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Automatically selecting inference algorithms
for discrete energy minimisation

Paul Henderson & Vittorio Ferrari

School of Informatics, University of Edinburgh
{p.m.henderson,vittorio.ferrari}@ed.ac.uk

Abstract. Minimisation of discrete energies defined over factors is an
important problem in computer vision, and a vast number of MAP in-
ference algorithms have been proposed. Different inference algorithms
perform better on factor graph models (GMs) from different underlying
problem classes, and in general it is difficult to know which algorithm will
yield the lowest energy for a given GM. To mitigate this difficulty, sur-
vey papers [1–3] advise the practitioner on what algorithms perform well
on what classes of models. We take the next step forward, and present
a technique to automatically select the best inference algorithm for an
input GM. We validate our method experimentally on an extended ver-
sion of the OpenGM2 benchmark [3], containing a diverse set of vision
problems. On average, our method selects an inference algorithm yielding
labellings with 96% of variables the same as the best available algorithm.

1 Introduction

Minimisation of discrete energies defined over factors is an important problem
in computer vision and other fields such as bioinformatics, with many algo-
rithms proposed in the literature to solve such problems [3]. These models arise
from many different underlying problem classes; in vision, typical examples are
stereo matching, semantic segmentation, and texture reconstruction, each of
which yields models with very different characteristics, making different choices
of minimisation algorithm preferable.

We consider factor graph models (GMs) defined by sets V and F of variables
and factors respectively. Each variable takes values in some discrete label-space,
and each factor is a real-valued function on some subset of V , its clique, yielding
an additive contribution to a global energy. In this paper, we focus on algorithms
to find the labelling of variables that minimises this global energy, the so-called
MAP inference problem. Different problem classes give rise to problem instances
with different characteristics, such as size of cliques and number of variables,
affecting which inference algorithms are best suited to them.

The space of published inference algorithms is vast, with methods ranging
from highly specialised to very general. For example, message passing [4] is widely
applicable, but takes exponential time for large cliques, and may not converge.
Dual-space variants such as TRW-S [5] do guarantee convergence, but not neces-
sarily to a global optimum. α-expansion [6] and graph-cuts [7] are better suited



2 P. Henderson, V. Ferrari

AD3
α-exp.

LBP
TRW-S

tra
in

in
g

au
to

m
at

ic
se

le
ct

io
n

>300 GMs

unseen
GM

extract
features

measure
algorithms

train
classifiers

extract
features

run classifiers to
select algorithm

))1.23
3.4

5.65
7.012

0

“ICM good & fastest
“AD3 lowest energy”

Φ

?

? ?

?

?
?

Fig. 1: Our pipeline for automatic algorithm selection

to models with dense connectivity, but require factors to take certain restricted
forms, while QPBO [8] only works for binary models and may leave some vari-
ables unlabelled. Algorithms solving the Wolfe dual [9–11] such as [12, 13] are
applicable to models with arbitrary factors and labels, but existing implemen-
tations for this generic setting tend to run more slowly.

Thus, when developing a new model, it may be difficult to decide what algo-
rithm to use for inference. Selecting a good algorithm for a given model requires
extensive expertise about the landscape of existing algorithms and typically in-
volves understanding the operational details of many of them. Moreover, even for
an expert who can choose which algorithm is best overall on a particular problem
class, it may not be clear which is best for a particular instance—certain prob-
lem classes are heterogeneous enough that different instances within them may
be best solved by different algorithms (sec. 3). An alternative solution would be
to run many algorithms on each input model and see which one performs best
empirically. However, this would be computationally very expensive.

Recently studies appeared that evaluate a number of algorithms on vari-
ous problems, comparing their performance [3, 2, 14, 1, 15]. These are intended
to provide a ‘field guide’ for the practitioner, suggesting which techniques are
suited for which models. In this paper, we take the next step forward and pro-
pose a technique to automatically select which inference algorithm to run on an
input problem instance (sec. 4). We do so without requiring the user to have any
knowledge of the applicability of different inference methods, and without the
computational expense of running many algorithms. Thus, our method is par-
ticularly suited for the vision practitioner with limited knowledge of inference,
but who wishes to apply it to real-world problems.

