valued, and moreover, only basic
features of the language are explained in the paper. In general [Belle
and Levesque, 2014b], fluent values can range over any set, BATs
are not limited to any specific family of discrete/continuous distribu-
tions, and the language supports notions not usually seen in standard
probabilistic formalisms, such as contextual likelihood axioms. (For
example, if the floor is slippery, then the noise of a move action may
be amplified.) All of these are fully realized in prego and allegro.

h

Figure 1: Robot moving towards a wall.

(define-fluents h)

(define-ini-p-expr ‘(UNIFORM h 2 12))

(define-ss-exprs h
(nfwd x y) ‘(max 0 (- h ,y))

(define-alts
(nfwd x y) (lambda (z) ‘(nfwd ,x ,z)))

(define-l-exprs
(nfwd x y) ‘(GAUSSIAN ,y ,x 1.0)
(sonar z) ‘(GAUSSIAN ,z h 4.0))

Figure 2: A BAT for the simple robot domain.

4. The likelihood axiom for nfwd says that the actual
amount moved by nfwd will be expected by the agent
to be centered (wrt a normal distribution) around the in-
tended amount with a standard deviation of 1.0.

5. The likelihood axiom for sonar says that sonar readings
are noisy but will be expected to be centered around the
true value of h with a standard deviation of 4.0.

The idea here is that starting with some initial beliefs, execut-
ing (sonar 5) does not guarantee that the agent is actually
5 units from the wall, although it should serve to increase
the robot’s confidence in that fact. Analogously, performing
a noisy move with an intended argument 2 means that the
robot may end up moving (say) 2.79 units. Nevertheless, its
degree of belief that it is closer to the wall should increase.

2.2 Belief-based Programs
The BAT specification describes the noise in actions and sen-
sors wrt the actual outcomes and values observed. But a robot
executing a program need not know these outcomes and val-
ues. For this reason, the primitive programs of allegro are
actions that suppress these parameters. So for the actions
(nfwd x y) and (sonar z) appearing in a BAT, the primi-
tive programs will be (nfwd x) and (sonar).

The basic allegro language uses five program constructs:
prim primitive programs;
(begin prog1 . . . progn) sequence;
(if form prog1 prog2) conditional;
(let ((var1 term1) . . . (varn termn)) prog) assignments;
(until form prog) until loop.

Here form stands for formulas built from this grammar:

form ::= (� term1 term2) | (• form1 form2) | (not form)

where � 2 {<, >,=} and • 2 {and, or} . Here term stands for
terms built from the following grammar:

term ::= (exp term) | number | fluent | var | (⇧ term1 term2) |
(if form term1 term2)

where ⇧ is any arithmetic operator (e.g., + and -). The pri-
mary “epistemic” operator in allegro is exp: (exp term)
refers to the expected value of term. (Reasoning about the ex-
pected value about a fluent allows the robot to monitor how it
changes with sensing, for example.) The degree of belief in a
formula form can then be defined in terms of exp as follows:

(bel form) ⌘ (exp (if form 1.0 0.0))

For our purposes, it is convenient to also introduce (conf
term number), standing for the degree of confidence in the
value of a term, as an abbreviation for:

(bel (> number (abs (- term (exp term)))))

For example, given a fluent f that is normally distributed,
(conf f .1) is higher when the curve is narrower.

2.3 Usage
The allegro system allows programs to be used in three
ways: in online mode � the system displays each primitive
program as it occurs, and prompts the user to enter the sens-
ing results; in network mode � the system is connected to a
robot over TCP, the system sends primitive programs to the
robot for execution, and the robot sends back the sensing data
it obtains; and finally, in o✏ine mode � the system generates
ersatz sensing data according to the given error model. In all
cases, the system begins in an initial belief state, and updates
this belief state as it runs the program.

As a simple illustration, imagine the robot from Figure 2
would like to get within 2 and 6 units from the wall. It might
proceed as follows: sharpen belief about current position (by
sensing), (intend to) move by an appropriate amount, adjust
beliefs for the noise of the move, and repeat these steps until
the goal is achieved. This intuition is given as a program in
Figure 3: here, conf is used to first become confident about
h and then exp is used to determine the distance for getting
midway between 2 and 6 units. (An arbitrary threshold of
.8 is used everywhere wrt the robot’s beliefs.) For an online
execution of this program prog in allegro, we would do:

> (online-do prog)
Execute action: (sonar)
Enter sensed value: 4.1
Enter sensed value: 3.4
Execute action: (nfwd 1.0)
Enter sensed value: 3.9
Enter sensed value: 4.2
Execute action: (nfwd 0.0)

We see the robot first applying the sonar sensor, for which the
user reports a value of 4.1. After updating its beliefs for this
observation, the robot is not as confident as required by prog,
and so, a second sensing action is executed for which 3.4 is
read. Then the robot attempts a (noisy) move, but its confi-
dence degrades as a result. So these steps are repeated once
more, after which the program terminates. On termination,
the required property can be tested in allegro using:

> (bel (and (>= h 2) (<= h 6)))
0.8094620133032484

(until (> (bel (and (>= h 2) (<= h 6))) .8)
(until (> (conf h .4) .8) (sonar))
(let ((diff (- (exp h) 4)))
(nfwd diff)))

Figure 3: A program to get between 2 and 6 units from the wall.

