

Edinburgh Research Explorer

Logic Program Termination Analysis Using Atom Sizes

Citation for published version:
Calautti, M, Greco, S, Molinaro, C & Trubitsyna, I 2015, Logic Program Termination Analysis Using Atom
Sizes. in Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015. IJCAI Inc, pp. 2833-2839.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/77047697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/logic-program-termination-analysis-using-atom-sizes(206461bc-3de8-497d-b1d2-2a0a7c2d6d37).html

Logic Program Termination Analysis Using Atom Sizes

Marco Calautti, Sergio Greco, Cristian Molinaro, Irina Trubitsyna
DIMES, Università della Calabria

87036 Rende (CS), Italy
{calautti,greco,molinaro,trubitsyna}@dimes.unical.it

Abstract
Recent years have witnessed a great deal of interest
in extending answer set programming with function
symbols. Since the evaluation of a program with
function symbols might not terminate and check-
ing termination is undecidable, several classes of
logic programs have been proposed where the use
of function symbols is limited but the program eval-
uation is guaranteed to terminate.
In this paper, we propose a novel class of logic pro-
grams whose evaluation always terminates. The
proposed technique identifies terminating programs
that are not captured by any of the current ap-
proaches. Our technique is based on the idea of
measuring the size of terms and atoms to check
whether the rule head size is bounded by the body,
and performs a more fine-grained analysis than
previous work. Rather than adopting an all-or-
nothing approach (either we can say that the pro-
gram is terminating or we cannot say anything),
our technique can identify arguments that are “lim-
ited” (i.e., where there is no infinite propagation of
terms) even when the program is not entirely rec-
ognized as terminating. Identifying arguments that
are limited can support the user in the problem for-
mulation and help other techniques that use limited
arguments as a starting point. Another useful fea-
ture of our approach is that it is able to leverage
external information about limited arguments. We
also provide results on the correctness, the com-
plexity, and the expressivity of our technique.

1 Introduction
Function symbols are widely acknowledged as an important
feature in answer set programming as they make modeling
easier and increase the language’s expressive power. Current
solvers provide support for them, but offer only a limited a-
priori termination analysis of programs. The main problem
is that the evaluation of a program (with function symbols)
might not terminate and checking termination is undecidable.

To cope with this issue, recent research has focused on
identifying decidable classes of logic programs allowing only
a restricted use of function symbols but guaranteeing the

program evaluation termination (we will discuss current ap-
proaches in the related work subsection).

Most of the work in the literature analyzes programs by
looking at how terms are propagated from one individual ar-
gument to another. More general approaches such as the
mapping-restricted [Calautti et al., 2013] and the bounded
[Greco et al., 2013a] techniques are able to perform a more
complex (yet limited) analysis of how some groups of argu-
ments affect each other. Recently, [Calautti et al., 2014a] pro-
posed the rule-bounded criterion, which checks if the head
size is bounded by the size of a body atom in a rule. How-
ever, all current approaches have several limitations that we
illustrate in the following example.

Example 1 Consider the following simple program P1:

p(f(X, X), Y, Z)← p(X, g(Z), g(Y)).

The program evaluation always terminates whatever finite set
of facts is added to the program—however, all current termi-
nation criteria fail to realize this. For instance, the simple fact
that the first argument of p has a size in the head greater than
the one in the body prevents several techniques from realizing
termination of the program evaluation. Also, when compar-
ing the overall size of the head with the body size, current
criteria do not succeed in identifying the program as termi-
nating. In contrast, as we will show in the following, our
approach performs a more accurate analysis and realizes that
the program evaluation always terminates. 2

To provide a practical example, below we report a gen-
eral program which recognizes strings of the language corre-
sponding to an arbitrary LR(1) grammar.

Example 2 Consider the following program P2:

par(T, [S1|[Sym|[St|L]]]) ← par([Sym|T], [St|L]),
act(St, Sym, shift(S1)).

red([Sym|T], [St|L], A, B) ← par([Sym|T], [St|L]),
act(St, Sym, reduce(A, B)).

red(I, L, A, T) ← red(I, [S|[X|L]], A, [Y|T]).
par(I, [S1|[A|[St|L]]]) ← red(I, [St|L], A, []),

act(St, A, goto(S1)).

where we use the classical syntax [H|T] for a list.
LR(1) grammars can be encoded in a standard form
using an action table defined by facts of the form
act(〈state〉, 〈symbol〉, 〈operation〉).

Specifically, given the current parsing state 〈state〉
and a symbol 〈symbol〉 to be parsed, 〈operation〉 de-
scribes one of the following four parsing operations:
shift(〈newstate〉), i.e., the next token is read from the in-
put and pushed to the parsing stack along with the new pars-
ing state 〈newstate〉; reduce(A, B), i.e., there is a produc-
tion rule A → B in the grammar and the top of the parsing
stack contains B (according to 〈state〉), which must be re-
placed with A; goto(〈newstate〉), i.e., once the reduce op-
eration is complete, the parsing state changes accordingly;
accept, i.e., the input string is accepted. The computation
starts by providing as input the action table and a fact of the
form par([a1, ..., an, $], [s0]), where [a1, ..., an, $] is the input
string, followed by the “end of string symbol” $, and [s0] is
the parsing stack containing the initial state s0. The string
is accepted iff the program model contains two atoms of the
form par([$], [s|L]) and act(s, $, accept). 2