Our method uses features extracted from the problem instance itself, to select
inference algorithms according to two criteria relevant for the practitioner: (1)
the fastest algorithm reaching the lowest energy for that instance; or (2) the
fastest algorithm delivering a very similar labelling to the lowest energy one
(fig. 1). The features are designed to capture characteristics of the instance
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that affect algorithm applicability or performance, such as the clique sizes and
connectivity structure (sec. 4.1). We train our selection models without human
supervision, based on the results of running many algorithms over a large dataset
of training problem instances.

We perform experiments (sec. 5) on an extended version of the OpenGM2
benchmark [3], containing 344 problem instances drawn from 32 diverse classes
(sec. 2), and consider a pool of 15 inference algorithms drawn from the most
prominent approaches (sec. 3). The results show that on 69% of problem in-
stances our method selects the best algorithm. On average, the labels of 96%
of variables match that returned by the algorithm achieving the lowest energy.
Our automatic selector achieves these results over 88× faster than the obvious
alternative of running all algorithms and retaining the best solution.

1.1 Related work

MAP inference. MAP inference algorithms can be split into several broad cat-
egories. Graph-cuts [7] is very efficient, but restricted to pairwise binary GMs
with submodular factors. It can be extended to more general models, such as
by the move-making methods α-expansion and αβ-swap [6], wherein a subset
of variables change label at each iteration, or by transformations introducing
auxiliary variables [16–18]. Alternatively, inference is naturally formulated as an
integer linear program, which can be solved directly and optimally using off-
the-shelf polyhedral solvers for small problems [3]. It can also be relaxed to a
non-integer linear program (LP), which can be solved faster. However, it requires
rounding the solution, which does not always yield the global optimum of the
original problem. Message-passing algorithms [4, 19] have each variable/factor
iteratively send to its neighbours messages encoding its current belief about
each neighbour’s min-marginals. Tree-reweighted methods [5, 20] use a message-
passing formulation, but actually solve a Lagrangian dual of the LP, and can pro-
vide a certificate of optimality where relevant. Other dual-decomposition meth-
ods [12, 13, 21] directly solve the Wolfe dual [10, 11] to the LP, but by iteratively
finding the MAP state of each clique (or other tractable subgraphs) instead of
passing messages. Our focus in this paper is not to introduce another inference
algorithm, but to consider the meta-problem of learning to select what existing
inference algorithm to apply to an input model; as such, we use many of the
above algorithms in our framework (sec. 3).

Inferning. Our work is a form of inferning [22], as it considers interactions
between inference and learning. A few such methods use learning to guide the
inference process. Unlike the hard-wired algorithms mentioned above, these ap-
proaches learn to adapt to the characteristics of a particular problem class.
Some operate by pruning the model during inference, by learning classifiers to
remove labels from some variables [23, 24], or to remove certain factors from
the model [25, 26]. Others learn an optimal sequence of operations to perform
during message-passing inference [27]. Our work operates at a higher level than
these approaches. Instead of incorporating learning into an algorithm to allow
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adaptation to a problem class, we instead learn to predict which of a fixed set
of hard-wired algorithms is best to apply to a given problem instance.

Surveys on inference. The survey papers [1, 2, 14, 15, 3] evaluate a number
of algorithms on various problems, comparing their performance. [1] focuses on
stereo matching and considers highly-connected grid models defined on pixels
with unary and pairwise factors only. It evaluates three inference algorithms
(graph-cuts, TRW-S, and belief propagation). [2] considers a wider selection of
problems—stereo matching, image reconstruction, photomontaging, and binary
segmentation—but with 4-connectivity only, and applies a wider range of algo-
rithms, adding ICM and α-expansion to the above. Recently, [14, 3] substantially
widened the scope of such analysis, by considering also models with higher-order
potentials, regular graphs with denser connectivity, models based on superpix-
els with smaller number of variables, and partitioning problems without unary
terms. They compare the performance of many different types of algorithms on
these models, including some specialised to particular problem classes. These
surveys help to understand the space of existing algorithms and provide a guide
to which algorithms are suited for which models. Our work takes a natural step
forward, with a technique to automatically select the best algorithm to run on
an input problem instance.

