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Discussion Paper

Abstract. Enriching Datalog programs with function symbols makes
modeling easier, increases the expressive power, and allows us to deal
with infinite domains. However, this comes at a cost: common inference
tasks become undecidable. To cope with this issue, recent research has
focused on finding trade-offs between expressivity and decidability by
identifying classes of logic programs that impose limitations on the use of
function symbols but guarantee decidability of common inference tasks.
Despite the significant body of work in this area, current approaches do
not include many simple practical programs whose evaluation terminates.
In this paper, we present the novel class of rule-bounded programs. While
current techniques perform a limited analysis of how terms are propa-
gated from an individual argument to another, our technique is able to
perform a more global analysis, thereby overcoming several limitations
of current approaches. We show different results on the correctness and
the expressivity of the proposed technique.

Keywords: Datalog with function symbols, bottom-up evaluation, program
evaluation termination

1 Introduction

Enriching datalog programs with function symbols has recently seen a surge in
interest. Function symbols make modeling easier, increase the expressive power,
and allow us to deal with infinite domains. At the same time, this comes at
a cost: common inference tasks (e.g., cautious and brave reasoning) become
undecidable.

Recent research has focused on identifying classes of logic programs that
impose some limitations on the use of function symbols but guarantee decid-
ability of common inference tasks. Efforts in this direction are the class of
finitely-ground programs [9] and the more general class of bounded term-size
programs [24]. The minimal model of a finitely-ground datalog program is finite,
and the well-founded model of a bounded term-size datalog program is finite. Un-
fortunately, checking if a program is bounded term-size or even finitely-ground
is semi-decidable.



Considering the minimal model semantics, decidable subclasses of finitely-
ground programs have been proposed (for more details see the last section of
this paper). However, there are still many simple practical programs which are
finitely-ground but are not detected by any of the current termination criteria.
Below are two examples.

Example 1. The following program P1 implements the bubble sort algorithm:

r0 : bub(L, [ ], [ ])← input(L).
r1 : bub([Y|Z], [X|Cur], Sol)← bub([X|[Y|Z]], Cur, Sol), X ≤ Y.
r2 : bub([X|Z], [Y|Cur], Sol)← bub([X|[Y|Z]], Cur, Sol), Y < X.
r3 : bub(Cur, [ ], [X|Sol])← bub([X|[ ]], Cur, Sol).

Here input is a base predicate symbol whose extension is a fact containing the
list we would like to sort. The bottom-up evaluation of this program always
terminates for any input list. The ordered list Sol can be obtained from the
atom bub([ ], [ ], Sol) in the program’s minimal model. 2

Example 2. Program P2 below performs a depth-first traversal of an input tree:

r0 : visit(Tree, [ ], [ ])← input(Tree).
r1 : visit(Left, [Root|Visited], [Right|ToVisit])←

visit(tree(Root, Left, Right), Visited, ToVisit).
r2 : visit(Next, Visited, ToVisit)← visit(null, Visited, [Next|ToVisit]).

Here input is a base predicate symbol whose extension contains a tree-like struc-
ture represented by means of the ternary function symbol tree. The program
visits the nodes of the tree and puts them in a list following a depth-first search.
The list L of visited elements can be obtained from the atom visit(null, L, [ ])
in the program’s minimal model. For instance, if the input tree is

input(tree(a, tree(c, null, tree(d, null, null)), tree(b, null, null))).

the program produces the list [b, d, c, a] containing the nodes of the tree in
opposite order w.r.t. the traversal. 2

The peculiarity of the above programs is that the overall size of the terms in
the body does not increase during their propagation to the head, as there is only
a simple redistribution of terms. One of the novelties of the technique proposed
in this paper is the capability of doing this kind of analysis, thereby identifying
finitely-ground programs that none of the current techniques include.

Contribution. In this paper we present a novel technique for checking if a Data-
log program is finitely-ground, initially appeared in [6]. Our technique overcomes
several limitations of current approaches being able to perform a more global
analysis of how terms are propagated from the body to the head of rules. To this
end, we use linear constraints to measure and relate the size of head and body
atoms of rules and introduce the class of rule-bounded programs. We study the
relationship between the proposed class and current termination criteria.

