-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

FlexRAN: A Flexible and Programmable Platform for Software-
Defined Radio Access Networks

Citation for published version:

Foukas, X, Nikaein, N, Kassem, M, Marina, M & Kontovasilis, K 2016, FlexRAN: A Flexible and
Programmable Platform for Software-Defined Radio Access Networks. in CONEXT '16 Proceedings of the
12th International on Conference on emerging Networking EXperiments and Technologies. ACM, pp. 427-
441, 12th International on Conference on emerging Networking EXperiments and Technologies, Irvine,
United States, 12/12/16. DOI: 10.1145/2999572.2999599

Digital Object Identifier (DOI):
10.1145/2999572.2999599

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
CoNEXT '16 Proceedings of the 12th International on Conference on emerging Networking EXperiments and
Technologies

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN o ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/77047656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2999572.2999599
https://www.research.ed.ac.uk/portal/en/publications/flexran-a-flexible-and-programmable-platform-for-softwaredefined-radio-access-networks(41cd570d-9c67-4744-b3f5-7547b03e1870).html

FlexRAN: A Flexible and Programmable Platform for
Software-Defined Radio Access Networks

Xenofon Foukas
The University of Edinburgh
x.foukas@ed.ac.uk

Mahesh K. Marina
The University of Edinburgh
mahesh@ed.ac.uk

ABSTRACT

Although the radio access network (RAN) part of mobile
networks offers a significant opportunity for benefiting from
the use of SDN ideas, this opportunity is largely untapped
due to the lack of a software-defined RAN (SD-RAN) plat-
form. We fill this void with FlexRAN, a flexible and pro-
grammable SD-RAN platform that separates the RAN con-
trol and data planes through a new, custom-tailored south-
bound API. Aided by virtualized control functions and con-
trol delegation features, FlexRAN provides a flexible control
plane designed with support for real-time RAN control appli-
cations, flexibility to realize various degrees of coordination
among RAN infrastructure entities, and programmability to
adapt control over time and easier evolution to the future fol-
lowing SDN/NFV principles. We implement FlexRAN as an
extension to a modified version of the OpenAirInterface LTE
platform, with evaluation results indicating the feasibility of
using FlexRAN under the stringent time constraints posed by
the RAN. To demonstrate the effectiveness of FlexRAN as an
SD-RAN platform and highlight its applicability for a diverse
set of use cases, we present three network services deployed
over FlexRAN focusing on interference management, mobile
edge computing and RAN sharing.

1. INTRODUCTION

Mobile data traffic has seen a dramatic rise in recent times
due to the rapid adoption of smartphones and their support
for data-hungry services like video streaming. This trend is
expected to continue into the foreseeable future, posing a ma-
jor challenge for future mobile networks. Besides, the need

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

CoNEXT ’16, December 12-15, 2016, Irvine, CA, USA
© 2016 ACM. ISBN 978-1-4503-4292-6/16/12...$15.00
DOTI: http://dx.doi.org/10.1145/2999572.2999599

Navid Nikaein
Eurecom
Navid.Nikaein@eurecom.fr M.M.M.Kassem@sms.ed.ac.uk

Mohamed M. Kassem
The University of Edinburgh

Kimon Kontovasilis
NCSR "Demokritos"
kkont@iit.demokritos.gr

to support newer communication paradigms like machine-
to-machine (M2M) and device-to- device (D2D) makes the
problem more challenging as they are characterized by high
control signaling-to-data ratios, not the regime for which cur-
rent mobile networks are designed for.

The aforementioned observations have become driving fac-
tors behind the impending evolution of mobile networks to
the 5G era. Key 5G requirements include: 1000x increase in
peak data rate, support of 100x more devices, sub-millisecond
round-trip communication latency and the reduction of en-
ergy/cost through the optimized network management [10].
These requirements are necessitating innovation in various
dimensions ranging from scaling capacity (via ultra densifi-
cation, new radio access technologies and spectrum bands)
to newer, more flexible mobile network architectures.