Automatic algorithm selection. Automatic algorithm selection was pioneered
by [28], which considered algorithms for quadrature and process scheduling. More
recently, machine learning techniques have been used to select algorithms for
constraint-satisfaction [29], and other combinatorial search problems [30]. How-
ever, none of these works consider selecting MAP inference algorithms.

2 Dataset of models

OpenGM2 [3]. The OpenGM2 dataset contains GMs drawn from 28 problem
classes, including pairwise and higher-order models from computer vision and
bioinformatics; it is the largest dataset of GMs currently available. We briefly
summarize here the main kinds of problems and refer to [3] for details.

– low-level vision problems such as stereo matching [2], inpainting [31, 32],
and montaging [2]. These are all locally-connected graphs with variables
corresponding to pixels, and with pairwise factors only; label counts vary
widely between classes, from 2–256.

– small semantic segmentation problems with up to eight classes, with labels
corresponding to surface types [33] and geometric descriptions [34]. These
are irregular, sparse graphs over superpixels; [33] uses pairwise factors only,
while [34] has general third-order terms.

– partitioning (unsupervised segmentation by clustering) based on patch sim-
ilarity, operating on superpixels and with as many labels as variables, in
both 2D [35–37] and 3D [38]. Potts or generalised Potts factors are used in
all cases; [35] has very large cliques with up to 300 variables, while the other
classes are pairwise or third-order, just one class having dense connectivity.
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msrc-segmentation joint-localisation line-fitting texture-restoration

|V | = 275 |V | = 81 |V | = 661 |V | = 1900

L = 21 L = 100 L = 51 L = 2

O = 2 O = 2 O = 2 O = 49

Fig. 2: Our four added GM classes. Variable count |V | is a mean over all instances;
L is mean label count, and order O is largest factor clique size

– two problem classes from bioinformatics: protein side-chain prediction [39],
and protein folding [40]; both are defined over irregular graphs, with [39]
having only two labels but general third-order factors, while [40] has up to
503 labels and dense pairwise connectivity.

Below we complement the OpenGM2 dataset with four additional, interesting
problem classes which arise in modern computer vision applications (fig. 2).

Semantic segmentation with context [23]. Semantic segmentation on the
MSRC-21 dataset [41] with relative position factors. Variables correspond to
superpixels and labels to 21 object/background classes (e.g. car, road, sky).
Unary factors are given by appearance classifiers on features of a superpixel,
while pairwise factors encode relative location in the image, to favour labellings
showing classes in the expected spatial relation to one another (e.g. sky above
road). The model is fully connected, i.e. there is a pairwise factor between every
two superpixels in the image.

Joint localisation [23]. Joint object localisation across images on the PAS-
CAL VOC 2007 dataset [42]. The set of images containing a certain object class
form a problem instance. Variables correspond to images and labels to object
proposals [43] in the images. Unary factors are given by the objectness probabil-
ity of a proposal [43], while pairwise factors measure the appearance similarity
between two proposals in different images. Inference on this model will select one
proposal per image, so that they are likely to contain objects and to be visually
similar over the images.

Line fitting [44]. Fitting of multiple lines to a set of points in R2. This an
alternative to RANSAC [45] for fitting an unknown number of geometric models
to a dataset. Variables correspond to points and labels to candidate lines from a
fixed pool (sampled from the point set in a preprocessing stage). Unary factors
favour labelling a point with a nearby line, while pairwise factors promote local
smoothness of the labelling (i.e. nearby points should take the same label).
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Texture restoration [46]. Binary texture restoration with pattern potentials.
Given a binary image corrupted by noise, the task is to reconstruct the original
noise-free image, while preserving the underlying texture regularity. Variables
correspond to pixels and labels to ‘on’ or ‘off’. Unary factors penalise deviations
from the input noisy image, while pairwise factors prefer pixels at certain offsets
taking certain pairs of values (learned on a training image showing a noise-free
texture). Higher-order factors reward image patches for taking joint labellings
which occur frequently in the training image (patterns). The pairwise and higher-
order factors capture low and high order texture properties, respectively.

