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Abstract. Tuple- and equality-generating dependencies have a wide
range of applications in knowledge representation and databases, includ-
ing ontological reasoning, data exchange, and data cleaning. In such set-
tings, the chase is a central tool for many reasoning tasks. Since the
chase evaluation might not terminate and it is undecidable whether
it terminates, several termination criteria have been proposed, that is,
(decidable) sufficient conditions ensuring termination. One of the main
weaknesses of current approaches is the limited analysis they perform on
equality-generating dependencies (EGDs).
In this paper, we show that an explicit analysis of EGDs can yield sig-
nificant benefits and discuss a novel approach along this line.

1 Introduction

Tuple- and equality-generating dependencies (TGDs and EGDs, for short) were
introduced for the purpose of database normalization and design, and have seen a
revival of interest in the last years, with a wide range of applications in knowledge
representation and databases (e.g., ontological reasoning, data exchange, and
data cleaning). TGDs (a.k.a. existential rules) and EGDs are the basis of several
prominent knowledge representation formalisms, such as Datalog+/– [14], and
are closely related to the Horn fragments of the OWL 2 ontology language, as
well as to Datalog with function symbols (e.g., see [26, 9, 12, 29, 28, 8, 13, 11, 30]).

In this regard, the chase [5] is a central tool for solving many reasoning
tasks. It was originally proposed for classical database problems, such as query
optimization, query containment and equivalence, dependency implication, and
database schema design [1, 4, 27, 35]. In recent years, it has seen a revival of
interest because of a wide range of applications where it plays a central role, such
as data exchange, data cleaning and repairing, data integration, and ontological
reasoning [19, 6, 3, 2, 15, 16, 21, 20, 25, 31].

The execution of the chase involves inserting tuples possibly with null values
to satisfy tuple-generating dependencies, and replacing null values with constants
or other null values to satisfy equality-generating dependencies. Specifically, the
chase consists of applying a sequence of steps, where each step enforces a de-
pendency that is not satisfied by the current instance. It might well be the case
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that multiple dependencies can be enforced and, in this case, the chase picks one
nondeterministically. Different choices lead to different sequences, some of which
might be terminating, while others might not. This aspect is illustrated in the
following example.

Example 1. Consider the set of dependencies Σ1 below:

r1 : N(x)→ ∃y E(x, y) r2 : E(x, y)→ N(y) r3 : E(x, y)→ x = y

and the database D = {N(a)}. All dependencies are satisfied by D, except for
r1. Thus, the chase enforces r1 by adding E(a, η1) to D, where η1 is a (labeled)
null value. However, this causes both r2 and r3 to be violated. Suppose the chase
chooses to enforce r2 by adding N(η1). Now r1 is not satisfied again, while r3
continues to be violated. Suppose the chase chooses to enforce r1. Then, similar
to the first step, E(η1, η2) is added to the current instance, and this causes r2 to
become violated again. It is easy to see that repeatedly enforcing first r1 and then
r2 yields an infinite chase sequence that introduces an infinite number of facts:
N(η2), E(η2, η3), N(η3), . . . .

However, by enforcing first r1 and then r3, we get a terminating chase se-
quence. Specifically, enforcing r1 adds E(a, η1) to D. Then, the application of r3
updates the null value η1 to a. At this point, no further dependency needs to be en-
forced, and the chase terminates with the resulting database being {N(a), E(a, a)}.

The importance of the chase in many applications is due to the fact that sev-
eral problems (e.g., checking query containment under dependencies, checking
implication of dependencies, computing solutions in data exchange, and com-
puting certain answers in data integration) can be solved by exhibiting a univer-
sal model, and the chase computes a universal model, when it terminates [17].
Roughy speaking, a model for a database and a set of dependencies is a finite
instance that includes the database and satisfies the dependencies. A univer-
sal model is a model that can be “mapped” to every other model—in a sense,
it represents the entire space of possible models. Universal models are slight
generalizations of universal solutions in data exchange [19], and can be used to
compute them. Moreover, the certain answers to a conjunctive query in the pres-
ence of dependencies can be computed by evaluating the query over a universal
model (rather than considering all models). Answering conjunctive queries over a
set of facts extended with existential rules is a prominent problem in ontological
reasoning. Other applications of universal models (e.g., dependency implication
and query containment under dependencies) can be found in [17].

