
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Termination Criteria for Datalog with Function Symbols

Citation for published version:
Calautti, M, Molinaro, C, Pulice, C & Trubitsyna, I 2014, Termination Criteria for Datalog with Function
Symbols. in 22nd Italian Symposium on Advanced Database Systems, SEBD 2014, Sorrento Coast, Italy,
June 16-18, 2014.. pp. 248-255.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
22nd Italian Symposium on Advanced Database Systems, SEBD 2014, Sorrento Coast, Italy, June 16-18, 2014.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/77047701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/termination-criteria-for-datalog-with-function-symbols(91ae47b7-68cf-4bcf-8f70-00817b708497).html


Termination Criteria for Datalog with Function
Symbols

Marco Calautti, Cristian Molinaro, Chiara Pulice, and Irina Trubitsyna

DIMES, Università della Calabria
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Discussion Paper

Abstract. Enriching Datalog with function symbols makes modeling
easier, increases the expressive power, and allows us to deal with infinite
domains. However, this comes at a cost: common inference tasks become
undecidable. To cope with this issue, recent research has focused on find-
ing trade-offs between expressivity and decidability by identifying classes
of Datalog programs allowing only a limited use of function symbols but
guaranteeing decidability of common inference tasks.

In this paper, we provide a survey of current termination criteria, which
define conditions guaranteeing that a Datalog program (possibly with
function symbols) has a finite number of stable models, each of them is
of finite size and can be computed. We also present a technique which
can be used in conjunction with current termination criteria to improve
them.

Keywords: Datalog, function symbols, bottom-up evaluation, evalua-
tion termination

1 Introduction and Preliminaries

In recent years, there has been a great deal of interest in enhancing Datalog by
supporting function symbols. Function symbols often make modeling easier and
the resulting encodings more readable and concise, but unfortunately, common
inference tasks become undecidable in their presence.

The class of finitely-ground programs, proposed in [2], guarantees decidabil-
ity of common inference tasks. In fact, a finitely-ground program has a fi-
nite number of stable models, each of them is of finite size and can be com-
puted. Since membership in the class is semi-decidable, research has focused
on identifying sufficient conditions for a program to be finitely-ground, lead-
ing to different criteria, that we call termination criteria. Efforts in this di-
rection are ω-restricted programs [10], λ-restricted programs [3], finite domain
programs [2], argument-restricted programs [9], safe programs [8], Γ -acyclic pro-
grams [8], mapping-restricted programs [1], and bounded programs [6].
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In this paper, we give an overview of recent research on this topic. Specifi-
cally, we present some recently proposed decidable termination criteria and an
orthogonal technique that can be used in conjunction with them to enlarge the
class of programs recognized as finitely-ground [7].

We assume the reader is familiar with Datalog with function symbols under
the stable model semantics [4]. Below we introduce notation and terminology
used hereafter. Given a (Datalog) program P, we denote by arg(P) the set of all
arguments of P, i.e., expressions of the form p[i] where p is a predicate symbol of
arity n appearing in P and 1 ≤ i ≤ n. We use body(r) and head(r) to denote the
body and the head of a rule r, respectively; body+(r) denotes the conjunction of
all positive literals in body(r). Given a rule r, ground(r) denotes the set of rules
obtained by replacing variables with ground terms constructed using constants
and function symbols occurring in P. An argument q[i] ∈ arg(P) is said to be
limited if it takes values from a finite domain, that is, if for every (stable) model
M of P the projection of Q on the i-th argument is a finite set, where Q is the
set of q-atoms in M . We consider programs where rules are range restricted, that
is all variables occurring in a rule r also occur in body+(r) and distinguish base
predicate symbols, defined only by facts (i.e., ground rules with empty body) from
derived predicate symbols, defined by arbitrary rules. For ease of presentation,
we sometimes consider only positive programs as the techniques described can
be easily extended to programs with negative body literals and disjunction in
head.

Termination criteria are used to determine sets of arguments which are lim-
ited. Given a program P and a criterion W , W (P) denotes the set of arguments
which are recognized as limited by criterion W . The class of programs which
are recognized as finitely-ground by W is the class of programs P such that
arg(P) = W (P).

2 Basic Termination Criteria

In this section, we describe “basic” termination criteria proposed in the lit-
erature, namely argument-restricted programs [9] and mapping-restricted pro-
grams [1]. We shall not discuss other well-known basic termination criteria, such
as ω-restricted programs [10], λ-restricted programs [3] and finite domain pro-
grams [2], as they are generalized by the criteria discussed in this section. We
named the aforementioned termination criteria “basic” as their definition does
not rely on other termination criteria.