3 Mathematical Foundations
The formal foundation of allegro is based on the situa-
tion calculus [Reiter, 2001a]. Basically, the interpretation of
prego-style BATs is as in [Belle and Levesque, 2014b], which
we can only summarize here. The interpretation of programs
is based on the online version of golog [Sardina et al., 2004].

3.1 BAT Semantics
In a nutshell, the situation calculus is a many-sorted dialect of
predicate logic, with sorts for actions, situations and objects.
Situations are basically histories in that initial situations cor-
respond to the ways the world might be initially, and succes-
sor situations are obtained by applying a distinguished binary
symbol do. That is, do(a1 · · · ak, s) denotes the situation re-
sulting from performing actions a1 through ak at situation s.
We let the constant S0 denote the actual initial situation.

Fluents capture changing properties about the world. Here
we assume that nullary functions f1, . . . , fk are all the fluents
in the language, and that these take no arguments other than a
single situation term. When writing formulas, we often sup-
press the situation argument in a logical expression � or use
a distinguished variable now, and we let �[s] denote the for-
mula with that variable replaced by s. In this sense, the BAT
syntax of prego (and allegro) is to be seen as a situation-
suppressed fragment of the situation calculus language.3

The situation calculus has been extended over the years,
and here, we appeal to our prior account on reasoning about
probabilistic degrees of belief and noise [Belle and Levesque,
2013a; 2014b]. It is based on three distinguished fluents: p, l
and alt. Using these, a BAT D consists of (free variables are
implicitly assumed to be quantified from the outside):
• Initial theory D0: an axiom of the form p(s, S0) =
⇥[s] to specify the agent’s initial uncertainty, where ⇥
is a situation-suppressed expression using the fluents.
Roughly, the p fluent acts as a numeric version of the ac-
cessibility relation in modal logic [Bacchus et al., 1999].
• Likelihood and alternate actions axioms of the form

l(a(~x), s) = lha(~x)[s] and alt(a, u) = a0. These formalize
the noise and outcomes of noisy sensors and e↵ectors.
• Successor state axioms of the form 8a, s. f (do(a, s)) =
ssa f (a)[s]: the values of fluents may change after actions
as determined by these axioms, which appeal to Re-
iter’s [2001a] solution to the frame problem. A domain-
independent successor state axiom is provided for the p
fluent that functions as follows: the p-value of the suc-
cessor situation do(a, s) is obtained by multiplying the
p-value of s with the likelihood of action a.

3Non-logical symbols, such as fluent and action symbols, in the
situation calculus are italicized; e.g., fluent h in prego/allegro is h
in the language of the situation calculus.

Example 1: The sonar’s noise model, move action’s non-
determinism and initial beliefs of the robot from Figure 2
can be mapped to the following situation calculus formu-
las: l(sonar(z), s) = Gaussian(z; h, 4)[s], alt(nfwd(x, y), z) =
nfwd(x, z) and p(s, S0) = Uniform(h; 2, 12)[s].

Given a BAT D, the degree of belief in any situation-
suppressed � at s is defined using:

Bel(�, s) ⌘
1
�

Z

f1,..., fk

Z

u1,...,un

Density(�, s⇤)

where the normalization factor � is obtained by replac-
ing � with true, and if s = do(a1 · · · an, S0) then s⇤ =
do(alt(a1, u1) · · · alt(an, un), S0). We do not expand the Den-
sity term here, except note that it applies the successor state
axiom for p to all ground situation terms that are obtained as
a result of noisy actions. (That is, possible outcomes for a
are given by alt(a, u) wrt the integration variable u.) Given an
argument �, then, the Density term returns the p-value of the
situation if � holds, and 0 otherwise. This definition of Bel
can be shown to subsume Bayesian conditioning [Belle and
Levesque, 2013a]. (Note also that for discrete distributions,
we would replace the appropriate integral with a sum.)

Analogously, the expected value of a situation-suppressed
term t at s can be defined as:

Exp(t, s) ⌘
1
�

Z

f1,..., fk

Z

u1,...,un

(t ⇥ Density(true, now))[s⇤]

where the denominator � replaces t with 1, and s and s⇤ are
as before. This is to be read as considering the t-values across
situations and multiplying them by the p-values of the corre-
sponding situations. So, if a space of situations is uniformly
distributed, then we would obtain the average t-value.