Software Defined Networking (SDN) is among the key
technologies considered in the context of evolving mobile
networks. SDN has gained significant traction over the past
decade, mainly in the context of data centers and wired net-
works. This is brought about by paradigm shifting ideas un-
derlying SDN, which are the separation of the control from
the data plane through a well-defined API (e.g., OpenFlow),
the consolidation of the control plane and the flexibility in-
troduced to the network through its programmability. These
fundamental SDN ideas can contribute towards addressing
various challenges faced by current and future mobile net-
works. Not surprisingly, there has been considerable research
interest on software-defined mobile networks in recent years
with much of the early work focusing on mobile core given
its similarity to wired networks (e.g., [24],[29]).

The radio access network (RAN) part of mobile networks,
both the costliest and the most complex part of the mobile
network infrastructure, arguably offers even greater opportu-
nities to benefit from SDN ideas. One reason is that strate-
gies and technologies being adopted to improve spectrum ef-
ficiency and scale system capacity — cell densification, use
of multiple radio access technologies (e.g., LTE and WiFi),
use of advanced PHY techniques like Coordinated Multi-
point (CoMP), etc. — require a high level of coordination
among base stations, which SDN can naturally enable. As

another reason, softwarization of control in mobile networks,
especially in the RAN, not only allows easier evolution to
the future through programmability but also enables a wide
range of use cases and novel services (as we will discuss
later). At the same time, a software-defined RAN (SD-RAN)
design is challenging given the unique nature of wireless re-
sources to be managed and the stringent timing constraints
associated with some key RAN control operations (e.g., MAC
scheduling). As discussed in Section 2, existing SD-RAN
work, although abundant (e.g., [22], [9], [17], [40]), is largely
conceptual with no implemented solution that researchers can
use as a reference to evaluate their SD-RAN designs and to
assess the benefit of new SD-RAN enabled services.

In this paper, we develop FlexRAN that to the best of our
knowledge is the first open-source SD-RAN platform, thereby
filling the above mentioned void. FlexRAN incorporates an
API to separate control and data planes that is tailored for
the mobile RAN. FlexRAN controller design and implemen-
tation factors in the need to make real-time RAN control
applications feasible. Moreover, FlexRAN is designed with
flexibility, programmability and ease of deployment in mind.
FlexRAN offers a great degree of flexibility to easily and dy-
namically realize different degrees of coordination among
base stations reflecting centralized to fully distributed modes
of operation. It offers programmability at two levels, one in
the form of RAN control/management applications that can
be built over the FlexRAN controller and the other within the
controller to be able to update the implementation of any con-
trol function on the fly. FlexRAN is also transparent to the
end-devices, aiding easier deployment and evolution.

Specifically, we make the following contributions:

(Sections 3 and 4) Realizable SD-RAN design in the form
of FlexRAN. FlexRAN incorporates an API (FlexRAN Agent
API) for clean separation of control and data planes in the
RAN. Its hierarchical master-agent controller architecture is
well suited for real-time RAN control operations while allow-
ing reprogrammability and reconfigurability via its features
of virtualized control functions and control delegation fol-
lowing Network Functions Virtualization (NFV) principles.
(Sections 4 and 5) Implementation of FlexRAN over the Ope-
nAirlnterface (OAI) LTE platform [31] is shown to be effi-
cient to the extent the use of FlexRAN is imperceptible to an
end user device compared to using vanilla OAI, even when
considering the time critical MAC scheduling operations. We
also thoroughly characterize the FlexRAN performance be-
havior under different network conditions, varying number
of UEs, and in presence of control delegation.

(Section 6) We show results from using FlexRAN in a diverse
set of use cases relevant to current and future mobile net-
works, namely interference management, mobile edge com-
puting and RAN sharing. This demonstrates the ease with
which new applications and services can be realized with
FlexRAN, thereby its effectiveness as an SD-RAN platform.
We also discuss additional use cases that FlexRAN can enable.

2. RELATED WORK

Software-defined control of mobile networks has received

substantial attention from the research community in recent
years with both academia and industry recognizing its ben-
efits and proposing ways to integrate SDN principles to op-
erational mobile networks [27]. Owing to the similarity be-
tween mobile core and wired networks much of the cellular
SDN research till date focuses on the core part of mobile net-
works. The focus of this body of work [24],[29], [13], [33],
[32], [28], [20] is on novel control designs based on SDN and
NFV to address key core network issues of traffic and mobil-
ity management, and enable mobile networks to scale in the
presence of high volumes of traffic.