Once again, the program above terminates for every finite
set of facts—while none of the current approaches is able to
realize it, our technique detects the program as terminating.
Related work. A significant body of work has been done
on termination of logic programs under top-down evalu-
ation [De Schreye and Decorte, 1994; Marchiori, 1996;
Ohlebusch, 2001; Codish et al., 2005; Schneider-Kamp et
al., 2009; Nguyen et al., 2007; Bruynooghe et al., 2007;
Baselice et al., 2009; Voets and De Schreye, 2011] and in
the area of term rewriting [Sternagel and Middeldorp, 2008;
Arts and Giesl, 2000; Endrullis et al., 2008]. Termination
properties of query evaluation for normal programs under
tabling have been studied in [Riguzzi and Swift, 2013; 2014;
Verbaeten et al., 2001]. Another approach are FDNC pro-
grams [Eiter and Simkus, 2010], which have infinite answer
sets in general, but a finite representation that can be exploited
for knowledge compilation and fast query answering.

In this paper, we consider logic programs with function
symbols under the stable model semantics [Gelfond and Lif-
schitz, 1988; 1991], and thus all the works above cannot be
straightforwardly applied to our setting—for a discussion on
this see, e.g., [Calimeri et al., 2008; Alviano et al., 2010].
In our context, [Calimeri et al., 2008] introduced the class
of finitely-ground programs, guaranteeing the existence of a
finite set of stable models, each of finite size. Since mem-
bership in the class is not decidable, decidable subclasses
have been proposed: ω-restricted programs [Syrjanen, 2001],
λ-restricted programs [Gebser et al., 2007], finite domain
programs [Calimeri et al., 2008], argument-restricted pro-
grams [Lierler and Lifschitz, 2009], safe and Γ-acyclic pro-
grams [Calautti et al., 2014b]. More general classes are
mapping-restricted programs [Calautti et al., 2013], bounded
programs [Greco et al., 2013a], and rule- and cycle-bounded
programs [Calautti et al., 2014a]. An adornment-based ap-
proach that can be used in conjunction with the techniques
above to detect more programs as finitely-ground has been
proposed in [Greco et al., 2013b].

Our approach recognizes terminating programs that do not
belong to any of the aforementioned classes; also, it can be
easily combined with them allowing us to identify more pro-
grams (we provide a precise comparison in Section 4).

Concepts of “term size” similar to the one used in this pa-
per have been considered to check termination of logic pro-
grams evaluated in a top-down fashion [Sohn and Gelder,
1991], in the context of partial evaluation to provide condi-
tions for strong termination and quasi-termination [Leuschel
and Vidal, 2014], and in the context of tabled resolu-
tion [Riguzzi and Swift, 2013; 2014]. These approaches are
geared to work under top-down evaluation, looking at how
terms are propagated from the head to the body, while our
approach is developed to work under bottom-up evaluation,
looking at how terms are propagated from the body to the
head. This gives rise to significant differences in how the pro-
gram analysis is carried out, making one approach not appli-
cable in the setting of the other. As a simple example, the rule
p(X)← p(X) leads to a non-terminating top-down evaluation,
while it is completely harmless under bottom-up evaluation.

Our work is also related to research done in the database
community on termination of the chase procedure, where
existential rules are considered (see [Greco et al., 2012;
2011]).
Contribution. We propose a novel class of logic programs
with function symbols whose evaluation always terminates.
Our technique is based on the idea of measuring the size of
terms and atoms using linear constraints to check whether the
rule head size is bounded by the body. The proposed ap-
proach generalizes previous work along different dimensions.

First, our approach identifies as terminating strictly more
programs than the rule-bounded criterion, including pro-
grams that are not identified by any of the current approaches
in the literature. While the rule-bounded technique looks
at the entire size of a single atom, our technique performs
a more accurate analysis by looking at the size of parts of
multiple atoms, overcoming different limitations of the rule-
bounded criterion.

Second, in contrast to several current criteria, rather than
adopting an “all-or-nothing” approach (either we can say that
the program evaluation terminates or we cannot say any-
thing), our technique can identify arguments that are “lim-
ited” (i.e., arguments where there is no infinite propagation
of terms) even when the program is not entirely recognized.
Identifying arguments that are limited can support the user in
the problem formulation. Moreover, termination criteria that
use limited arguments as a starting point (e.g., the bounded
criterion) can take advantage of this information.

Third, our technique can leverage external information
about limited arguments for a better understanding of the pro-
gram evaluation behavior—current approaches such as the
argument-restricted and the bounded criteria can provide such
sets of limited arguments when they fail to recognize a pro-
gram. This feature as well as the previous one are an impor-
tant step towards the combination of termination criteria, en-
abling different approaches to benefit from each other—this
is an issue where little effort has be done so far.

Finally, we provide results on the correctness, the complex-
ity, and the expressivity of the proposed technique.
Organization. In Section 2 we report preliminaries. Sec-
tion 3 introduces our technique. Section 4 reports results on
the complexity and expressivity. Section 5 shows how our
technique can be iteratively applied.