3.2 Program Semantics
allegro implements a deterministic fragment of golog over
online executions [Sardina et al., 2004]. In general, golog
programs are defined over the following constructs:

↵ | �? | (�1; �2) | (�1 | �2) | (⇡ x)�(x) | �⇤

standing for primitive programs, tests, sequence, nondeter-
ministic branch, nondeterministic choice of argument and
nondeterministic iteration respectively. The constructs used
in allegro can then be defined in terms of these:

if � then �1 else �2 ⌘ [�?; �1] | [¬�?; �2]
until � � ⌘ [¬�?; �]⇤; �?
let (x = t) � ⌘ (⇡ x)[(x = t)?; �]

(Here � would mention Bel or Exp.) Unlike standard golog,
however, the smallest programs in our setting are not atomic
actions, but new symbols called primitive programs (Section
2.2), which serve as placeholders for actual actions on execu-
tion. So for every a(~x, y) in the logical language, where y cor-
responds to the actual outcome/observation, there are primi-
tive programs a(~x) that suppress the latter argument.

A semantics for the online execution of allegro programs
over noisy acting and sensing can be given in the very same
style as [Sardina et al., 2004]. Two special predicates Trans

and Final are introduced to define a single-step transition se-
mantics for allegro programs: Trans(�, s, �0, s0) means that
by executing program � at s, one can get to s0 with an elemen-
tary step with the program �0 remaining, whereas Final(�, s)
holds when � can successfully terminate in situation s.

The predicates Trans and Final are defined axiomatically,
precisely as in [Sardina et al., 2004], with the exception of
the definition for primitive programs:
• if a(~x) is a primitive program in allegro, and on doing

this action we obtain a value c (either an observation or
the outcome of a noisy action) then

Trans(a(~x), s, �0, s0) ⌘
Poss(a(~x, c), s) ^ �0 = nil ^ s0 = do(a(~x, c), s).

The definitions are lumped here as a set E, along with an en-
coding of programs as first-order terms for quantificational
purposes as a set F [Sardina et al., 2004]. Putting it all to-
gether, we say that the online execution of a program � suc-
cessfully terminates after a sequence of actions � if

D [E [F |= Do(�, S0, do(�, S0))
where Do(�, s, s0) ⌘ 9�0 [Trans⇤(�, s, �0, s0)^Final(�0, s0)] and
Trans⇤ denotes the reflexive transitive closure of Trans.

4 A Sampling-based Interpreter
We now present pseudo-code for the interpreter of alle-
gro and argue for its correctness relative to the specification
above. The interpreter is based on sampling [Murphy, 2012],
and its correctness is defined using limits.

The overall system is described using three definitions: an
evaluator of expressions eval, an epistemic state e, and an
interpreter of programs int. In what follows, we let a world
state w be a vector of fluent values (i.e., w[i] is the value of
the i-th fluent) and an epistemic state e is a finite set of pairs
(w, q) where w is a world state and q 2 [0, 1]. Intuitively,
w is a world considered possible by the agent, and q is the
probabilistic weight attached to that world.

The Evaluator
The interpreter relies on an evaluator eval that takes three ar-
guments: a term or a formula, a world state, an epistemic
state, and returns a value (corresponding to the value of the
term or the truth value of a formula):
Definition 2: eval[·,w, e] is defined inductively over a term t
or formula d by

1. eval[u,w, e] = u, when u is a number or a variable.
2. eval[f ,w, e] = w[i], when f is the i-th fluent.
3. eval[(not d),w, e] = 1 � eval[d,w, e], and similarly for

other logical connectives over formulas.
4. eval[(+ t1 t2),w, e] = eval[t1,w, e] + eval[t2,w, e], and

similarly for other arithmetic operators over terms.
5. eval[(if d t1 t0),w, e] = eval[ti,w, e], where we obtain

i = eval[d,w, e].

6. eval[(exp t),w, e] =
X

(w0, q) 2 e

eval[t,w0, e] ⇥ q
, X

(w0, q) 2 e

q.

We write eval[t, e] when w is not used (because all the fluents
in t appear in the scope of an exp), and eval[t,w] when e is
not used (because t contains no exp terms).