While the scope of some of the above mentioned works in-
cludes the RAN, none of them address radio resource man-
agement, a vital aspect of the RAN and the focus of our work.
RAN radio resource management is unique in the type of re-
sources managed and the stringent timing constraints asso-
ciated with some of the key functions (e.g., scheduling). In
the last few years, there have been several high-level concep-
tual works on SD-RANs that do consider the radio resource
management aspect [22], [9], [17], [40], [39], [8], [12]. Soft-
RAN [22] is among the earliest of these works. It introduced
the idea of a big base station abstraction aimed at turning
dense network deployments into sparse ones through the sep-
aration of the control and the data plane. In SoftRAN, control
functions are statically separated into central and distributed
ones based on their time criticality and their requirement for
a centralized network view (e.g., centralized handovers and
distributed downlink scheduling). Later works outline sev-
eral potential SD-RAN designs, targeting different applica-
tions and settings. Similarly to SoftRAN, these works con-
sider the tradeoffs between cost and efficiency for the control
of the RAN and accordingly propose designs that follow ei-
ther a hierarchical approach as in SoftRAN (e.g., [9], [17],
[40]), where different layers of controllers are responsible for
different operations based on their time criticality, or a fully
centralized approach (e.g., [39], [8], [12]) where all the pro-
cessing (LL1/2/3) is performed centrally at a cloud data center.

A common and key limitation of the aforementioned SD-
RAN works, which serves as the main motivation of our work,
is that none of them have been implemented (and thus do not
consider the associated challenges such as real-time control
in their designs) nor do they tackle the issue of separating the
control and data planes in the RAN in a practical and concrete
manner. Moreover, none of these works offer mechanisms
to make control in the RAN adaptive and flexible by allow-
ing a dynamic functional split (e.g., centralized to distributed
scheduling and vice versa) depending on the deployment sce-
nario and the constraints posed by the underlying network
conditions at any given point in time. Finally, not all of the
proposed SD-RAN architectures are transparent to the UEs,
with some designs proposing the introduction of programma-
bility even at the UE-level (e.g., [40], [15]), raising backward
compatibility concerns for legacy devices.

There are also works in the literature that are relevant from
a RAN programmability perspective but can be viewed as
complementary to our focus on a SD-RAN platform capa-
ble of performing radio resource management. For exam-
ple, RadioVisor [25] deals with the challenge of radio re-

source virtualization in the RAN, allowing individual SD-
RAN controllers to manage their own isolated slices. Open-
Radio [14] and PRAN [38] deal with data plane programma-
bility and how new wireless protocols can be implemented
on-the-fly programmatically. Finally, the work of Tsagkaris
et al. [36] proposes a software-defined framework for self or-
ganizing networks (SON) that simplifies the management of
SON functions via a controller based on SDN principles.

3. FlexRAN OVERVIEW

This section gives a high-level overview of the FlexRAN
SD-RAN platform, the key contribution of this paper. We
present FlexRAN in the context of LTE for concreteness and
to match with its current implementation, using the LTE ter-
minology of eNodeBs and UEs for base stations and mobile
devices. It is however important to note that there is nothing
LTE-specific that FlexRAN assumes, thus its design is general
and equally suitable for future mobile RAN architectures.

Fig. 1 provides a high-level schematic of the FlexRAN plat-
form, which is made up of two main components: FlexRAN
Control Plane and FlexRAN Agent API. The control plane
follows a hierarchical design and is in turn composed of a
Master Controller that is connected to a number of FlexRAN
Agents, one for each eNodeB. The agents can either act as lo-
cal controllers with a limited network view and handling con-
trol delegated by the master, or in concert with other agents
and the master controller. The control and data plane sepa-
ration is provided by the FlexRAN Agent API which acts as
the southbound API (a la OpenFlow) with FlexRAN control
plane on one side and eNodeB data plane on the other side.