2 Preliminaries
This section recalls syntax and the stable model semantics
of logic programs with function symbols [Gelfond and Lifs-
chitz, 1988; 1991; Gebser et al., 2012].
Syntax. We assume to have (pairwise disjoint) infinite sets of
logical variables, predicate symbols, and function symbols.
Logical variables are used in logic programs and are denoted
by upper-case letters. To each logical variable X , there cor-
responds a (unique) integer variable x (denoted by the same
letter in lower case) which may occur in linear constraints.
Each predicate and function symbol g is associated with an
arity, which is a non-negative integer. Function symbols of
arity 0 are called constants. A term is either a logical vari-
able or an expression of the form f(t1, ..., tm), where f is a
function symbol of arity m ≥ 0 and t1, ..., tm are terms.

An atom is of the form p(t1, ..., tn), where p is a predicate
symbol of arity n ≥ 0 and t1, ..., tn are terms—we also call
the atom a p-atom. We use pr(A) to denote the predicate
symbol of an atom A. A literal is either an atom A (positive
literal) or its negation ¬A (negative literal).

A rule r is of the form
A1 ∨ ... ∨Am ← B1, ..., Bk,¬C1, ...,¬Cn

where m > 0, k ≥ 0, n ≥ 0, and A1, ..., Am, B1, ..., Bk,
C1, ..., Cn are atoms. The disjunction A1 ∨ ...∨Am is called
the head of r and is denoted by head(r). The conjunction
B1, ..., Bk,¬C1, ...,¬Cn is called the body of r and is de-
noted by body(r). With a slight abuse of notation, we some-
times use body(r) (resp. head(r)) to also denote the set of
literals appearing in the body (resp. head) of r. If m = 1,
then r is normal; in this case, head(r) denotes the head atom.
If n = 0, then r is positive.

A program is a finite set of rules. A program is normal
(resp. positive) if every rule in it is normal (resp. positive).
We assume that programs are range restricted, i.e., for every
rule, every logical variable appears in some positive body lit-
eral. A term (resp. atom, literal, rule, program) is ground if
no logical variables occur in it. A ground normal rule with an
empty body is also called a fact.

Let P be a program. The set of all predicate symbols ap-
pearing in P (resp. appearing in the head of a rule in P) is
denoted as pred(P) (resp. def (P)). Given a predicate sym-
bol p of arity n, the i-th argument of p is an expression of
the form p[i], for 1 ≤ i ≤ n. The set of all arguments of the
predicate symbols in pred(P) is denoted by args(P).
Semantics. Consider a program P . The Herbrand universe
HP of P is the possibly infinite set of ground terms that can
be built using function symbols (and thus also constants) ap-
pearing in P . The Herbrand base BP of P is the set of
ground atoms that can be built using predicate symbols ap-
pearing in P and ground terms of HP .

A substitution θ is of the form {X1/t1, ..., Xn/tn}, where
X1, ..., Xn are distinct logical variables and t1, ..., tn are
terms. The result of applying θ to an atom A, denoted Aθ, is
the atom obtained from A by simultaneously replacing each
occurrence of a logical variable Xi in A with ti if Xi/ti be-
longs to θ. Two atoms A1 and A2 unify if there exists a sub-
stitution θ such that A1θ = A2θ.

A rule (resp. atom) r′ is a ground instance of a rule (resp.

atom) r inP if r′ can be obtained from r by substituting every
logical variable in r with some ground term in HP . We use
ground(r) to denote the set of all ground instances of r and
ground(P) to denote the set of all ground instances of the
rules in P , i.e., ground(P) = ∪r∈Pground(r).

An interpretation of P is any subset I of BP . The truth
value of a ground atomA w.r.t. I , denoted valueI(A), is true
if A ∈ I , false otherwise. The truth value of ¬A w.r.t. I ,
denoted valueI(¬A), is true if A 6∈ I , false otherwise. A
ground rule r is satisfied by I , denoted I |= r, if there is a
ground literal L in body(r) s.t. valueI(L) = false or there is
a ground atom A in head(r) s.t. valueI(A) = true . Thus, if
the body of r is empty, r is satisfied by I if there is an atom
A in head(r) s.t. valueI(A) = true . An interpretation of P
is a model of P if it satisfies every ground rule in ground(P).
A model M of P is minimal if no proper subset of M is
a model of P . The set of minimal models of P is denoted
byMM(P). Given an interpretation I of P , let PI denote
the ground positive program derived from ground(P) by (i)
removing every rule containing a negative literal ¬A in the
body with A ∈ I , and (ii) removing all negative literals from
the remaining rules. An interpretation I is a stable model ofP
if I ∈ MM(PI). The set of stable models of P is denoted
by SM(P). It is well known that SM(P) ⊆ MM(P),
and SM(P) = MM(P) for positive programs. A positive
normal program P has a unique minimal model, which we
denote asMM(P).
Limited programs. Consider a program P . An argument
p[i] in args(P) is said to be limited iff for every finite set
of facts D and for every stable model M of P ∪ D, the set
{ti | p(t1, ..., ti, ..., tn) ∈ M} is finite. Moreover, P is said
to be limited iff every argument in args(P) is limited.