Data diversity. From each problem class we take all instances up to a max-
imum of 20. This results in a diverse dataset of 344 problem instances drawn
from the 32 classes; 224 of these instances are pairwise and 120 higher-order. 21
of the problem classes have small label-spaces (< 20 labels), while the remainder
vary greatly up to a maximum of 17074. Variable counts similarly cover a wide
range, from 19 to 2356620, with a median of 10148. Amongst the higher-order
problems, 58% of instances have arbitrary dense factor tables, while the remain-
der have Potts potentials [6] or generalised versions thereof [47, 48]. The problem
classes also differ greatly in the degrees of homogeneity of their instances. For
example, instances in the line-fitting class vary by an order of magnitude in vari-
able and label counts, whereas all instances in the inclusion class have identical
characteristics but for the factor energies themselves.

3 Inference algorithms and performance

Inference algorithms. A vast number of MAP inference algorithms have been
proposed in the literature, with differing approaches, degrees of generality, and
performance characteristics. We selected 15 to use in our experiments (table 1),
including representative algorithms from most prominent approaches, e.g. move-
making, message-passing, dual-decomposition, combinatorial, etc. This covers
many of the most commonly used algorithms in computer vision, such as TRW-
S [5], QPBO [8], and α-expansion [6]. Note however that we do not aim to form
an exhaustive pool of all good algorithms; our automated selection method is
agnostic to the pool of algorithms it is trained to select from, and explicitly
avoids making prior assumptions on their applicability.

We also include a simple method, dubbed unary-modes (UM), which labels
each variable by minimizing its unary factors only; this should perform poorly
on genuinely hard structured prediction problems, where the non-unary factors
have a decisive impact on the MAP labelling.

Protocol for inference. We used the original authors’ implementation of each
algorithm where available, and the implementations in [3] otherwise. Every al-
gorithm was run on every problem instance in our dataset, with limits of 60
minutes CPU time and 4GB RAM imposed for inference on one instance. For
each successful run, we recorded the MAP labelling and time taken.

Many of the algorithms have free parameters that must be defined by the user.
While it was not practical to evaluate every possible combination of parameters,
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Table 1: Algorithms used in this study, including the GM orders they are applicable
to (pw = pairwise), number of parameter settings included if more than one (#p), full
name or description, and reference to the original work

alias order #p name / description ref.

A* all implicitly convert to shortest-path problem and apply A* [49]

AD3 all
alternating directions dual decomposition with branch and
bound

[13]

α-exp pw alpha-expansion [6]

BPS all 4 sequential loopy belief propagation, implementation of [3] [4]

DDS all 2 dual decomposition with subgradient descent [12]

FPD pw 3 fast primal/dual (FastPD) [50]

ICM all iterated conditional modes [51]

ILP all solve as integer programming problem with Gurobi [3]

KL pw Kernighan-Lin method for 2nd order partitioning problems [52]

LBP all 4 parallel loopy belief propagation, implementation of [3] [4]

LP all solve linear programming relaxation with Gurobi [3]

MPLP all
max-product linear programming with cutting plane relax-
ation tightening

[21, 53]

QPBO pw quadratic pseudo-boolean optimisation [8]

TRW-S pw 3 sequential tree-reweighted message-passing [5]

UM all take lowest-energy label according to unary factors only -

for several of the algorithms we included multiple parameterisations where this
affects their results significantly. For example, we ran four versions of loopy belief
propagation, with damping set to 0.0 and 0.75, and maximum iteration counts of
50 and 250. In such cases, the different parameterisations are combined to create
a meta-algorithm, which simulates the user running every parameterisation, then
taking the results from that yielding lowest energy on the problem instance.

Several incompatible combinations of algorithms and GMs were included.
When possible, we still ran the algorithm to obtain an approximate solution:
– higher-order factors are omitted when passing GMs to pairwise algorithms.

However, when evaluating the algorithm’s performance, the energy of the
output labelling is still computed on the full model including all factors.

– non-metric pairwise factors passed to α-expansion are handled as if they
were metric, sacrificing the usual correctness and optimality guarantees [6].