Organization. Section 2 reports preliminaries on Datalog programs with func-
tion symbols. Section 3 introduces the class of rule-bounded programs. Related
work and conclusions are reported in Section 4.



2 Preliminaries

Syntax. We assume to have (pairwise disjoint) infinite sets of logical variables,
predicate symbols, and function symbols. Each predicate and function symbol g
is associated with an arity, denoted arity(g), which is a non-negative integer.
Function symbols of arity 0 are called constants. Variables appearing in logic
programs are called “logical variables” and will be denoted by upper-case letters
in order to distinguish them from variables appearing in linear constraints, which
are called “integer variables” and will be denoted by lower-case letters. A term
is either a logical variable, or an expression of the form f(t1, ..., tm), where f is
a function symbol of arity m ≥ 0 and t1, ..., tm are terms.

An atom is of the form p(t1, ..., tn), where p is a predicate symbol of arity
n ≥ 0 and t1, ..., tn are terms. A rule r is of the form H ← B1, ..., Bk, where
k ≥ 0, and H,B1, ..., Bk, are atoms. The atom H is called the head of r and
is denoted by head(r). The conjunction B1, ..., Bk is called the body of r and is
denoted by body(r). With a slight abuse of notation, we sometimes use body(r)
to also denote the set of literals appearing in the body of r. A datalog program
is a finite set of rules. We assume that programs are range restricted, i.e., for
every rule, every logical variable appears in some body atom. W.l.o.g., we also
assume that different rules do not share logical variables.

A term (resp. atom, rule, program) is ground if no logical variables occur in
it. A ground rule with an empty body is also called a fact. A predicate symbol
p is defined by a rule r if p appears in the head of r.

A substitution θ is of the form {X1/t1, ..., Xn/tn}, where X1, ..., Xn are dis-
tinct logical variables and t1, ..., tn are terms. The result of applying θ to an
atom (or term) A, denoted Aθ, is the atom (or term) obtained from A by simul-
taneously replacing each occurrence of a logical variable Xi in A with ti if Xi/ti
belongs to θ. Two atoms A1 and A2 unify if there exists a substitution θ, called
a unifier of A1 and A2, such that A1θ = A2θ.

Semantics. Consider a program P. The Herbrand universe HP of P is the
possibly infinite set of ground terms which can be built using constants and
function symbols appearing in P. The Herbrand base BP of P is the set of
ground atoms which can be built using predicate symbols appearing in P and
ground terms of HP . A rule r′ is a ground instance of a rule r in P if r′ can
be obtained from r by substituting every logical variable in r with some ground
term in HP . We use ground(r) to denote the set of all ground instances of r
and ground(P) to denote the set of all ground instances of the rules in P, i.e.,
ground(P) = ∪r∈Pground(r). An interpretation of P is any subset I of BP . The
truth value of a ground atom A w.r.t. I, denoted valueI(A), is true if A ∈ I, false
otherwise. A ground rule r is satisfied by I, denoted I |= r, if there is a ground
atom A in body(r) s.t. valueI(A) = false or there valueI(head(r)) = true. Thus,
if the body of r is empty, r is satisfied by I if valueI(head(r)) = true. An
interpretation of P is a model of P if it satisfies every ground rule in ground(P).
A model M of P is minimal if no proper subset of M is a model of P. The
minimal model of P is unique and is denoted by MM(P).



3 Rule-bounded Programs

In this section, we present rule-bounded programs, a class of programs whose
evaluation always terminates and for which checking membership in the class is
decidable. Their definition relies on a novel technique which uses linear inequal-
ities to measure terms and atoms’ sizes and checks if the size of the head of a
rule is always bounded by the size of some body atom.

We use N to denote the set of natural numbers {1, 2, 3, ...} and N0 to denote
the set of natural numbers including zero. Moreover, Nk = {(v1, ..., vk) | vi ∈
N for 1 ≤ i ≤ k} and Nk

0 = {(v1, ..., vk) | vi ∈ N0 for 1 ≤ i ≤ k}. Given a
k-vector v = (v1, ..., vk) in Nk

0 , we use v[i] to refer to vi, for 1 ≤ i ≤ k. Given
two k-vectors v = (v1, ..., vk) and w = (w1, ..., wk) in Nk

0 , we use v · w to denote

the classical scalar product, i.e., v · w =
∑k

i=1 vi · wi.
The following definition introduces the notions of term and atom size.