3 Size-Restricted Programs
In this paper we study new conditions under which a posi-
tive normal program P is limited—equivalently, the bottom-
up evaluation always terminates for every finite set of facts
added to the program. It is worth mentioning that our tech-
nique can be used to check if an arbitrary program P (possi-
bly with disjunction in the head and negation in the body) has
a finite number of stable models, each of them has finite size
and can be computed. Specifically, it suffices to apply our
technique to a positive normal program st(P) derived from
P as follows. Every rule A1 ∨ ... ∨ Am ← body in P is re-
placed withm positive normal rules of the formAi ← body+

(1 ≤ i ≤ m) where body+ is obtained from body by deleting
all negative literals. In fact, the minimal model of st(P) con-
tains every stable model of P—whence, finiteness and com-
putability of the minimal model of st(P) implies that P has
a finite number of stable models, each of finite size, which
can be computed [Calautti et al., 2014b]. Thus, for ease of
presentation, in the rest of the paper a program is understood
to be positive and normal.

Also, notice that a (positive normal) program P is limited
iff the program obtained from P by deleting all its facts is
limited. Thus, w.l.o.g., hereafter we assume that every given
program P does not contain facts.

We start by reporting the definition of firing graph [Calautti

et al., 2014a], a directed graph that keeps track of whether a
rule can trigger another.

Definition 1 (Firing graph) The firing graph of a program
P , denoted Ω(P), is a directed graph whose nodes are the
rules in P and where there is an edge 〈r, r′〉 iff there exist
two (not necessarily distinct) rules r, r′ ∈ P s.t. head(r) and
an atom in body(r′) unify. 2

Intuitively, an edge 〈r, r′〉 of Ω(P) means that rule r may
cause rule r′ to “fire”. In the definition above, w.l.o.g., we
assume that different rules do not share logical variables, and
when r = r′ we assume that r and r′ are two “copies” that do
not share any logical variable.

A strongly connected component (SCC) of a program P is
a maximal set C of nodes of Ω(P) s.t. every node of C can be
reached from every node of C through the edges in Ω(P)—a
node always reaches itself.

Given a rule r ∈ P , we say that the head atom is mutually
recursive with an atom B ∈ body(r) if there is an SCC C of
P containing r and containing a rule r′ (possibly equal to r)
s.t. head(r′) andB unify. The set of all atoms in body(r) that
are mutually recursive with head(r) is denoted as rbody(r).

Given a program P and a set A of limited arguments of P ,
we say that a rule r ∈ P is A-relevant if head(r) contains at
least one variable which does not appear in body(r)\rbody(r)
and does not appear in a term ti of a body atom p(t1, ..., tn)
such that p[i] ∈ A. Rules that are not A-relevant will not be
considered in the analysis of an SCC (Definition 4) because
they cannot infinitely propagate terms (when the SCC is con-
sidered in isolation), as all head variables appear in either a
body atom which is not mutually recursive with the head or
in correspondence of a limited argument. The following ex-
ample illustrates the aforementioned notions.

Example 3 Consider the following program P3:

r1 : p(f(X), Y)︸ ︷︷ ︸
A

← p(X, f(Y))︸ ︷︷ ︸
B

, b(X, Z)︸ ︷︷ ︸
C

.

r2 : p(X, g(Y))︸ ︷︷ ︸
D

← p(f(X), Y)︸ ︷︷ ︸
E

.

The firing graph of P3 has the edges 〈r1, r1〉, 〈r2, r2〉, and
〈r1, r2〉. The SCCs of P3 are C1 = {r1} and C2 = {r2}.
Atom B is mutually recursive with A, and atom E is mutually
recursive with D. Atom C is not mutually recursive with A.
Furthermore, given the set of limited arguments A = {p[2]},
rule r2 is A-relevant, since variable X occurring in D ap-
pears only in the mutually recursive body atom E inside ar-
gument p[1], which is not in A. Conversely, r1 is not A-
relevant, since variables X, Y appearing in A occur in the body
respectively in the non-mutually recursive atom C and inside
p[2] ∈ A of atom B. 2

We use Z to denote the set of all integers and N to denote
the set of all non-negative integers. Given two k-vectors v =
(v1, ..., vk) andw = (w1, ..., wk) in Zk, we use v·w to denote
the classical scalar product, that is, v ·w =

∑k
i=1 vi ·wi. We

also use the notation v[i] to refer to vi, for 1 ≤ i ≤ k.

Definition 2 (Term/atom size) The size of a term t, denoted
size(t), is recursively defined as follows:

size(t) =

{
x if t is a logical variable X.
m+

∑m
i=1 size(ti) if t = f(t1, ..., tm).

where x is the integer variable corresponding to X . The size
of an atom A = p(t1, ..., tn), denoted as size(A), is the n-
vector (size(t1), ..., size(tn)). 2

In the definition above, an integer variable x intuitively rep-
resents the possible sizes that the logical variable X can have
during the bottom-up evaluation. The size of a term of the
form f(t1, ..., tm) is defined by summing up the size of its
terms ti plus the arity m of f . Note that the size of every
constant is 0.