Argument-restricted programs [9]. The argument-restricted criterion checks
whether we can find, for each argument, a finite upper bound of the depth of
terms that may occur in that argument during the program evaluation. This
test is based on the notion of argument ranking function defined below. For any
atom A of the form p(t1, ..., tn), A

0 denotes predicate symbol p, and Ai denotes
term ti, for 1 ≤ i ≤ n.
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Definition 1. An argument ranking for a program P is a partial function ϕ
from arg(P) to non-negative integers such that, for every rule r of P, every
atom A occurring in the head of r, and every variable X occurring in a term Ai,
if ϕ(A0[i]) is defined, then body+(r) contains an atom B such that X occurs in
a term Bj, ϕ(B0[j]) is defined, and the following condition is satisfied

ϕ(A0[i])− ϕ(B0[j]) ≥ d(X,Ai)− d(X,Bj)

where
d(X,X) = 0,
d(X, f(t1, ..., tm)) = 1 + max

i : ti containsX
d(X, ti).

The set of restricted arguments of P is AR(P) = {p[i] | p[i] ∈ arg(P) ∧
∃ϕ s.t. ϕ(p[i]) is defined}. A program P is said to be argument-restricted iff
AR(P) = arg(P).

Example 1. Consider the following program:

p(f(X))← q(X).
q(X)← p(f(X)).

The program is argument-restricted. An argument ranking ϕ which allows us to
conclude that the program is argument-restricted is the following: ϕ(p[1]) = 1
and ϕ(q[1]) = 0.

Mapping-restricted programs [1]. The mapping-restricted (m-restricted) cri-
terion is defined over normal positive logic programs with function symbols but
it can be easily extended to general disjunctive programs with negation.

Intuitively, this technique tries to find a set of argument/string pairs p[i]/s,
called mappings, representing the fact that during the bottom-up evaluation
of the program, argument p[i] could take values whose structure, in terms of
nesting of function symbols, is described by s. For instance, if p(f(g(c1)), c2)
is a ground atom derivable through the bottom-up evaluation of a program,
then the mappings for its arguments are p[1]/fg and p[2]/ϵ, where ϵ denotes the
empty string. This set of mappings is called supported m-set and is defined as
follows.

Definition 2. Given a program P, a set of mappings UP is a supported m-set
of P if it can be built iteratively as follows:

1. q[j]/ϵ ∈ UP for every argument q[j] ∈ arg(P) s.t. q is a base predicate
symbol, and

2. for every rule r ∈ P and for every variable X in r, if all occurrences of X
in the body of r have a mapping to a string s in UP , then all occurrences of
X in the head of r also have a mapping to s in UP .

An occurrence of a variable X in a term ti of an atom p(t1, . . . , tn) has a mapping
to a string s in UP if p[i]/s ∈ UP ∧ ti = X or p[i]/gs ∈ UP ∧ ti = g(...X...).
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Example 2. Consider the following program P2, where b is a base predicate:

p(X, X) ← b(X).
q(f(X), f(X))← p(X, X).
p(f(X), X) ← q(X, X).

A supported m-set of this program is UP2 = {b[1]/ϵ, p[1]/ϵ, p[2]/ϵ, q[1]/f, q[2]/f,
p[1]/ff, p[2]/f}. Moreover, this set is minimal, i.e. there is no supported m-set
U ′ of P2 such that U ′ ⊂ UP2 .

Definition 3. A program P is m-restricted if arg(P) = MR(P), where MR(P)
denotes the set of m-restricted arguments p[i] of P. An argument p[i] is m-
restricted if the minimal supported m-set UP of P contains a finite set of map-
pings p[i]/s.

Example 3. Program P2 of Example 2 is m-restricted, since for every argument
p[i] in its minimal supported m-set there is a finite number of mappings of the
form p[i]/s.

3 Iterated Termination Criteria

In this section, we present recently proposed termination criteria which, start-
ing from a set of limited arguments defined through the application of a basic
criterion, compute a possibly larger set of limited arguments.

Safe programs [8]. The first technique we present relies on a function, called
safe function, which iteratively extends a given set of limited arguments. Its
definition is based on the notion of activation graph.

The activation graph of a program P, denoted Ω(P), is a directed graph
whose nodes are the rules of P, and there is an edge (ri, rj) in the graph iff ri
activates rj , i.e. there exist two ground rules r′i ∈ ground(ri), r

′
j ∈ ground(rj)

and a set of ground atoms I such that (i) I ̸|= r′i, (ii) I |= r′j , and (iii) I ∪
head(r′i) ̸|= r′j . This intuitively means that if I does not satisfy r′i, I satisfies
r′j , and head(r′i) is added to I to satisfy r′i, this causes r′j not to be satisfied
anymore (and then to be “activated”).