Epistemic State
To relate the evaluator to a BAT specification, we first obtain
the initial epistemic state e0. To get the idea, suppose the
values of the fluents fi were to range over finite sets dom(fi).
Given anyD0 of the form 8s(p(s, S0) = ⇥[s]), we let:4

e0 = {(w, q) | w[i] 2 dom(fi) and q = eval[⇥,w]}.
By construction, e0 is the set of all possible worlds in a finite
domain setting. However, in continuous domains, dom(fi) is
R, leading to infinitely many possible worlds. Nonetheless,
this space can be approximated in terms of a finite epistemic
state by sampling: assume we can randomly draw elements
(and vectors) of R. Suppose the BAT is defined using k flu-
ents, and let n be a large number. Then:

e0 = {(wi, qi) | choose w1, . . . ,wn 2 Rk, and qi = eval[⇥,wi]}.
When actions occur, the interpreter below also depends on a
progression procedure prog that takes an epistemic state and
an action instance as arguments and returns a new state:

Definition 3: Suppose a(c) is a noisy sensor. Then
prog[e, a(c)] =
{ (w0, q0) | (w, q) 2 e,

w0[j] = eval[ssa f j (a(c)),w] and q0 = q⇥eval[lha(c),w] }
where ssa and lh refer to the RHS of successor state and like-
lihood axioms inD instantiated for a(c).

Intuitively, for (w, q) 2 e, standing for some current situation
and its density, we use the given BAT to compute the fluent
values and the density of the successor situation. In particu-
lar, for a noisy sensor, the successor density incorporates the
likelihood of the observed value c.

Definition 4: Suppose a(c, c0) is a noisy action. Then
prog[e, a(c, c0)] =
{ (w0i , q0i) | choose d1, . . . , dn 2 R,

(wi, qi) 2 e, w0i[j] = eval[ssa f j (a(c, di)),wi]
and q0i = qi ⇥ eval[lha(c, di),wi] }.

The notion of progression is more intricate for noisy actions
because for any ground action term a(c, c0), the agent only
knows that a(c, y) happened for some y 2 R. (For ease of
exposition, assume alt(a(c, x), y) = a(c, y).) Among other
things, this means that the progression would need to account
for all possible instantiations of the variable y, which are in-
finitely many. Sampling, however, permits a simple strategy:
assume we can randomly draw n elements of R, once for each
world state in e, the idea being that the value drawn is ap-
plied as an argument to action a for the corresponding world.
Consequently, for any e and a, |e| = |prog[e, a(c, c0)]|, and
the sampling limit is still shown to converge. In essence, we
needed to appeal to sampling for each occurrence of an inte-
gration variable in Exp: for every fluent and for the argument
of every noisy action.

4We can evaluate the RHS of axioms in D wrt a world state us-
ing Definition 2. These are simply formulas (with a single situation
term) of the logical language, and in the allegro syntax, they corre-
spond to expressions mentioning the fluents. For example, evaluat-
ing the function (UNIFORM h 2 12) at a world state where h is 10
would yield .1, but in one where it is 15 would yield 0.

The Interpreter
Finally, we describe the interpreter for allegro, called int. It
takes as its arguments a program and an initial epistemic state
and returns as its value an updated epistemic state:

Definition 5: int[�, e] is defined inductively over � by
1. int[(a),e] = prog[e, a(c)], where c is observed on doing

noisy-sensor primitive program a.
2. int[(a t),e] = prog[e, a(c, c)], where c = eval[t, e], after

doing noisy-action primitive program a for argument c.
(Since the second argument of a is irrelevant for e, we
simply set it also to c.)

3. int[(begin �1. . . �n),e]=int[�n,int[(begin �1. . . �n�1),e]].
4. int[(if � �1 �0), e] = int[�i, e], where i = eval[�, e].
5. int[(let ((x t)) �), e] = int[�x

v , e], where v = eval[t, e].
6. int[(until � �), e] = e if eval[�, e] = 1, and otherwise,
int[(until � �), int[�, e]].

The interpreter’s correctness is established by the following:

Theorem 6: SupposeD is a BAT with e0 (of size n) as above,
� is any program, and t is any term. Suppose there is an action
sequence � such thatD[E[F |= Do(�, S0, do(�, S0)). Then,

D |=Exp(t, do(�, S0)) = u i↵ lim
n!1
eval[(exp t), int[�, e0]] = u.

Proof sketch: Proof by induction on �, and only primitive
programs are presented here. Suppose � is empty. Since D0
defines a k-variable density function and e0 draws n samples
from Rk, standard notions of convergence readily apply [Mur-
phy, 2012]. Suppose � is a noisy sensor a(c), in which case the
k-variable density function simply takes the likelihood of the
sensing into account, and the argument follows easily. Sup-
pose � is a noisy action a(c, c0). Then Exp(t, do(a(c, c0), S0))
is seen to define a (k+ 1)-variable density function. Although
our notion of progression considers (only) a single instance
of the noisy action for each of the n world states, this is es-
sentially seen as actually drawing n samples from Rk+1. Thus,
the desired convergence is also obtained.

5 Evaluations
We consider the empirical behavior of allegro in this section.
Mainly, we argue for progression rather than regression, test
its scalability, and investigate the e↵ect of noise on program
termination tasks. We set the sample size |e0| = 100000. Ex-
periments were run on Mac OS X 10.9 using a system with
1.4 GHz Intel Core 2 Duo processor, 2 GB RAM, and racket
v6.1. CPU time is measured in milliseconds (ms).