Example 4 Consider the atom A = p(a, X, f(X, g(X, Y))).
Since size(a) = 0, size(X) = x, and size(f(X, g(X, Y)))
= 2 + x + (2 + x + y) = 2x + y + 4, we have that
size(A) = (0, x, 2x+ y + 4). 2

As mentioned before, one of the features of our technique
is the capability of leveraging information about arguments
that are known to be limited. In order to enable our technique
to exploit this kind of information, several notions introduced
in the following are defined w.r.t. a set A of arguments, to
be read as the set of arguments that are known to be limited
when our criterion is applied to a given program.

Definition 3 (Argument/predicate domain) Given a pro-
gram P and a set of argumentsA, the domain of an argument
p[i] ∈ args(P) w.r.t. A, denoted DA(p[i]), is Z if p[i] ∈ A,
and N otherwise. The domain of a predicate symbol p of arity
n is DA(p) = DA(p[1])× · · · × DA(p[n]). 2

Below we define when an argument is A-size-restricted in
an SCC of a program—as shown in the following, this en-
sures that the argument is limited when the SCC is consid-
ered in isolation. Then, in Definition 6, we will define how to
combine the information coming from all the SCCs in order
to determine whether or not an argument is A-size-restricted
in the entire program.

Definition 4 (Size-restricted arguments in an SCC)
Consider a program P and a set A of limited arguments of
P . Let C be an SCC of P with pred(C) = {p1, ..., pn}. We
say that an argument pi[j] of C is A-size-restricted in C iff

1. for every rule r ∈ C such that head(r) = pi(t1, ..., tm)
the following condition holds: for every variable X oc-
curring in tj , there exists a term uk of a body atom
q(u1, ..., um′) s.t. X occurs in uk and q[k] ∈ A; or

2. there exist n vectors αh ∈ DA(ph), 1 ≤ h ≤ n, such that
for everyA-relevant rule r ∈ C there exists an atomB in
body(r) such that if pr(head(r)) = pk and pr(B) = pl,
then the following conditions hold:

(a) the constraint

αl · size(B) ≥ αk · size(head(r))

is satisfied for every non-negative value of the inte-
ger variables in it; and

(b) if pk = pi then either αi[j] 6= 0 or the constraint
αl · size(B) > αi · size(head(r))

is satisfied for every non-negative value of the inte-
ger variables in it. 2

Condition 1 of the definition above simply checks if pi[j]
is A-size-restricted because for every rule of C having pi in
the head, all variables appearing in correspondence of pi[j]
appear in the body in correspondence of a limited argument.

As for Condition 2, roughly speaking, Definition 4 says
that an argument pi[j] is A-size-restricted in an SCC if, for
every (relevant) rule, the size of part of the head is always
bounded by the size of part of a body atom, to within a con-
stant factor. When αi[j] = 0, a stricter inequality must be
satisfied for the rules having pi in the head. When other co-
efficients are 0, we are considering only parts of atoms in the
analysis—e.g., assuming that αk[1] = 0, this means that the
first term in every pk-atom is ignored in the analysis. Notice
that only the coefficients associated with limited arguments
can assume arbitrary values in Z. We notice that while the
rule-bounded criterion allows positive coefficients only, here
we allow coefficients to be zero and take negative values (this
last case applies to limited arguments only).
Example 5 Consider program P1 of Example 1, reported be-
low:

p(f(X, X), Y, Z)← p(X, g(Z), g(Y)).

Let us consider A = ∅. The program has only one SCC C
consisting of the rule above, which is A-relevant. The vector
αp = (0, 1, 1) allows us to say that all arguments are A-size-
restricted in C. In fact, when arguments p[2] and p[3] are
considered, Condition 2(a) of Definition 4 holds since

(0, 1, 1) · (x, z + 1, y + 1) ≥ (0, 1, 1) · (2x+ 2, y, z)

is satisfied for all non-negative values of the integer variables,
and Condition 2(b) is trivially satisfied because both αp[2]
and αp[3] are not 0. When argument p[1] is considered, Con-
dition 2(a) is the same as before and thus is satisfied, and
Condition 2(b) holds too since the constraint above with a
strict inequality is still satisfied for all non-negative values of
the integer variables. 2

Example 6 Consider again program P2 of Example 2, which
has only one SCC C coinciding withP2 itself. Let us consider
A = ∅. All rules are A-relevant. We now show that every
argument is A-size-restricted in C. In particular, consider the
inequalities associated with the rules of P2 when the act-
atoms are selected in the body of the first, second, and fourth
rule, and the red-atom is selected for the third rule:
αact ·(st, sym, 1+s1) ≥ αpar ·(t, 6+s1+sym+st+l)

αact ·(st, sym, 2+a+b)≥ αred ·(2+sym+t, 2+st+l, a, b)

αred ·(i, 4+s+x+l, a, 2+y+t) ≥ αred · (i, l, a, t)
αact ·(st, a, 1+s1) ≥ αpar ·(i, 6+s1+a+st+l)

By incorporating the vectors αact = (1, 1, 1), αpar = (0, 0),
αred = (0, 0, 1, 1) into the constraints above, we obtain:

st+ sym+ s1 + 1 ≥ 0

st+ sym+ a+ b+ 2 ≥ a+ b

a+ y + t+ 2 ≥ a+ t

st+ a+ s1 + 1 ≥ 0

p[1/1] p[2/1]

p[1/2] p[2/2]

b[1/1] b[2/1]

Figure 1: Extended argument graph of P3.