Definition 1. Let t be a term. The size of t is recursively defined as follows:

size(t) =

x if t is a logical variable X;

m+
m∑
i=1

size(ti) if t = f(t1, ..., tm).

where x is an integer variable. The size of an atom A = p(t1, ..., pn), denoted
size(A), is the n-vector (size(t1), ..., size(tn)). 2

In the definition above, an integer variable x intuitively represents the possi-
ble sizes that the logical variable X can have during the bottom-up evaluation.
The size of a term of the form f(t1, ..., tm) is defined by summing up the size of
its terms ti’s plus the arity m of f . Note that from the definition above, the size
of every constant is 0.

Example 3. Consider rule r1 of program P1 (see Example 1). Using lc to denote
the list constructor operator “|”, the rule can be rewritten as follows:

bub(lc(Y, Z), lc(X, Cur), Sol)← bub(lc(X, lc(Y, Z)), Cur, Sol), X ≤ Y.

Let A (resp. B) be the atom in the head (resp. the first atom in the body). Then,

size(A) = (2 + y + z, 2 + x+ cur, sol)
size(B) = (2 + [x+ (2 + y + z)], cur, sol) 2

We are now ready to define rule-bounded programs.

Definition 2 (Rule-bounded programs). Let P be a program and pred(P) =
{p1, ..., pk}. We say that P is rule-bounded if there exist k vectors αph

∈ Narity(ph),
1 ≤ h ≤ k, such that for every rule r ∈ P with A = head(r) = pi(t1, ..., tn), there
exists an atom B = pj(u1, ..., um) in body(r) s.t. the following inequality is sa-
tisfied

αpj
· size(B)− αpi

· size(A) ≥ 0

for every non-negative value of the integer variables in size(B) and size(A). 2



Intuitively, for every rule of P, Definition 2 checks if the size of the head
atom is bounded by the size some body atom for all possible sizes the terms can
assume.

Example 4. Consider again program P1 of Example 1. To determine if the pro-
gram is rule-bounded we need to find αinput ∈ N and αbub ∈ N3 such that
there is an atom in each rule’s body which satisfy the inequalities derived from
rules of P1 for all non-negative values of the integer variables therein. In par-
ticular, selecting the first body atom in each rule we obtain the following linear
constraints:
αinput · l0 − αbub · (l0, 0, 0) ≥ 0

αbub · (4 + x1 + y1 + z1, cur1, sol1)− αbub · (2 + y1 + z1, 2 + x1 + cur1, sol1) ≥ 0

αbub · (4 + x2 + y2 + z2, cur2, sol2)− αbub · (2 + x2 + z2, 2 + y2 + cur2, sol2) ≥ 0

αbub · (2 + x3 + 0, cur3, sol3)− αbub · (cur3, 0, 2 + x3 + sol3) ≥ 0

where subscripts associated with integer variables are used to refer to the oc-
currences of logical variables in different rules (e.g., y2 is the integer variable
associated to the logical variable Y in rule r2).

By expanding the scalar products and isolating every integer variable we get:
(αinput[1]− αbub[1]) · l0 ≥ 0

(αbub[1]− αbub[2]) · x1 + (2αbub[1]− 2αbub[2]) ≥ 0

(αbub[1]− αbub[2]) · y2 + (2αbub[1]− 2αbub[2]) ≥ 0

(αbub[1]− αbub[3]) · x3 + (αbub[2]− αbub[1]) · cur3 + (2αbub[1]− 2αbub[3]) ≥ 0

The previous inequalities must hold for all l0, x1, y2, x3, cur3 ∈ N0; it is easy to
see that this is the case iff the following system admits a solution:
αinput[1]− αbub[1] ≥ 0

αbub[1]− αbub[2] ≥ 0 2αbub[1]− 2αbub[2] ≥ 0

αbub[1]− αbub[2] ≥ 0 2αbub[1]− 2αbub[2] ≥ 0

αbub[1]− αbub[3] ≥ 0 2αbub[2]− 2αbub[1] ≥ 0 2αbub[1]− 2αbub[3] ≥ 0

A possible solution is αinput = (1) and αbub = (1, 1, 1). Consequently, P1 is
rule-bounded. 2

The method in the previous example to find vectors αp for all p ∈ pred(P)
can always be applied. That is, we can always isolate the integer variables in
the original inequalities and then derive one inequality for each expression that
multiplies an integer variable plus the one for the constant term, imposing that
all such expressions must be greater than or equal to 0.