When it was not possible to run the algorithm, we counted this as a failure:
– QPBO aborts when presented with a GM having non-binary variables.
– FastPD aborts when presented with a GM whose pairwise factors are not all

proportional to some uniform distance function on labels.
– Kernighan-Lin aborts when presented with a GM having factors that are

not pairwise Potts

Performance measures. We measured three aspects of the performance of
each algorithm:
– completes: whether the algorithm runs to completion, i.e. returns a solution

within 60 minutes, regardless of the energy of that solution.
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Table 2: Aggregate performance of each inference algorithm on our dataset; mean
time is over instances for which the algorithm successfully returns a result

% instances for which...
mean time /scompletes best-&-fastest good-&-fastest

A* 4 0 0 0.1

AD3 52 7 1 390.2

α-exp 98 5 7 23.4

BPS 72 4 2 158.3

DDS 80 0 0 296.6

FPD 31 9 22 7.2

ILP 48 1 0 96.3

LP 52 2 1 76.8

ICM 100 30 31 60.7

KL 12 10 10 142.2

LBP 73 6 4 193.5

MPLP 56 1 1 1116.3

QPBO 12 0 2 0.1

TRW-S 94 19 10 236.4

UM 100 0 3 0.1

– best-and-fastest: whether the algorithm reaches the lowest energy among all
algorithms, faster than any other one that does so. This is relevant for a
user requiring the solution with lowest possible energy, even at high compu-
tational cost.

– good-and-fastest: whether the algorithm is the fastest to reach a solution
with 98% of variables matching the lowest energy labelling. This is highly
relevant in practice, as minor deviations from that labelling may not matter
to the user, while achieving it would require a significantly slower algorithm.

Table 2 shows the performance of the algorithms with respect to these measures.

Algorithm diversity. We see that the distributions of both best-and-fastest
and good-and-fastest algorithms over instances have high entropy—many differ-
ent algorithms are best-and-fastest or good-and-fastest for a significant fraction
of GMs. 11 of the 15 algorithms are able to return a solution for at least one
instance on more than half of the problem classes; the other four are particu-
larly restricted, such as QPBO (which only operates on binary problems). All
the algorithms other than A* and DDS are the best-and-fastest for at least one
problem instance. TRW-S and FastPD perform particularly well on pairwise
problems, with TRW-S generally reaching slightly lower energies, but FastPD
being much quicker. Kernighan-Lin outperforms all algorithms on pairwise par-
titioning problems. AD3 gives low energies for high-order problems, but often
takes longer than other algorithms. Only ICM and unary-modes are able to
return a solution for all problem instances. Although they are fast and widely-
applicable, these näıve methods are unable to return the best solution in the
majority of cases. All these observations show how our goal of learning to select
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the best inferencer is much harder than simply picking any algorithm that runs
to completion.

4 Learning to select an algorithm

We now consider how to automatically select the best MAP inference algorithm
for an input problem instance. This is the main contribution of this paper. We
define two tasks: (1) predicting the best-and-fastest algorithm; and (2) predict-
ing the good-and-fastest algorithm. To address these tasks, we design selection
models that take a GM as input, and select an algorithm as output (sec. 4.2).
The selection models operate on features extracted from the GMs themselves
(sec. 4.1). This is different from the typical approach in computer vision of ex-
tracting features from images and using these to build a GM.

4.1 GM features

We extract the following three groups of features from each problem instance
(fig. 3).

Instance size. The number of variables, |V |, and of factors, |F |, are used to
indicate the overall size of the problem instance, hence whether slower algorithms
are likely to be applicable. We also include the minimum, maximum and mean
label count over all variables. See fig. 3b.

Structural features. We extract more sophisticated features based on the
model structure, i.e. which do not depend on the factor values themselves.
Firstly, we take a histogram and statistics (minimum, maximum, mean) of both:
– variable orders (i.e. for each variable, number of connected factors, fig. 3c)
– factor orders (i.e. for each factor, number of variables in its clique, fig. 3c)

Secondly, we measure factor densities—for each factor order M ≥ 2, the num-

ber of factors of order M divided by the binomial coefficient
(|V |
M

)
= |V |!

M !(|V |−M)! .