It is easy to see that the constraints above are satisfied for
every st, sym, s1, a, b, y, t ∈ N, and thus Condition 2(a) of
Definition 4 holds for all arguments. Moreover, since αact[1],
αact[2], αact[3], αred[3], and αred[4] are all different from 0,
we can say that arguments act[1], act[2], act[3], red[3], and
red[4] are A-size-restricted in C, as Condition 2(b) is also
satisfied. For arguments par[1], par[2], red[1], and red[2]
(whose coefficients are 0), we have to check if the constraints
associated with the rules having predicate symbol par (resp.
red) in the head, namely the first and the last one (resp. the
second and third one), are satisfied with a strict inequality. As
this is the case, Condition 2(b) holds, and arguments par[1],
par[2], red[1], and red[2] are A-size-restricted in C. 2

We now define how to determine if an argument is A-size-
restricted in the entire program. This is done by combining
the information obtained from the individual analysis of the
SCCs. We start by introducing some additional notions.

Given a program P , we assume an arbitrary but fixed num-
bering C1, ..., Cn of its SCCs. We also define ex -args(P)
as the set {p[i/j] | Cj is an SCC of P and p[i] ∈ args(Cj)}.
Each element of ex -args(P) is called an extended argument
of P . The next tool is called extended argument graph—a
directed graph keeping track of the propagation of terms be-
tween arguments. It is a refinement of the argument graph
of [Calimeri et al., 2008] and it leverages the firing graph to
perform a component-wise analysis of how terms are propa-
gated between arguments and to get rid of propagation (be-
tween arguments) that cannot really occur.

Definition 5 (Extended argument graph) The extended ar-
gument graph of a program P , denoted ∆(P), is a directed
graph whose set of nodes is ex -args(P) and where there is
an edge 〈q[j/k], p[i/l]〉 iff

• k = l and there is a rule r ∈ Ck such that (1) head(r)
is a p-atom, (2) there is a q-atom B in body(r), (3) the
i-th term of head(r) and j-th term of B have a common
variable, and (4) there is a rule r′ ∈ P such that head(r′)
and B unify; or

• k 6= l and p = q, i = j, and there are two rules r1 ∈ Ck
and r2 ∈ Cl such that pr(head(r1)) = p and 〈r1, r2〉 is
an edge of Ω(P). 2

Intuitively, an edge 〈q[j/k], p[i/l]〉 of ∆(P) means that
there can be a propagation of terms from q[j] in component
Ck to p[i] in component Cl. We say that an extended argu-
ment p[i/l] depends on an extended argument q[j/k] if there
is a path from the latter to the former in ∆(P).

Example 7 Consider again program P3 of Example 3. Fi-
gure 1 illustrates ∆(P3). 2

We are now ready to define when an argument is A-size-
restricted in a program.
Definition 6 (A-size-restricted arguments/programs) Let
P be a program and A be a set of limited arguments of P .
An argument p[i] is A-size-restricted in P if for every SCC
Cl of P such that p ∈ pred(Cl),

1. p[i] is A-size-restricted in Cl, and
2. p[i/l] depends only on extended arguments q[j/k] such

that q[j] is A-size-restricted in Ck.
We denote by RA(P) the set of all A-size-restricted argu-
ments in P . We say that P isA-size-restricted iff args(P) =
A ∪RA(P). 2

Example 8 Consider program P3 of Example 3, whose ex-
tended argument graph is shown in Figure 1 and let A =
{p[2]}. Below we show that p[1] is A-size-restricted in P3.
Since p ∈ pred(C1) and p ∈ pred(C2), we first need to check
if p[1] is A-size-restricted in C1 and C2. Since C1 = {r1}
and r1 is not A-relevant, we can easily conclude that p[1] is
A-size-restricted in C1. In the case of C2 = {r2}, where r2
is A-relevant, we consider the (only) linear constraint associ-
ated with r2, which is αp · (1 +x, y) ≥ αp · (x, 1 + y). Given
αp = (1, 1), the constraint is satisfied for all x, y ∈ N, and
since αp[1] 6= 0, then p[1] is A-size-restricted also in C2.

We now just need to check if for every SCC Cl such that
p ∈ pred(Cl), p[1/l] only depends on extended arguments
q[j/k] such that q[j] is A-size-restricted in Ck. Considering
C1, we have that p[1/1] depends only on itself (see Figure 1).
Concerning C2, we have that p[1/2] depends on itself and
p[1/1]. Since p[1] is A-size-restricted in both C1 and C2, we
can conclude that p[1] is A-size-restricted in P3.

Likewise, it can be easily verified that all other arguments
of P3 are A-size-restricted in P3 as well. 2

Theorem 1 Let P be a program and A be a set of limited
arguments of P . Every A-size-restricted argument of P is
limited. If P is A-size-restricted then it is limited.

4 Complexity and Expressivity
In this section, we provide results on the complexity and the
expressivity of the class of A-size-restricted programs.

We start by showing that checking if an argument is A-
size-restricted in an SCC is in NP .
Theorem 2 Let P be a program and A be a set of limited
arguments of P . Given an SCC C of P , checking whether an
argument of C is A-size-restricted in C is in NP .