Definition 4. Given a program P and a basic termination criterion W , the set
of W-safe arguments S-W (P) is computed by first setting S-W (P) = W (P)
and next iteratively adding each argument q[k] to S-W (P) such that for all rules
r ∈ P where q appears in the head,
(i) r does not depend on a cycle of the activation graph Ω(P), or
(ii) for every head atom q(t1, ..., tn) of r, every variable X appearing in tk also
appears in some W-safe argument of body+(r).

A program P is said to be W-safe if S-W (P) = arg(P).

The criterion obtained by combining a basic criterion W with the safe function
is denoted by S-W .
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Example 4. The following simple program P4 is not recognized as finitely-ground
by all current basic termination criteria.

p(X, X)← base(X).
p(f(X), X)← p(X, X).
p(X, f(X))← p(X, X).

However, the bottom-up evaluation of this program always terminates. Indeed,
P4 is W-safe, for every basic criterion W , since the activation graph of P4 does
not contain any cycle.

Bounded Programs [6]. The definition of bounded programs relies on the
notion of labelled argument graph. This graph, denoted GL(P), is derived from
the argument graph by labelling edges as follows: for each pair of nodes p[i], q[j] ∈
arg(P) and for every rule r ∈ P such that (i) an atom p(t1, ..., tn) appears
in head(r), (ii) an atom q(u1, ..., um) appears in body+(r), (iii) terms ti and
uj have a common variable X, there is an edge (q[j], p[i], ⟨α, r, h, k⟩), where h
and k are natural numbers denoting the positions of p(t1, ..., tn) in head(r) and
q(u1, ..., um) in body+(r), respectively1, whereas α = ϵ if ti = uj , α = f if
uj = X and ti = f(..., X, ...), α = f̄ if uj = f(..., X, ...) and ti = X. For the
sake of simplicity and without loss of generality, we assume that if a variable X
appears in two terms occurring in the head and the body of a rule, then only
one of the two terms is a complex term and that the nesting level of complex
terms is at most one.

Given a path ρ = (a1, b1, ⟨α1, r1, h1, k1⟩), . . . , (am, bm, ⟨αm, rm, hm, km⟩), we
define λ1(ρ) = α1 ...αm, λ2(ρ) = r1, ..., rm, and λ3(ρ) = ⟨r1, h1, k1⟩ ... ⟨rm, hm, km⟩.
Given a cycle π consisting of n labelled edges e1, ..., en, we can derive n different
cyclic paths starting from each of the ei’s—we use τ(π) to denote the set of such
cyclic paths.

Given two cycles π1 and π2, we write π1≈π2 iff ∃ρ1 ∈ τ(π1) and ∃ρ2 ∈ τ(π2)
such that λ3(ρ1) = λ3(ρ2). Given a program P, we say that a cycle π in GL(P) is
active iff ∃ρ ∈ τ(π) such that λ2(ρ) = r1, ..., rm and (r1, r2), ..., (rm−1, rm), (rm, r1)
is a cyclic path in the activation graph Ω(P).

Given a program P and a path ρ in GL(P), we denote with λ̂1(ρ) the string
obtained from λ1(ρ) by iteratively eliminating pairs of the form γγ̄ from the
string until the resulting string cannot be further reduced.

Given a program P, a cycle π in GL(P) can be classified as follows. We say

that π is i) balanced if ∃ρ ∈ τ(π) s.t. λ̂1(ρ) is empty, ii) growing if ∃ρ ∈ τ(π) s.t.

λ̂1(ρ) does not contain a symbol of the form γ̄, iii) failing otherwise.

Definition 5. Given a program P and a basic termination criterion W , the
set of W-bounded arguments B-W (P) is computed by first setting B-W (P) =
W (P) and next iteratively adding each argument q[k] to B-W (P) such that for
each cycle π in GL(P) on which q[k] depends, at least one of the following con-
ditions holds:
1 We assume that literals in the head (resp. body) are ordered with the first one being
associated with 1, the second one with 2, etc.
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Fig. 1. Labelled argument graph.

1. π is not active or is not growing;
2. π contains an edge (s[j], p[i], ⟨f, r, l1, l2⟩) and, letting p(t1, ..., tn) be the l1-

th atom in the head of r, for every variable X in ti, there is an atom
b(u1, ..., um) in body+(r) s.t. X appears in a term uh and b[h] is W-bounded;

3. there is a basic cycle π′ in GL(P) s.t. π′≈π, π′ is not balanced, and π′ passes
only through W-bounded arguments.

A program P is said to be W-bounded if B-W (P) = arg(P).

The criterion obtained by combining a basic criterion W with the bounded
criterion of the previous definition is denoted by B-W . A relevant aspect that
distinguishes this technique from others is that this technique analyzes how
groups of arguments are related with one another—this is illustrated in the
following example.