Intuitively, this is the number of possible M -cliques that actually have an associ-
ated factor. In fig. 3, this is 1 for third order, as there is only one possible triplet,
but 2/3 for second order, as only two of the possible three pairs of variables have
a pairwise factor: (x, y) and (x, z) but not (z, y)

Energy features. Our final group of features depend on the values of the
factors themselves, e.g. the blue values in fig. 3a. To determine the influence of
different orders of factors, we compute means and deviations over values they
take, defined as follows:
– for each factor f ∈ F , let µf be the mean and σf the standard deviation of

all unique values taken by f
– then, for each factor order M ≥ 2, compute for factors FM of that order, the

ratio of each of the following to the same quantity for M = 1:

(i)
∑

f∈FM
µf (ii)

∑
f∈FM

µf/|FM | (iii)
∑

f∈FM
σf/|FM |.

Intuitively, these capture how much influence each order of factor has on the final
energy, i.e. how much changing the labelling will change the values of factors
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Fig. 3: Example GM structure (a) and associated features (b-e). Circles correspond to
variables, and squares to factors; the label space of each variable is shown as purple
dashes. Part of the value table for the third-order factor (blue) is also shown

of each order. On pairwise GMs, a large influence of the pairwise (as opposed
to unary) factors makes inference harder; on higher-order GMs, pairwise algo-
rithms should perform relatively well only when the influence of higher-order
factors is small. We also count the fraction of pairwise factors f having each of
the following characteristics for all labels a, b, c:

(i) f(a, b) = 0 iff a = b (ii) f(a, b) ≥ 0

(iii) f(a, b) = f(b, a) (iv) f(a, b) + f(b, c) ≥ f(a, c).

Together, these are the conditions for a factor to be metric; without (iv), to be
semi-metric—respectively requirements for the α-expansion and αβ-swap algo-
rithms to fulfill their correctness guarantees [6]. Finally, we measure the fraction
of pairwise factors which are submodular; in general pairwise submodular prob-
lems are easier to solve by LP-based methods, as their LP relaxation is tight.

4.2 Algorithm selection models and their training

Selection models. We propose two algorithm selection models. Each is a 1-of-
N classifier implemented as a random forest [54], taking the features described
in sec. 4.1 as input. Model BF is trained to predict the best-and-fastest algo-
rithm; model GF is trained to predict the good-and-fastest algorithm. The ran-
dom forests are trained recursively by selecting the best split from a randomly-
generated pool at each step, using information gain (i.e. entropy decrease) as
the criterion, and with outputs modelled by categorical distributions [54].

Data. We train the selection models on a subset of our dataset (sec. 2). A train-
ing sample consists of features extracted from a problem instance and a target
output label denoting which algorithm works best on it. It is important to note
that these training labels are automatically generated by running all algorithms
on the training instances, as in sec. 3. No human annotation is required. At
test time, we run the selection models on a separate subset of the dataset. The
evaluation compares the algorithm selected by our model to the one known to
perform best (sec. 5). Again, this test label is produced automatically.
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5 Experiments

Tasks and baselines. We report results on the two tasks defined in sec. 4: (i)
predicting the good-and-fastest inference algorithm for an input GM; and (ii)
predicting the best-and-fastest algorithm. Task (i) is addressed by the selection
model GF, and task (ii) by model BF (sec. 4.2). For both tasks, we also anal-
yse the performance of two baseline methods that select an algorithm without
looking at features of the input instance. The first baseline NB always selects
the algorithm that is most often best over the full training set. This mimics the
behaviour of a näıve user who simply chooses one commonly good algorithm to
use. For the second, stronger baseline SB, we assign each of the problem classes
to one of three superclasses:
1. pairwise—many algorithms are designed for pairwise problems only;
2. higher-order—there exist algorithms designed explicitly to handle higher-

order factors, but which may be slow for pairwise instances;
3. partitioning—these are a special class which is hard for general algorithms

(due to having a large label space, and being invariant to label permutations)
but certain methods can exploit this structure to solve them efficiently; most
partitioning problems in our dataset are pairwise, but some are third-order.

Then, at test time, each problem instance is assigned the algorithm that is
most often best for training problems of its superclass. This strong baseline
mimics the behaviour of a user with good working knowledge of inference—
enough to recognise how her problem fits in these superclasses, and to know
which algorithm will be best for each.