From the theorem above, we obtain that checking whether
a program is A-size-restricted is in NP .
Theorem 3 Let P be a program and A be a set of limited
arguments of P . Checking whether (an argument of) P is
A-size-restricted (in P) is in NP .

We use AR, BP , RB, and SR to denote, respectively, the
set of all argument-restricted [Lierler and Lifschitz, 2009],
bounded [Greco et al., 2013a], rule-bounded [Calautti et al.,
2014a], and ∅-size-restricted programs. Moreover, given two
setsA andB, we useA ∦ B as a shorthand forA 6⊆ B∧B 6⊆
A. The following theorem compares our approach with well-
known terminating classes previously proposed.

Theorem 4 AR ∦ SR, RB (SR, and BP ∦ SR
Note that our technique strictly generalizes the rule-

bounded criterion even when the set of limited argumentsA is
empty. Looking at the size of parts of multiple atoms, as op-
posed to the entire size of a single atom like the rule-bounded
criterion does, allows our criterion to include more programs.

By combining our technique with the argument-restricted
or bounded criterion we can recognize more limited programs
than by using any of them alone. We use AR + SR (resp.
BP + SR) to denote the set of all A-size-restricted pro-
grams where, for each program, A is the set of its argument-
restricted (resp. bounded) arguments.
Corollary 1 AR (AR+ SR, SR (AR+ SR,

BP (BP + SR, SR (BP + SR.

5 Iterated Criterion
The size-restricted technique presented in the previous sec-
tion starts from a (possibly empty) set of limited arguments
A and gives as output a new set of limited argumentsA′. The
question is whether the technique, starting from the resulting
set of limited arguments A′, could compute a new set of lim-
ited arguments A′′ ⊃ A′. As shown by the next example, the
answer is positive and thus our technique can benefit from an
iterative application of itself.
Example 9 Consider the following program P9.

p(f(X), f(Y)) ← p(X, Y), b(X).

The program has only one SCC consisting of the rule above.
Assume that A = ∅. By choosing the first body atom of the
rule, we get the following inequality:

αp · (x, y) ≥ αp · (x+1, y+1)

The vectors αp = (0, 0) and αb = (1) satisfy the condi-
tions of Definition 4. Therefore, the resulting set of A-size-
restricted arguments is A′ = {b[1]}.

Now, considering A′ as the starting set of limited argu-
ments, we determine that p[1] is limited too, by Condition 1
of Definition 4. The new set of limited arguments is A′′ =
A′ ∪ {p[1]}. Finally, considering the vectors αp = (−1, 1)
(recall that p[1] ∈ A′′) and αb = (0), the constraint is satis-
fied for all non-negative values of its integer variables. Then,
p[2] is limited,A′′′ = A′′∪{p[2]}, and henceP9 is limited. 2

Thus, we introduce a simple operator that iteratively ap-
plies the size-restricted criterion by using at each iteration the
limited arguments derived at previous iterations.
Definition 7 Let P be a program andA be a set of limited ar-
guments of P . We define the operator ΨP (A) = A∪RA(P).
For i ≥ 1, we define the i-th iteration of ΨP as follows:

Ψ1
P

(A) = ΨP (A)
Ψi+1

P
(A) = ΨP (Ψi

P
(A)), for i > 1.

Obviously, Ψi
P

(A) ⊆ Ψi+1
P

(A) for every i ≥ 1 and since
the number of arguments of P is finite, then there always ex-
ists a finite n ≤ |args(P)| such that Ψn

P
(A) = Ψn+1

P
(A); we

denote Ψn
P

(A) as Ψ∞
P

(A).
Corollary 2 Let P be a program and A be a set of limited
arguments of P . Every argument in Ψ∞

P
(A) is limited.

6 Conclusion
In this paper, we have proposed a novel class of logic pro-
grams with function symbols whose bottom-up evaluation al-
ways terminates. Our technique identifies programs that are
not captured by any of the current approaches and can be
combined with them to recognize even more programs.

Interesting directions for future work are to plug termina-
tion criteria in the framework proposed in [Eiter et al., 2013]
and study their combination in such a framework, and analyze
the relationships between the notions of safety of [Eiter et al.,
2013] and the notions of limitedness of termination criteria.

References
[Alviano et al., 2010] M. Alviano, W. Faber, and N. Leone. Dis-

junctive ASP with functions: Decidable queries and effective
computation. TPLP, 10(4-6):497–512, 2010.

[Arts and Giesl, 2000] T. Arts and J. Giesl. Termination of term
rewriting using dependency pairs. TCS, 236(1-2):133–178, 2000.

[Baselice et al., 2009] S. Baselice, P. A. Bonatti, and G. Criscuolo.
On finitely recursive programs. TPLP, 9(2):213–238, 2009.

[Bruynooghe et al., 2007] M. Bruynooghe, M. Codish, J. P. Gal-
lagher, S. Genaim, and W. Vanhoof. Termination analysis of
logic programs through combination of type-based norms. ACM
TOPLAS, 29(2), 2007.

[Calautti et al., 2013] M. Calautti, S. Greco, and I. Trubitsyna. De-
tecting decidable classes of finitely ground logic programs with
function symbols. In PPDP, 2013.