Regression and Progression
The prego system was shown in [Belle and Levesque, 2014b]
to exhibit reasonable empirical behavior on projection tasks.
Here, we are interested in contrasting the two systems. As
discussed, regressing to the initial state leads to an expression
involving the integration of a large number of variables, and
calculating probabilities with such expressions would simply
not be feasible in iterative programs over many actions. (We
note that the regression simplification itself is unproblematic,

10 20 30 40 50 60 70 800

0.5

1

1.5

2

2.5

3

3.5 x 104

Number of Queries

Ru
nt

im
e

(m
s)

PREGO
ALLEGRO (accumulated)
ALLEGRO (online)

(a) prego and allegro

100 200 300 400 500
0

200

400

600

800

1000

1200

Number of Actions

R
un

tim
e

(m
s)

size=1
size=20
size=50
size=100

(b) scalability

2 4 6 8 10
0

500

1000

1500

2000

2500

Sensor Standard Deviation

R
un

tim
e

(m
s)

effector std dev=1
effector std dev=4
effector std dev=10

(c) program termination

Figure 4: Empirical evaluations on the allegro system.

but the integration is challenging.) So, progression seems like
a better choice for the interpreter in long-lived agents.

We test this intuition as follows. Imagine the robot
from Figure 1 has performed 50 noisy actions: (nfwd
2 2.1)(sonar 5)(nfwd 1 2.1) . . . , after which we
query the robot’s beliefs, both in the current situation and
future ones, e.g., (expt h), (bel (< h 2)), (nfwd 3
3.05)(expt h), (nfwd 3 3.05)(bel (< h 2)), and so
on. In other words, we test static and projection queries
against prego and allegro in Figure 4a. (For allegro, we
consider its online behavior where given an action sequence
�, and the time ⌧ for computing prog[e0,�], we plot ⌧/|�|.)
We observe that evaluation by regression grows exponentially
in the number of queries considered in the experiments. Thus,
even purely sequential programs over hundreds of actions will
be di�cult to handle. In contrast, with progression, the in-
creased e↵ort for more queries is insignificant (as needed for
iterative programs), mainly because the states are updated af-
ter actions and queries are evaluated in the current situation.
Moreover, in a separate evaluation for scaling behavior in Fig-
ure 4b, allegro is tested for action sequences of length up to
500; prego runs out of memory on sequences of that length.

We can further contrast the online performance of allegro
to the total accumulated time for progressing e0 wrt the 50
actions, also plotted in Figure 4a. In this context, however,
we see progressing the database is more expensive than re-
gression provided the number of queries is small. In other
words, when the agent simply needs to test a property of the
future (e.g., in planning), regression is preferable. In sum, in
continuous domains, regression is the right choice for testing
plan validity, and progression for long-running programs.

Scalability
Here, allegro’s online performance is tested for domains of
increasing sizes over long action sequences. The BAT from
Figure 2 is a domain of size 1, and for size n, we axiomatize
domains with n fluents and n noisy actions.

Taking into account the increased e↵ort needed to maintain
larger domains (that is, the world states correspond to length-
ier vectors), we observe in Figure 4b that the implemented
allegro interpreter performs exactly as one would require for

prolonged sequences of actions: the progression e↵ort is con-
stant. In sum, the implementation scales well relative to do-
main size in long-lived systems.

From Noise To Termination
For our final evaluation, we test the sensitivity of the termina-
tion of the program from Figure 3 to the standard deviation
in the noise of the robot’s e↵ectors and sensors. (Basically, a
lower standard deviation means a more accurate device.) The
plot in Figure 4c gives an indication of what one should ex-
pect regarding the program’s time for success wrt this noise.
At one extreme, an accurate sensor with an inaccurate e↵ec-
tor would mean that the robot gets confident about h quickly
but takes longer to move to the desired position. At the other
extreme, an accurate e↵ector would mean that reaching the
desired position is easily accomplished, but only after getting
confident about h that takes longer with an inaccurate sensor.

6 Related Work and Discussions
We first relate allegro to high-level agent programming pro-
posals, and then to planning proposals.

The allegro system is a programming model based on the
situation calculus, and so is a new addition to the golog fam-
ily of high-level programming languages [Levesque et al.,
1997; Sardina et al., 2004]. In particular, it follows in the
tradition of knowledge-based golog with sensing in an on-
line context [Reiter, 2001b; Claßen and Lakemeyer, 2006;
Fan et al., 2012], but generalizes this in the sense of handling
degrees of belief and probabilistic noise in the action model.