[

‘ FlexRAN Master Controller % ———————

FlexRAN ProtoV ‘w‘xRAN Protocol

FlexRAN Agent FlexRAN Agent
FlexRAN Agent API FlexRAN Agent API

—
1dv
punogyLoN

aue|d
|043u0)

NVYUXx3|d
|

>
14y
punoquanos

eNodeB data plane eNodeB data plane

Figure 1: High-level schematic of the FlexRAN platform.

The FlexRAN Protocol facilitates communication between
the master controller and the agents by allowing a two-way
interaction between them. In one direction, the agent sends
relevant messages to the master with eNodeB statistics, con-
figurations and events, while in the other direction the mas-
ter issues control commands that define the operation of the
agents. In contrast to typical SDN controllers found in the
wired domain, the FlexRAN controller has been designed with
support for time critical RAN operations (e.g., MAC schedul-
ing) in mind. Due to this real-time aspect and in order to fully
utilize the power of FlexRAN, in the ideal case the communi-
cation channel between the agents and the master would be a
high-bandwidth and low-latency channel (e.g., optical fiber

path). However it should be noted that this is not a hard con-
straint, as the system provides flexibility to operate in non-
ideal networking conditions with a small impact on its per-
formance and capabilities (see Section 4.3.1).

Note that Fig. 1 does not include a UE, reflecting the fact
that FlexRAN is transparent to UEs. The FlexRAN agent en-
sures that any command issued by the master that would af-
fect the operation of a UE will be passed to the eNodeB,
which will in turn apply the modification using the RAN
technology standard in use (LTE protocol in our implemen-
tation). This transparency ensures the evolvability of the sys-
tem, since new LTE and FlexRAN protocol extensions can be
implemented at the RAN without causing backwards com-
patibility issues for users and without disrupting the use of
their devices with constant updates to enable support of new
network features. As long as a UE adheres to the LTE stan-
dard, it will be fully compatible with the FlexRAN platform.

On top of the master controller lies a northbound API,
which allows RAN control and management applications to
modify the state of the network infrastructure (eNodeBs and
UEs) based on the statistics and events gathered from the eN-
odeBs in the FlexRAN control plane. Such applications could
vary from simple monitoring applications that obtain statis-
tics reporting which can be used by other apps (e.g., mobile
edge computing app) to more sophisticated applications that
modify the state of the RAN (e.g., MAC scheduler).

4. FlexRAN DESIGN & IMPLEMENTA-
TION

4.1 Design Challenges

Based on the discussion of Sections 1 and 2 we identified
a number of challenges that FlexRAN should resolve in order
to be an effective SD-RAN platform:

Separation of the control from the data plane in a clean and
programmable way (Section 4.2).

Adaptive and flexible RAN control with support for a dy-
namic control function placement depending on the deploy-
ment scenario and the constraints posed by the underlying
network conditions (Sections 4.3.1 and 4.3.2).

Support for the deployment of network applications over the
controller, considering critical real-time applications (e.g. a
MAC scheduler) (Sections 4.3.3 and 4.4).

In the following subsections, we describe the way that we
overcame these challenges through the detailed description
of the components that make up the FlexRAN platform (Fig. 1)
as well as their implementation details over the OpenAirIn-
terface LTE software platform. We present our design in a
bottom-up manner, starting with the FlexRAN Agent API.

4.2 FlexRAN Agent API

All the access stratum protocols of LTE (RLC/MAC, PDCP,
RRC) can be decomposed into two parts; the control part
that makes the decisions for the radio link and the action
part that is responsible for applying those decisions. For ex-
ample, the control part of the MAC makes scheduling de-
cisions (resource block allocation, modulation and coding

Call Type Description Target Example outcomes of function calls
Configuration Get/Set confieurations of tarect eNodeB/Cell/UE/ eNodeB ID, Number of cells, Cell id, UL/DL bandwidth,
(Synchronous) &) g Logical Channel Number of antenna ports, RNTIs, UE transmission mode

Statistics Transmission queue size, CQI measurements,

(Asynchronous) Request/reply statistics reporting. List of cells/UEs SINR measurements