[Calautti et al., 2014a] M. Calautti, S. Greco, C. Molinaro, and
I. Trubitsyna. Checking termination of logic programs with func-
tion symbols through linear constraints. In RuleML, pages 97–
111, 2014.

[Calautti et al., 2014b] M. Calautti, S. Greco, F. Spezzano, and
I. Trubitsyna. Checking termination of bottom-up evaluation of
logic programs with function symbols. TPLP, 2014.

[Calimeri et al., 2008] F. Calimeri, S. Cozza, G. Ianni, and
N. Leone. Computable functions in ASP: Theory and implemen-
tation. In ICLP, pages 407–424, 2008.

[Codish et al., 2005] M. Codish, V. Lagoon, and P. J. Stuckey. Test-
ing for termination with monotonicity constraints. In ICLP, pages
326–340, 2005.

[De Schreye and Decorte, 1994] D. De Schreye and S. Decorte.
Termination of logic programs: The never-ending story. JLP,
19/20:199–260, 1994.

[Eiter and Simkus, 2010] T. Eiter and M. Simkus. Fdnc: Decidable
nonmonotonic disjunctive logic programs with function symbols.
ACM TOCL, 11(2), 2010.

[Eiter et al., 2013] T. Eiter, M. Fink, T. Krennwallner, and C. Redl.
Liberal safety for answer set programs with external sources. In
AAAI, 2013.

[Endrullis et al., 2008] J. Endrullis, J. Waldmann, and H. Zantema.
Matrix interpretations for proving termination of term rewriting.
JAR, 40(2-3):195–220, 2008.

[Gebser et al., 2007] M. Gebser, T. Schaub, and S. Thiele. Gringo:
A new grounder for answer set programming. In LPNMR, pages
266–271, 2007.

[Gebser et al., 2012] M. Gebser, R. Kaminski, B. Kaufmann, and
T. Schaub. Answer Set Solving in Practice. Synthesis Lectures
on AI and ML. Morgan & Claypool Publishers, 2012.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz. The
stable model semantics for logic programming. In ICLP/SLP,
pages 1070–1080, 1988.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz. Classi-
cal negation in logic programs and disjunctive databases. NGC,
9(3/4):365–386, 1991.

[Greco et al., 2011] Sergio Greco, Francesca Spezzano, and Irina
Trubitsyna. Stratification criteria and rewriting techniques for
checking chase termination. PVLDB, 4(11):1158–1168, 2011.

[Greco et al., 2012] S. Greco, C. Molinaro, and F. Spezzano. In-
complete Data and Data Dependencies in Relational Databases.
Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2012.

[Greco et al., 2013a] S. Greco, C. Molinaro, and I. Trubitsyna.
Bounded programs: A new decidable class of logic programs
with function symbols. In IJCAI, 2013.

[Greco et al., 2013b] S. Greco, C. Molinaro, and I. Trubitsyna.
Logic programming with function symbols: Checking termi-
nation of bottom-up evaluation through program adornments.
TPLP, 13(4-5):737–752, 2013.

[Leuschel and Vidal, 2014] M. Leuschel and G. Vidal. Fast offline
partial evaluation of logic programs. I&C, 235(0):70–97, 2014.

[Lierler and Lifschitz, 2009] Y. Lierler and V. Lifschitz. One more
decidable class of finitely ground programs. In ICLP, pages 489–
493, 2009.

[Marchiori, 1996] M. Marchiori. Proving existential termination of
normal logic programs. In AMST, 1996.

[Nguyen et al., 2007] M. Thang Nguyen, J. Giesl, P. Schneider-
Kamp, and D. De Schreye. Termination analysis of logic pro-
grams based on dependency graphs. In LOPSTR, pages 8–22,
2007.

[Ohlebusch, 2001] E. Ohlebusch. Termination of logic programs:
Transformational methods revisited. AAECC, 12(1/2):73–116,
2001.

[Riguzzi and Swift, 2013] F. Riguzzi and T. Swift. Well-
definedness and efficient inference for probabilistic logic pro-
gramming under the distribution semantics. TPLP, 13(2):279–
302, 2013.

[Riguzzi and Swift, 2014] F. Riguzzi and T. Swift. Terminating
evaluation of logic programs with finite three-valued models.
ACM TOCL, 2014.

[Schneider-Kamp et al., 2009] P. Schneider-Kamp, J. Giesl,
A. Serebrenik, and R. Thiemann. Automated termination proofs
for logic programs by term rewriting. ACM TOCL, 11(1), 2009.

[Sohn and Gelder, 1991] K. Sohn and A. Van Gelder. Termination
detection in logic programs using argument sizes. In ACM PODS,
pages 216–226, 1991.

[Sternagel and Middeldorp, 2008] C. Sternagel and A. Middeldorp.
Root-labeling. In RTA, pages 336–350, 2008.

[Syrjanen, 2001] T. Syrjanen. Omega-restricted logic programs. In
LPNMR, pages 267–279, 2001.

[Verbaeten et al., 2001] S. Verbaeten, D. De Schreye, and K. F.
Sagonas. Termination proofs for logic programs with tabling.
ACM TOCL, 2(1):57–92, 2001.

[Voets and De Schreye, 2011] D. Voets and D. De Schreye. Non-
termination analysis of logic programs with integer arithmetics.
TPLP, 11(4-5):521–536, 2011.