Thus, finding a universal model is a central problem in many applications
and, once again, the chase is a tool to solve it, provided that it terminates.
As a consequence, checking whether the chase terminates becomes a central
problem, but unfortunately, it is an undecidable one [22]. To cope with this
issue, several “termination criteria” have been proposed, that is, (decidable)
sufficient conditions ensuring chase termination.

Indeed, as illustrated in Example 1 above, when we talk about chase termi-
nation, it is important to distinguish between two problems: checking whether
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all chase sequences are terminating, and checking whether there is at least one
terminating chase sequence. Most of the work in the literature has focused on
the problem of checking if all chase sequences are terminating, independently
of the considered database. However, since in many applications the ultimate
goal is to compute a universal model, checking for the existence of a terminating
chase sequence and constructing it suffices for the purpose.

Furthermore, the weaker requirement of checking for the existence of a ter-
minating chase sequence can be profitably leveraged to identify more sets of
dependencies for which we can compute a universal model. For instance, the
set of dependencies Σ1 of Example 1 might be identified by a criterion ensuring
termination of at least one chase sequence. However, every criterion requiring
all chase sequences to be terminating will not recognize Σ1, thereby providing
no information about whether we can compute a universal model.

Despite the significant body of work in this area, there are still large classes
of dependencies for which the chase is not applicable as termination cannot be
statically established. One weakness of current approaches is that the analysis
of EGDs is limited or absent. In fact, more general approaches, such as super-
weak acyclicity [36], semi-dynamic approaches MFA and MSA [24], and rewriting
approaches [32–34], were meant to guarantee termination of TGDs only. Other
approaches, such as weak acyclicity [19] and safety [37], guarantee the termina-
tion of a set of TGDs and EGDs, but do not analyze EGDs, which leads them to
impose strong conditions on TGDs. Firing relations among dependences used in
stratification-based approaches [17, 37, 33, 34] consider EGDs in a limited way.
To mitigate the aforementioned issues, an “indirect” way of dealing with EGDs
was proposed in [23, 36], where a set Σ of TGDs and EGDs is rewritten into a
set Σ′ containing only TGDs, and termination analysis is carried out on Σ′. The
aim is to “simulate” the behavior of the EGDs by means of TGDs. While these
preprocessing steps ensure soundness, i.e., if all chase sequences of Σ′ are ter-
minating then all chase sequences of Σ are terminating, they are not complete,
i.e., the implication in the opposite direction does not hold.

Treating EGDs as first-class citizens is very important, as they are among
the most popular classes of dependencies in real applications, playing a critical
role in maintaining data integrity, query optimization and indexing, and schema
design [18]. For instance, functional dependencies can be expressed by EGDs.
In very simple scenarios, such as Example 1 above, current termination crite-
ria are not able to say whether a universal model can be found. As a further
scenario, Example 2 shows a simple set of dependencies for which all chase se-
quences are terminating, but there is no terminating chase sequence for the set
of dependencies obtained from the EGD simulation.

In this paper, we show that an explicit analysis of EGDs can yield significant
benefits, and discuss a novel approach able to perform this kind of analysis.

2 Dealing with EGDs

In this section, we discuss several issues that arise in the presence of EGDs.
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TGDs TGDs and EGDs

CTobl
∀ = CTobl

∃ CTsobl
∀ = CTsobl

∃ CTobl
∀ ( CTobl

∃ CTsobl
∀ ( CTsobl

∃
CTobl

∃ ( CTsobl
∀ CTsobl

∃ ( CTstd
∀ CTobl

∃ ∦ CTsobl
∀ CTsobl

∃ ∦ CTstd
∀ CTobl

∃ ∦ CTstd
∀

CTstd
∀ ( CTstd

∃ CTcore
∀ = CTcore

∃ CTstd
∀ ( CTstd

∃ CTcore
∀ = CTcore

∃
Table 1: Relationships among the CTc

q’s classes.

We will denote by CTc
∀ (resp. CTc

∃), with c ∈ {std, obl, sobl, core}, the class of
sets of dependencies Σ such that for every database D all (resp. some) c-chase
sequences of D with Σ are terminating. Here, std, obl, sobl and core refer to
different variants of the chase, namely standard, oblivious, semi-oblivious, and
core—we refer the reader to [10, 7] for more details on them. In the rest of the
paper, given two sets C1 and C2, we write C1 ∦ C2 iff C1 6⊆ C2 and C2 6⊆ C1.