Commands .. Agent Control Modules . . s
(Synchronous) Apply control decisions (See Section 4.3.1) Scheduling decisions, DRX commands, Handover initiation
Event-triggers Notify control plane about changes Master Controller Initiation of Transmission Time Interval,

(Asynchronous) in the data plane UE attachment, Random access attempt, Scheduling requests
Control Delegation | Push control functions and modify | Agent Control Modules Swap DL scheduler or mobility manager,
(Synchronous) their behavior at the agent side (See Section 4.3.1) Modify threshold of signal quality for handover initiation

Table 1: Type of function calls in FlexRAN Agent API.

scheme etc), while the action part applies them. Similarly,
part of the logic of the RRC protocol decides on UE han-
dovers, while the actual handover operation requires RRC
to perform the corresponding action. Based on this taxon-
omy, FlexRAN separates the RAN control plane from the data
plane by detaching the control logic from the action and con-
solidating all the control operations in a logically centralized
controller, which in FlexRAN comprises of Master Controller
and Agents interacting via the FlexRAN Protocol (see Fig. 1).
As a result, eNodeBs only handle the data plane to perform
all the action-related functions (e.g., applying scheduling de-
cisions, performing handovers, applying DRX commands,
(de)activating component carriers in carrier aggregation).
To control and manage the eNodeB data plane, we intro-
duce the FlexRAN Agent API, which defines a set of func-
tions that constitute the southbound API of FlexRAN and are
the primary enabler for software-defined control of the RAN.
These functions allow the control plane to interact with the
data plane in five ways: (1) to obtain and set configurations
like the UL/DL bandwidth of a cell; (2) to request and ob-
tain statistics like transmission queue sizes of UEs and SINR
measurements of cells; (3) to issue commands to apply con-
trol decisions (e.g., calls for applying MAC scheduling de-
cisions, performing handovers, activating secondary compo-
nent carriers); (4) to obtain event notifications like UE attach-
ments and random access attempts; and (5) to perform a dy-
namic placement of control functions to the master controller
or the agent (e.g. centralized scheduling at the master con-
troller or local scheduling at the agent-side). These API calls
can be invoked either by the master controller through the
FlexRAN protocol using the message handler and dispatcher
entity residing at the agent side (Figure 2) or directly from
the agent if control for some operation has been delegated to
it. The API calls are currently defined using the C language.
A detailed list of the function call types is shown in Table 1.
Through the FlexRAN Agent API it becomes possible to
develop two types of applications: (1) applications related
to the control and management of the RAN resources like
schedulers, interference and mobility managers etc. (e.g. by
controlling resource block allocations, modulation and cod-
ing schemes, handovers and DRX cycles) and (2) applica-
tions relying on the monitoring of the RAN resources to make
more sophisticated decisions (e.g. adaptive video stream-
ing based on channel quality, resource-block allocations for
RAN sharing etc) (see Sections 6 and 7.1). It should be noted
that FlexRAN does not deal with the control of flows in the

wired domain and therefore does not directly support related
applications like routing. To enable this, FlexRAN should be
coupled with corresponding flow-control solutions, like an
OpenFlow-based SDN controller.

4.3 FlexRAN Controller Architecture
4.3.1 FlexRAN Agent

In this subsection, we elaborate on the different subcom-
ponents of the FlexRAN Agent architecture shown in Fig. 2.

[Communication Channel (Socket, Pub/Sub etc)]
\ Abstract C ication Ch 1 ‘

1 Asynchronous Interface

v

FlexRAN Protocol
Message Handler API
& Dispatcher

Helper Functions
(Msg Encoding/Decoding,
Utilities, Timers etc)

Control Delegation

‘ Reports & Events Policy

Manager Reconfiguration Manager
FlexRAN FlexRAN Agent Management Modules
Agent
‘ RRC CMI ‘ ‘ PDCP CMI ‘ ‘RLC/MAC CMI‘
M VSFs | Ul VSFs | VSFs |
RRC PDCP RLC/MAC
Control Module || Control Module | Control Module
\ FlexRAN Agent API \
Y Y
eNodeB m l PDCP] [RLCIMAC]
Data plane

Figure 2: The architecture of a FlexRAN Agent.