The golog family has been previously extended for proba-
bilistic nondeterminism, but there are significant di↵erences.
For example, in the pGolog model [Grosskreutz and Lake-
meyer, 2003], the outcome of a nondeterminism action is
immediately observable after doing the action, and contin-
uous distributions are not handled. This is also true of the
notable dtgolog approach [Boutilier et al., 2000] and its vari-
ants [Ferrein and Lakemeyer, 2008]. In this sense, the alle-
gro model is more general where the agent cannot observe
the outcomes and sensors are noisy. Moreover, these propos-
als do not represent beliefs explicitly, and so do not include a
query language for reasoning about nested belief expressions.

Outside of the situation calculus, an alternative to golog,
called flux [Thielscher, 2004; 2005], has been extended
for knowledge-based programming with noisy e↵ectors
in [Thielscher, 2001; Martin and Thielscher, 2009]; contin-
uous probability distributions and nested belief terms are,
however, not handled. The concept of knowledge-based pro-
gramming was first introduced in [Fagin et al., 1995]. These
have been extended for Spohn-style [1988] ordinal func-
tions in [Laverny and Lang, 2005]. For discussions on how
high-level programming relates to standard agent program-
ming [Shoham, 1993], see [Sardina and Lespérance, 2010].

Programs, broadly speaking, generalize sequential and
tree-like plan structures, but can also be used to limit plan
search [Baier et al., 2007]; we refer interested readers
to [Lakemeyer and Levesque, 2007] for discussions. There
are, of course, many planning approaches in online con-
texts, including knowledge-based planning [Petrick and Bac-
chus, 2004; Van Ditmarsch et al., 2007], decision-theoretic
proposals [Puterman, 1994; Kaelbling et al., 1998], corre-
sponding relational abstractions [Sanner and Kersting, 2010;
Zamani et al., 2012], and belief-based planning [Kaelbling
and Lozano-Pérez, 2013]. See [Lang and Zanuttini, 2012] on
viewing knowledge-based programs as plans.

In the same vein, let us reiterate that the BAT syntax is
based on prego, and from the viewpoint of a representa-
tion language, see [Belle and Levesque, 2014b] for discus-
sions on its expressiveness relative to other formalisms, such
as probabilistic planning languages [Sanner, 2011], action
formalisms [Van Benthem et al., 2009; Thielscher, 2001;
Iocchi et al., 2009], and related e↵orts on combining logic
and probability [Bacchus, 1990; Richardson and Domingos,
2006]. Notably, its support for continuous distributions and
arbitrary successor state axioms makes it a tractable but ex-
pressive language.

In the context of probabilistic models, we remark that there
are other realizations of program-based probabilistic behav-
ior, such as probabilistic programming [Milch et al., 2005;
Goodman et al., 2008]. These are formal languages that pro-
vide program constructs for probabilistic inference. While
they are expressive enough to capture dynamical probabilis-
tic models [Nitti et al., 2013], they belong to a tradition that
is di↵erent from the golog and flux families. For example,
atomic programs in golog are actions taken from a basic ac-
tion theory whereas in [Milch et al., 2005], atomic constructs
can be seen as random variables in a Bayesian Network. In
other words, in golog, the emphasis is on high-level control,
whereas in many probabilistic programming proposals, the
emphasis is on inference. So, a direct comparison is di�cult;
whether these traditions can be combined is an open question.

Before wrapping up, let us emphasize two issues concern-
ing our interpreter. First, regarding Theorem 6, it is worth
relating this result to the notion of progression of BATs [Re-
iter, 2001a]. In prior work [Belle and Levesque, 2014a], we
investigated this latter notion of progression for continuous
domains. Progression is known to come with strong nega-
tive results, and in continuous domains, we noted that further
restrictions to invertible basic action theories may be neces-
sary. In a nutshell, invertible theories disallow actions such
as the max function (used in Figure 2) because they have the

e↵ect of transforming a uniform continuous distribution on
h to one that is no longer purely continuous. (See [Belle
and Levesque, 2014a] for examples.) In contrast, no such
limitations are needed here: roughly, this is because our no-
tion of an epistemic state is a discrete model of a continu-
ous function, leading to a possible world-based progression
notion. Consequently, however, we needed to appeal to lim-
its here, while the progression formulation in that prior work
does not [Belle and Levesque, 2014a, Corollary 12].

Second, our discussion on regression and progression in
Section 5 assumes an interpreter based entirely on one of
these approaches. However, a direction pursued by Erwin
et al. [2014] maintains the sequence of performed actions
and processes these via regression to progress e↵ectively.
(For example, the progression of a database wrt an action
whose e↵ects are undone by another action in the future can
be avoided.) Moreover, interpreters may appeal to regres-
sion when some form of plan search is necessary within pro-
grams [Lakemeyer and Levesque, 2007]. The consideration
of such ideas in the allegro context would lead to useful
extensions, and is left for the future. (For example, if the
performed noisy actions are characterized by normal distri-
butions, then their conjugate property can be exploited via
regression [Belle and Levesque, 2013b].)