The relationships between the aforementioned classes have been studied in
the presence of TGDs only in [38]. Specifically, it has been shown that:

CTobl
∀ = CTobl

∃ ( CTsobl
∀ = CTsobl

∃ ( CTstd
∀ ( CTstd

∃ ( CTcore
∀ = CTcore

∃

In the presence of arbitrary sets of dependencies (possibly including both
TGDs and EGDs), the relationships between the classes CTc

q, where q ∈ {∀,∃}
and c ∈ {std, obl, sobl, core}, become those in Table 1, which reports the relation-
ships for the case of TGDs only and when both TGDs and EGDs are allowed.

As already mentioned, chase termination criteria proposed in the literature
focus on TGDs considering EGDs in a very limited way. An “indirect” way of
dealing with EGDs has been proposed in [23, 36]. Specifically, the analysis of a
set of dependencies Σ containing both TGDs and EGDs is performed on a set
Σ′ derived from Σ and containing only TGDs. The aim is to “simulate” the
behavior of the EGDs by means of TGDs only. The first approach of this kind,
known as natural simulation, has been proposed in [23], and further refined by
the substitution-free simulation in [36]. Below is an example showing how the
substitution-free simulation works.

Example 2. Consider the following set of dependencies Σ2:
r1 : A(x) ∧B(x)→ C(x) r4 : A(x) ∧A(y) → x = y
r2 : C(x) → ∃y A(x) ∧B(y) r5 : B(x) ∧B(y)→ x = y
r3 : C(x) → ∃y A(y) ∧B(x)

The substitution-free simulation works as follows:

1. The TGDs below (equality-axioms) are added to Σ2:

a1 : Eq(x, y) → Eq(y, x) a3.1 : A(x) → Eq(x, x)
a2 : Eq(x, y) ∧ Eq(y, z)→ Eq(x, z) a3.2 : B(x)→ Eq(x, x)

a3.3 : C(x) → Eq(x, x)

2. Every occurrence of x = y in Σ2 is replaced with Eq(x, y). In our case, this
affects r4 and r5 only, which are replaced with:

r′4 : A(x) ∧A(y)→ Eq(x, y) r′5 : B(x) ∧B(y)→ Eq(x, y)
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3. Dependency r1, which contains multiple occurrences of x in the body, is (non-
deterministically) replaced with one of the following two dependencies, where
one of the two occurrences of x is replaced with x2, and the atom Eq(x, x2)
is added to the body:

r′1 : A(x2) ∧B(x) ∧ Eq(x, x2)→ C(x)

r′′1 : A(x) ∧B(x2) ∧ Eq(x, x2)→ C(x)

Notice that the only dependencies that remain unchanged are r2 and r3 and
that no EGDs occur in the resulting set of dependencies.

Although somehow left implicit in [23, 36], the natural simulation and the
substitution-free simulation ensure the desirable soundness property: if Σ′ ∈
CTc

∀, then Σ ∈ CTc
∀, for c ∈ {obl, sobl, std}. The natural question now is whether

these simulations are also complete, that is, if the implication in the opposite
direction holds. The answer is negative for both approaches.

For example, the set of dependencies Σ2 of Example 2 above belongs to CTc
∀

(and thus belongs to CTc
∃ too), but any of its substitution-free simulations is not

even in CTc
∃, for every c ∈ {obl, sobl, std}. The problem is that the simulation

of EGDs by means of TGDs is not able to fully capture the specific behavior
of EGDs, which replace null values (with constants and other null values). This
aspect is not faithfully modeled by storing the information that a null value is
equal to a constant or to another null value.

Dealing with EGDs needs some care. In some cases the presence of EGDs
allows us to have a terminating c-chase sequence when the set consisting only of
the TGDs does not have one; at the same time, the opposite case can occur, that
is, in the presence of EGDs there is no terminating c-chase sequence while the set
consisting only of the TGDs does have one, where c can be one of {obl, sobl, std}.
The following two examples show such cases.