Example 5. Consider the following logic program P5:

r0 : count([a, b, c], 0).
r : count(L, I+ 1)← count([X|L], I).

The bottom-up evaluation of P5 terminates yielding the atoms count([a, b, c], 0),
count([b, c], 1), count([c], 2), and count([ ], 3). The query goal count([ ], L) can
be used to retrieve the length L of list [a, b, c].2 In order to make the function
symbols occurring in P5 more explicit, we rewrite P5 as follows:

r0 : count(list(a, list(b, list(c, nil))), 0).
r : count(L,+(I, 1))← count(list(X, L), I).

The labelled argument graph of the program above is depicted in Figure 1,
where list and + denote the list constructor and the sum operators, respec-
tively.

Basically, considering the argument-restricted technique as the basic crite-
rion W , we can first establish that the argument count[1] is limited, that is,
count[1] ∈ B-AR(P5). Then, by analyzing the two cycles involving arguments
count[1] and count[2] and using Condition 3 of Definition 5, it is possible to
detect that also argument count[2] is limited, that is count[2] ∈ B-AR(P5).
Consequently, P5 is AR-bounded.

2 Notice that P5 has been written so as to count the number of elements in a list when
evaluated in a bottom-up fashion, and therefore differs from the classical formulation
relying on a top-down evaluation strategy. However, programs relying on a top-down
evaluation strategy can be rewritten into programs whose bottom-up evaluation gives
the same result.
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4 Adornment-based Technique

In this section, we give the basic idea of the rewriting technique introduced in [7].
This technique can be used in conjunction with current termination criteria, en-
abling us to detect more programs as finitely-ground. The technique takes a
logic program P and transforms it into an adorned program Pµ with the aim of
applying termination criteria to Pµ rather than P. The transformation is sound
in that if the adorned program satisfies a certain termination criterion, then the
original program is finitely-ground. Importantly, as shown by the example be-
low, applying termination criteria to adorned programs rather than the original
ones strictly enlarges the class of programs recognized as finitely-ground. This
technique is much more general than those used to deal with chase termination
(see [5]).

Example 6. Consider the following program P6, where base is a base predicate
symbol (defined by facts that are not shown here).

r0 : p(X, f(X))← base(X).
r1 : p(X, f(X))← p(Y, X), base(Y).
r2 : p(X, Y)← p(f(X), f(Y)).

First, base predicate symbols are adorned with strings of ϵ’s; thus, we get the
adorned predicate symbol baseϵ. This is used to adorn the body of r0 so as to
get

ρ0 : pϵf1(X, f(X))← baseϵ(X).

from which we derive the new adorned predicate symbol pϵf1 , and the adornment
definition f1 = f(ϵ). Next, pϵf1 and baseϵ are used to adorn the body of r1 so
as to get

ρ1 : pf1f2(X, f(X))← pϵf1(Y, X), baseϵ(Y)

from which we derive the new adorned predicate symbol pf1f2 , and the adornment
definition f2 = f(f1). Intuitively, the body of ρ1 is coherently adorned because Y
is always associated with the same adornment symbol ϵ. Using the new adorned
predicate symbol pf1f2 , we can adorn rule r2 and get

ρ2 : pϵf1(X, Y)← pf1f2(f(X), f(Y)).

At this point, we are not able to generate new adorned rules (using the adorned
predicate symbols generated so far) with coherently adorned bodies and the
transformation terminates. In fact, pf1f2(Y, X), baseϵ(Y) is not coherently adorned
because the same variable Y is associated with both f1 and ϵ; moreover, pϵf1(f(X), f(Y))
is not coherently adorned because f(X) does not comply with the (simple) term
structure described by ϵ.

To determine termination of the bottom-up evaluation of P6, we can apply
current termination criteria to Pµ

6 = {ρ0, ρ1, ρ2} rather than P6.
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It is worth noting that the rewriting technique ensures that if Pµ
6 is recognized

as finitely-ground, so is P6. Notice also that both P6 and Pµ
6 are recursive, but

while some termination criteria (e.g., the argument-restricted criterion) are able
to detect that the bottom-up evaluation of Pµ

6 always terminates, none of the
current termination criteria is able to realize that the bottom-up evaluation of
P6 always terminates.

5 Conclusion

Recent years have witnessed an increasing interest in extending Datalog with
function symbols. The main problem with the introduction of function symbols is
that common inference tasks become undecidable. To cope with this issue, there
have been several proposals of subclasses of Datalog with function symbols that
impose limitations on the use of function symbols but guarantee decidability of
common inference tasks. In this paper, we have discussed the main approaches
recently proposed in the literature.
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