7 Conclusions
This paper proposes an online account of belief-based pro-
grams that handles discrete and continuous probability distri-
butions. It is intended as an alternative to golog in stochastic
dynamical domains where sensors and e↵ectors are noisy.

Beginning with the expressive logical language of the situ-
ation calculus, we presented and implemented allegro using
the BAT syntax of prego. This fragment is interesting because
it embodies the desirable features of logic-based action lan-
guages, such as non-trivial successor state and likelihood ax-
ioms. The latter property together with the rich query mecha-
nism and program syntax in allegro suggests that it could be
seen as a basis for relating high-level agent programming and
probabilistic robotics [Thrun et al., 2005] in a general way.

There are many interesting avenues for future work, such
as relating belief-based programs to decision-theoretic high-
level programming [Boutilier et al., 2000], particle filters
[Thrun et al., 2005], and probabilistic programming [Good-
man et al., 2008], among others. Demonstrating how the al-
legro system can lead to robust behavior in robots, in the
sense of [Lakemeyer and Levesque, 2007], is also planned
for the future.

References
[Bacchus et al., 1999] F. Bacchus, J. Y. Halpern, and H. J.

Levesque. Reasoning about noisy sensors and e↵ectors in the
situation calculus. Artif. Intell., 111(1–2):171 – 208, 1999.

[Bacchus, 1990] F. Bacchus. Representing and Reasoning with
Probabilistic Knowledge. MIT Press, 1990.

[Baier et al., 2007] J. A. Baier, C. Fritz, and S. A. McIlraith. Ex-
ploiting procedural domain control knowledge in state-of-the-art
planners. In Proc. ICAPS, pages 26–33, 2007.

[Belle and Levesque, 2013a] V. Belle and H. J. Levesque. Reason-
ing about continuous uncertainty in the situation calculus. In
Proc. IJCAI, 2013.

[Belle and Levesque, 2013b] V. Belle and H. J. Levesque. Reason-
ing about probabilities in dynamic systems using goal regression.
In Proc. UAI, 2013.

[Belle and Levesque, 2014a] V. Belle and H. J. Levesque. How to
progress beliefs in continuous domains. In Proc. KR, 2014.

[Belle and Levesque, 2014b] V. Belle and H. J. Levesque. PREGO:
An Action Language for Belief-Based Cognitive Robotics in
Continuous Domains. In Proc. AAAI, 2014.

[Boutilier et al., 2000] C. Boutilier, R. Reiter, M. Soutchanski, and
S. Thrun. Decision-theoretic, high-level agent programming in
the situation calculus. In Proc. AAAI, pages 355–362, 2000.

[Claßen and Lakemeyer, 2006] J. Claßen and G. Lakemeyer. Foun-
dations for knowledge-based programs using ES. In Proc. KR,
pages 318–328, 2006.

[Erwin et al., 2014] C. Erwin, A. Pearce and S. Vassos. Transform-
ing Situation Calculus Action Theories for Optimised Reasoning.
In Proc. KR, 2014.

[Fagin et al., 1995] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y.
Vardi. Reasoning About Knowledge. MIT Press, 1995.

[Fan et al., 2012] Y. Fan, M. Cai, N. Li, and Y. Liu. A first-order in-
terpreter for knowledge-based golog with sensing based on exact
progression and limited reasoning. In Proc. AAAI, 2012.

[Ferrein and Lakemeyer, 2008] A. Ferrein and G. Lakemeyer.
Logic-based robot control in highly dynamic domains. Robotics
and Autonomous Systems, 56(11):980–991, 2008.

[Goodman et al., 2008] N. D. Goodman, V. K. Mansinghka, D. M.
Roy, K. Bonawitz, and J. B. Tenenbaum. Church: a language for
generative models. In Proc. UAI, pages 220–229, 2008.

[Grosskreutz and Lakemeyer, 2003] H. Grosskreutz and G. Lake-
meyer. Probabilistic complex actions in golog. Fundam. Inform.,
57(2-4):167–192, 2003.

[Iocchi et al., 2009] L. Iocchi, T. Lukasiewicz, D. Nardi, and
R. Rosati. Reasoning about actions with sensing under quali-
tative and probabilistic uncertainty. ACM TOCL, 10:5, 2009.

[Kaelbling and Lozano-Pérez, 2013] L. P. Kaelbling and
T. Lozano-Pérez. Integrated task and motion planning in
belief space. I. J. Robotic Res., 32(9-10):1194–1227, 2013.

[Kaelbling et al., 1998] Leslie P. Kaelbling, Michael L. Littman,
and Anthony R. Cassandra. Planning and acting in partially ob-
servable stochastic domains. Artif. Intell., 101(1–2), 1998.