Example 5. Applying the method above to the program P2 of Example 2, we
obtain the following constraints:
αinput · 0− αv · (0, 0, 0) ≥ 0

(αv[1]− αv[2]) · root1 + (αv[1]− αv[3]) · right1 + (3αv[1]− 2αv[2]− 2αv[3]) ≥ 0

(αv[3]− αv[1]) · next2 + 2αv[3] ≥ 0



where subscript v stands for predicate symbol visit. By setting αv = (2, 1, 2),
we get positive integer values of αv[1], αv[2], αv[3] s.t. the inequalities above are
satisfied for all root1, right1, next2 ∈ N0. Thus, P2 is rule-bounded. 2

Two key properties of rule-bounded programs are: they are finitely-ground
and it is decidable to check whether a given program is rule-bounded.

Theorem 1. Every rule-bounded program is finitely-ground. 2

Theorem 2. Checking whether a program is rule-bounded is in NP. 2

Theorem 3. Rule-bounded programs are incomparable with mapping-restricted
and bounded programs. 2

Observe that in the previous theorem we have considered only the most
general subclasses of finitely-ground programs proposed so far, which generalize
previous classes such as argument-restricted programs [19].

The proposed technique can be further improved by identifying in each rule
body atoms that are mutually recursive with the rule head. If the head atom
contains only variables occurring in some atom not mutually recursive with its
head, the rule is not dangerous and its consideration can be omitted. Moreover,
in the remaining rules only body atoms that are mutually recursive with the rule
head should be considered to construct the inequality.

4 Discussion and Conclusions

A significant body of work has been done on termination of logic programs under
top-down evaluation [11,34,20,23,10,28,22,26,27,21,5,4,3] and in the area of term
rewriting [35,30,2,12,13]. Termination properties of query evaluation for normal
programs under tabling have been studied in [24,25,32].

In this paper, we consider Datalog programs with function symbols under
the minimal model semantics, and thus all the excellent works above cannot be
straightforwardly applied to our setting—for a discussion on this see, e.g., [9,1].
In our context, [9] introduced the class of finitely-ground programs, guaran-
teeing the existence of a finite set of stable models, each of finite size, for pro-
grams in the class. Since membership in the class is not decidable, decidable sub-
classes have been proposed: ω-restricted [31], λ-restricted [14], finite domain [9],
argument-restricted [19], safe and Γ -acyclic [7], mapping-restricted [8], bounded
programs [16]. An adornment-based approach that can be used in conjunction
with the techniques above to detect more programs as finitely-ground has been
proposed in [17].

Compared with the aforementioned classes, rule-bounded programs allow
us to perform a more global analysis and identify many practical programs as
finitely-ground, such as those where terms in the body are rearranged in the
head, which are not included in any of the classes above. We observe that there
are also programs which are not rule-bounded but are recognized as finitely-
ground by some of the aforementioned techniques (see Theorems 3).



Similar concepts of “term size” have been considered to check termina-
tion of logic programs evaluated in a top-down fashion [29], in the context
of partial evaluation to provide conditions for strong termination and quasi-
termination [33,18], and in the context of tabled resolution [24,25]. These ap-
proaches are geared to work under top-down evaluation, looking at how terms are
propagated from the head to the body, while our approach is developed to work
under bottom-up evaluation, looking at how terms are propagated from the body
to the head. This gives rise to significant differences in how the program analysis
is carried out, making one approach not applicable in the setting of the other.
As a simple example, the rule p(X)← p(X) leads to a non-terminating top-down
evaluation, while it is completely harmless under bottom-up evaluation.

We notice that this topic is also related to research done in the database
community on termination of the chase procedure, see [15] for a recent survey.

As a direction for future work, we plan to investigate how our techniques can
be combined with current termination criteria. Since they look at programs from
different standpoints, an interesting issue is to study how they can be integrated
so that they can benefit from each other.
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