Experimental setup. We select half the problem instances at random to train
on, and the remainder are used for testing. As discussed in sec. 3, the ground-
truth labels marking which inference algorithms perform best on a problem
instance are obtained automatically by running all algorithms on all instances.
No human annotation is necessary for training or testing.

When training and evaluating selection models, the underlying problem classes
are always treated as unknown—they are not provided as input data. We want
the selection models to freely learn the optimal association between GM features
and good algorithms to run. The GM features we propose are designed to enable
the selection models to reason upon various properties of GMs, which can be used
to characterize problem classes (e.g. connectivity structure and distributions of
energy values in the factors). So, we might expect the selection models to learn
at least some of the problem class structures, given that this often correlates
with the best algorithms (sec. 3).

Evaluation measures. Our algorithm selection models are evaluated on the
test set with the following measures (table 3):
– percentage of instances with the correct algorithm (best-and-fastest or good-

and-fastest) selected. This is the measure for which we trained our selection
models.

– mean (over instances) of fraction of variables matching the labelling returned
by the best-and-fastest algorithm. This is particularly relevant in practice,
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Table 3: Performance of our model GF and baselines NB and SB for selecting the
good-and-fastest algorithm (first three columns), and performance of our model FG
and baselines for selecting the best-and-fastest algorithm (last three columns).

good-and-fastest best-and-fastest
algorithm selected by... GF NB SB BF NB SB

% instances correctly classified 69 31 28 62 30 36

mean % matching variables 96.4 75.3 87.5 97.1 75.4 95.6

Table 4: Mean times and speed-ups from using our method, versus exhaustively ap-
plying all algorithms. matching var’s is fraction of variables whose labels match true
best result; speed-up is ratio of time to that for exhaustive testing

mean... time /s speed-up matching var’s

exhaustive 13046.8 1.0× 100%

good-and-fastest 221.3 88.1× 96.4%

best-and-fastest 312.5 46.8× 97.1%

as users typically care about the quality of the labelling output, by an al-
gorithm, especially in terms of how close it is to the lowest-energy labelling
that could have been returned.

6 Analysis

Predicting the good-and-fastest algorithm. Model GF correctly chooses
the good-and-fastest algorithm for 69% of instances, with 96.4% of variables
taking the same label as in the true best labelling on average. This compares
favourably to the näıve baseline NB, which correctly selects only on 31% of the
instances and returns labellings that are considerably worse (75.3% correctly-
labelled variables on average). Indeed, our model also substantially outperforms
the strong baseline, which only achieves an average of 87.5% of correctly-labelled
variables.

These results show that our selection model successfully generalises to new
problem instances not seen during training. It is able to select an algorithm
much better than even the strong baseline of a user who knows which algorithm
performs best for similar problems in the training set.

Predicting the best-and-fastest algorithm. Model BF correctly selects the
best-and-fastest algorithm on 62% of instances, exceeding the näıve baseline
(32%). This results in 97.1% of variables taking the same label as in the true
lowest-energy solution, greatly exceeding the näıve baseline of 75.4%. Our model
performs well against even the strong baseline, which only classifies 36% of in-
stances correctly and has a slightly lower fraction of correct variables at 95.6%.

Efficiency. As noted in sec. 1, a simple alternative to our selection method
is to run every algorithm on the test problem instance, and select the lowest-
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Table 5: Confusion matrix showing true (rows) and predicted (columns) good-and-
fastest algorithms for pairwise problems. The table only includes those algorithms that
are the true good-and-fastest for at least one problem instance.

AD3 α-exp BPS FPD ICM KL LBP QPBO TRW-S UM

AD3 0 0 0 0 2 0 0 0 0 0

α-exp 0 5 1 1 0 0 0 0 2 0

BPS 0 0 1 0 2 0 1 0 1 0

FPD 0 0 1 19 0 0 0 0 0 0

ICM 0 0 0 0 16 1 0 0 3 0

KL 0 0 0 0 0 24 0 0 0 0

LBP 0 0 0 0 3 0 4 0 0 1

QPBO 0 0 3 0 0 0 0 3 0 0

TRW-S 0 1 0 6 1 0 1 0 6 0

UM 0 1 0 1 0 0 0 1 0 0

energy solution. However, this is computationally very expensive. To evaluate
the speed-up made by our method, for each problem instance we also measured
(i) the total time to run every inference algorithm; (ii) the time to predict the
best-and-fastest algorithm with model BF then run it; and, (iii) the time to
predict the good-and-fastest algorithm with model GF then run it. As we see
in table 4, our method results in an average speed-up of 46.8× using model
BF, and 88.1× using model GF, with 97.1% and 96.4% of variables correctly
labelled respectively. Thus, automated selection achieves labellings very similar
to running every algorithm, but at a small fraction the computational expense.
Model GF yields a significantly faster-running algorithm on average than model
BF, with only a small drop (< 1%) in variables correctly labelled.