Example 3. Consider the set of dependencies Σ1 of Example 1 and the database
D = {N(a)}. There is no terminating c-chase sequence of D1 with the set of
TGDs Σ′

1 = {r1, r2}, for every c ∈ {obl, sobl, std}. In fact, it is easy to see
that an infinite number of facts is introduced: E(a, η1), N(η1), E(η1, η2), . . . .
However, the addition of the EGD r3 allows us to have a terminating c-chase
sequence, obtained by enforcing first r1 and then r3, and whose result is the
universal model {N(a), E(a, a)}.

Example 4. Consider the set of dependencies Σ4 below:

r1 : N(x)→ ∃y ∃z E(x, y, z)
r2 : E(x, y, y)→ N(y)
r3 : E(x, y, z)→ y = z

For every database D, every c-chase sequence of D with the set of TGDs Σ′
4 =

{r1, r2} is terminating, for every c ∈ {obl, sobl, std}. On the other hand, there is
no terminating c-chase sequence of D = {N(a)} with Σ4, as an infinite number
of facts is introduced: E(a, η1, η1), N(η1), E(η1, η2, η2), N(η2), ....
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3 A Rewriting Approach

In this section, we illustrate a decidable sufficient condition for a set of dependen-
cies to be in CTstd

∃ . It is an algorithm which takes as input a set of dependencies,
and gives as output a set of adorned dependencies and a boolean value. The aim
of the algorithm is twofold: (i) it defines a termination criterion on its own—
on the basis of the boolean value returned by the algorithm; and (ii) it can
be combined with other termination criteria to enhance them, in that (strictly)
more sets of dependencies in CTstd

∃ can be identified by using our algorithm in
conjunction with a termination criterion—this is achieved by analyzing the set
of adorned dependencies returned by the algorithm.

Thus, the input is a set of dependencies Σ, while the output is a set of
adorned dependencies Σµ along with a boolean value Acyc. More specifically,
if Acyc is false, then a form of cyclicity has been detected; otherwise, for every
database D, there is a terminating standard chase sequence of D with Σ. As
for the second aim of the algorithm, the adorned set of dependencies Σµ given
as output can be used as follows: a sufficient condition for checking membership
in CTstd

∃ is applied to Σµ rather than Σ. If Σµ satisfies the condition, then the
original set of dependencies Σ is in CTstd

∃ .
The basic idea of the algorithm is to produce adorned dependencies from the

original ones by keeping track of what facts can be derived by a chase execu-
tion and how terms are derived. When adorning dependencies, the algorithm’s
strategy is to adorn first full dependencies, and to adorn existentially quantified
dependencies only when no further full dependency can be adorned. This is iter-
ated as long as new adorned dependencies can be derived. EGDs are leveraged
to see if free symbols can be changed.

The algorithm makes use of adornment definitions, which are expressions
of the form fi = frz (α), whose intuitive meaning is that z is an existentially
quantified variable in the head of the TGD r and α is an adornment for the
body of r. Roughly speaking, adornment definitions are some sort of provenance
information used to keep track of the “history” of a null.

The following example gives the basic idea of how the technique works.

Example 5. Consider the set of dependencies Σ1 of Example 1. Initially, the fol-
lowing two adorned dependencies, mapping unadorned atoms to atoms adorned
with strings of b’s, are added to Σµ

1 :

s1 : N(x)→ N b(x) s2 : E(x, y)→ Ebb(x, y)

The algorithm then proceeds by adorning full dependencies and adds the fol-
lowing adorned dependencies to Σµ

1 :

s3 : Ebb(x, y)→ x = y s4 : Ebb(x, y)→ N b(x)

Next, the existentially quantified dependency (namely, r1) is adorned and the
following adorned dependency is added to Σµ

1 :

s5 : N b(x)→ ∃y Ebf1(x, y)
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Moreover, the following adornment definition is derived f1 = fr1y (b). After that,
the algorithm starts considering full dependencies again. By adorning the EGD
r3, the following adorned dependency is obtained, which is added to Σµ

1 :

s6 : Ebf1(x, y)→ x = y

The adorned EGD s6 is analyzed by the algorithm, which replaces f1 with b in
Σµ

1 . The resulting set of adorned dependencies is Σµ
1 = {s1, s2, s3, s4, s′5}, where

s′5 is derived from s5 by replacing f1 with b, that is, s′5 : N b(x)→ ∃y Ebb(x, y).
At this point, no further dependencies can be adorned and the algorithm ter-

minates by returning the value Acyc = true along with Σµ
1 .
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