[Lakemeyer and Levesque, 2007] G. Lakemeyer and H. J.
Levesque. Cognitive robotics. In Handbook of Knowledge
Representation, pages 869–886. Elsevier, 2007.

[Lang and Zanuttini, 2012] J. Lang and B. Zanuttini. Knowledge-
based programs as plans - the complexity of plan verification. In
Proc. ECAI, pages 504–509, 2012.

[Laverny and Lang, 2005] N. Laverny and J. Lang. From
knowledge-based programs to graded belief-based programs, part
i: On-line reasoning. Synthese, 147(2):277–321, 2005.

[Levesque et al., 1997] H. Levesque, R. Reiter, Y. Lespérance,
F. Lin, and R. Scherl. Golog: A logic programming language
for dynamic domains. J. of Logic Programming, 31:59–84, 1997.

[Martin and Thielscher, 2009] Y. Martin and M. Thielscher. Inte-
grating reasoning about actions and Bayesian networks. In Proc.
ICAART, 2009.

[Milch et al., 2005] B. Milch, B. Marthi, S. J. Russell, D. Sontag,
D. L. Ong, and A. Kolobov. BLOG: Probabilistic models with
unknown objects. In Proc. IJCAI, pages 1352–1359, 2005.

[Murphy, 2012] K. Murphy. Machine learning: a probabilistic per-
spective. The MIT Press, 2012.

[Nitti et al., 2013] D. Nitti, T. De Laet, and L. De Raedt. A particle
filter for hybrid relational domains. In Proc. IROS, 2013.

[Petrick and Bacchus, 2004] R.P.A. Petrick and F. Bacchus. Ex-
tending the knowledge-based approach to planning with incom-
plete information and sensing. In Proc. ICAPS, pages 2–11, 2004.

[Puterman, 1994] M. L. Puterman. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1st edition, 1994.

[Reiter, 2001a] R. Reiter. Knowledge in action: logical foundations
for specifying and implementing dynamical systems. MIT Press,
2001.

[Reiter, 2001b] R. Reiter. On knowledge-based programming with
sensing in the situation calculus. ACM TOCL, 2(4), 2001.

[Richardson and Domingos, 2006] M. Richardson and P. Domin-
gos. Markov logic networks. Machine learning, 62(1), 2006.

[Sanner and Kersting, 2010] S. Sanner and K. Kersting. Symbolic
dynamic programming for first-order pomdps. In Proc. AAAI,
pages 1140–1146, 2010.

[Sanner, 2011] S. Sanner. Relational dynamic influence diagram
language (rddl): Language description. Technical report, Aus-
tralian National University, 2011.

[Sardina and Lespérance, 2010] S. Sardina and Y. Lespérance.
Golog speaks the BDI language. In Programming Multi-Agent
Systems, Springer Berlin Heidelberg, 2010.

[Sardina et al., 2004] S. Sardina, G. De Giacomo, Y. Lespérance,
and H. J Levesque. On the semantics of deliberation in
indigolog—from theory to implementation. Annals of Mathe-
matics and Artif. Intell., 41(2-4):259–299, 2004.

[Shoham, 1993] Y. Shoham. Agent-oriented programming. Artif.
Intell., 60(1):51–92, 1993.

[Spohn, 1988] W. Spohn. Ordinal conditional functions: A dy-
namic theory of epistemic states. In Causation in Decision, Belief
Change, and Statistics. Springer Netherlands, 1988.

[Thielscher, 2001] M. Thielscher. Planning with noisy actions (pre-
liminary report). In Proc. Australian Joint Conference on Artifi-
cial Intelligence, pages 27–45, 2001.

[Thielscher, 2004] M. Thielscher. Logic-based agents and the
frame problem: A case for progression. In First-Order Logic
Revisited, pages 323–336, Berlin, Germany, 2004. Logos.

[Thielscher, 2005] M. Thielscher. Flux: A logic programming
method for reasoning agents. Theory and Practice of Logic Pro-
gramming, 5(4-5):533–565, 2005.

[Thrun et al., 2005] S. Thrun, W. Burgard, and D. Fox. Probabilis-
tic Robotics. MIT Press, 2005.

[Van Benthem et al., 2009] J. Van Benthem, J. Gerbrandy, and
B. Kooi. Dynamic update with probabilities. Studia Logica,
93(1):67–96, 2009.

[Van Ditmarsch et al., 2007] H. Van Ditmarsch, A. Herzig, and
T. De Lima. Optimal regression for reasoning about knowledge
and actions. In Proc. AAAI, pages 1070–1075, 2007.

[Zamani et al., 2012] Z. Zamani, S. Sanner, P. Poupart, and K. Ker-
sting. Symbolic dynamic programming for continuous state and
observation POMDPs. In NIPS, pages 1403–1411, 2012.