Algorithms selected by the strong baseline. As described in sec. 5, our
strong baseline chooses the algorithm that is most often best-and-fastest or good-
and-fastest over the training set, for problems in the same superclass as the test
instance. For predicting the best-and-fastest algorithm, Kernighan-Lin is selected
for partitioning problems, TRW-S for other pairwise instances, and AD3 for other
(higher order) instances. However, for the good-and-fastest algorithm, FastPD
is selected instead of TRW-S for pairwise instances, and ICM for higher order
instances, indicating that these often label 98% or more of variables correctly,
while being faster to run.

Algorithms selected by our method. At a coarse level, for the task of se-
lecting the best-and-fastest algorithm, we find that our model BF most often
chooses pairwise-specific algorithms for pairwise problems, and AD3 for higher-
order problems. This agrees with intuition—pairwise algorithms are specifically
designed to be faster for pairwise instances, while AD3 is a good general-purpose
algorithm for higher-order instances. Interestingly, for the good-and-fastest task,
model GF correctly learns to choose ICM or a good pairwise method for higher-
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Table 6: Performance of algorithm selection methods selecting good-and-fastest and
best-and-fastest algorithms in the LOCO regime; see table 3 for details.

good-and-fastest best-and-fastest
algorithm selected by... GF NB SB BF NB SB

% instances correctly classified 40 26 11 28 25 23

mean % matching variables 89.8 73.3 71.7 85.5 73.3 86.2

order problems in place of AD3—for many instances, these provide solutions
close in labelling to the lowest-energy, and do so much faster than AD3.

To explore whether our method can also draw more subtle distinctions, we
now examine the distribution of algorithms it selects for pairwise problems.
10 of the algorithms we consider are useful for these, in the sense of being
good-and-fastest for at least one instance. Table 5 shows the confusion matrix
for true and predicted good-and-fastest algorithms amongst these 10. Certain
groups of problems can be distinguished based on structural properties, such as
partitioning problems to be solved with KL, or very large instances that only run
to completion with ICM. Our model correctly makes these distinctions. Other
distinctions are even more subtle—such as whether to use α-expansion, TRW-S,
or FastPD for a pairwise problem of moderate size. Our model is able to select
between these three algorithms, making the correct choice for 75% of instances.

LOCO regime. We also tested our models and baselines in an even harder
‘leave one class out’ (LOCO) regime, where for each problem class C in turn, we
train on all instances from classes other than C, and test on those in C; the final
performance is given by a weighted mean over classes. This tests generalisation
to classes absent from the training set, which is relevant when the user does not
wish to train our model on her classes. The results are presented in table 6.

For selecting the good-and-fastest algorithm, model GF still performs well
in LOCO regime, selecting algorithms labelling 89.8% of variables correctly, and
exceeding both näıve and strong baselines by over 15%. Moreover, we correctly
choose the good-and-fastest algorithm 14% more often than the baselines.

For the best-and-fastest task, model BF results in 85.5% of variables be-
ing correctly labelled, significantly exceeding the näıve baseline at 73.3% and
comparable with the strong baseline at 86.2%. These results demonstrate that
our selection models are strong enough to generalise across the hidden problem
classes, going beyond discovering and recalling distinguishing features of these.

7 Conclusions

We have presented a method to automatically choose the best inference algo-
rithm to apply to an input problem instance. It selects an inference algorithm
that labels 96% of variables the same as the best available algorithm for that
instance. Our method is over 88× faster than exhaustively trying all algorithms.
The experiments show that our automated selection methods successfully gen-
eralise across problem instances and importantly, even across problem classes.
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