Virtualized Control Functions. To allow flexible and pro-
grammable control of the RAN infrastructure, the FlexRAN
Agent provides a number of eNodeB Control Modules as il-
lustrated in Fig. 2. These modules reflect a logical separa-
tion of the control operations that an eNodeB in the standard
LTE architecture has to perform on the radio side and can
be seen as a set of individual control subsystems, each tar-
geting a specific area of control. Since the LTE standard
(the technology supported by our current implementation)
already provides a precise definition and scope for such con-
trol operations through the Access Stratum protocols (RRC,
MAC/RLC, PDCP), FlexRAN adopts the same structure for
the agent’s control modules, with each module providing func-
tionality according to the scope of its corresponding LTE
protocol (e.g., MAC/RLC control module for scheduling, RRC
control module for the radio resource control).

Each control module is in turn composed of a well-defined
set of functions called Virtual Subsystem Functions (VSFs).
The VSFs implement the action that needs to be taken by the
agent during a corresponding operation. As an example, con-
sider the MAC control module which is broadly responsible
for various scheduling operations of the eNodeB. For each
of the scheduling operations (e.g., UE specific downlink and
uplink scheduling, broadcast scheduling), FlexRAN defines a
VSF that designates how the agent should behave for the cor-
responding operation. For instance, the UE specific down-
link scheduling VSF could designate that the agent should
forward the scheduling decision sent by the master controller
to the data plane or that the agent should make its own deci-
sion based on a higher-level policy defined by the master.

The number and type of VSFs that each control module
supports is defined through a well-defined Control Module
Interface (CMI), which essentially allows the agent to ab-
stract the set of operations of each control module from their
corresponding implementations. In this way, the agent reacts
to a specific event (e.g., time for downlink scheduling) with-
out having to worry about the underlying implementation of
the operation. Through this design decision, the FlexRAN
agent becomes very flexible, programmable and extensible
since new operations can be introduced simply by extending
the CMI, while at the same time the functionality of these
operations can easily be redefined in a technology-agnostic
manner via the abstract FlexRAN Agent APIL. As already dis-
cussed, a message handler and dispatcher entity residing at
the agent side (see Fig. 2) is responsible to receive FlexRAN
protocol messages from the FlexRAN master controller and
forward them to be handled by the appropriate VSF of the
corresponding control module using the FlexRAN Agent API.

Control Delegation. FlexRAN allows the master controller
to assume control of the underlying infrastructure and or-
chestrate its operation by making and pushing control deci-
sions at a very fine time granularity (per subframe). While
this is a feature that is essential when considering centralized
time-critical applications (e.g., coordinated remote schedul-
ing of eNodeBs), such fine grained control is not always de-
sirable nor even possible. For example, FlexRAN enabled
small cells may not all be connected to the master via a high-
speed backhaul (e.g., optical fiber link), making the exchange
of all the required FlexRAN protocol messages (MAC statis-
tics, scheduling decisions, event notifications, etc.) at a sub-
frame granularity a very challenging task. In such cases, it
is preferable to let the individual agents make time-critical
decisions as per the policy specified by the master.

A naive way to achieve this would be to identify a set of
hardcoded policies at the agent for each delegated operation.
For example, the agent might offer a local scheduler with two
policies (round-robin and proportional fair) to choose from.
If the master chooses to delegate scheduling to an agent due
to an unsuitable master-agent communication channel (e.g.,
high latency), it would have to choose among the available
hardcoded policies. However, such a mechanism can be very
limiting since it does not allow the modification of the agent’s
behavior at runtime nor its extension with new functionality

in the future. FlexRAN avoids this via two complementary
mechanisms: VSF updation and policy reconfiguration.

VSF updation This mechanism exploits the control func-
tion virtualization feature described above and allows the mas-
ter to modify the behavior of the VSFs of a control mod-
ule on-the-fly by "pushing" new code to the agent over the
FlexRAN protocol. This code is actually a callback assigned
to one of the CMI function calls that corresponds to a specific
control module - VSF pair. The callback function is able to
access and modify the underlying eNodeB data plane using
the FlexRAN agent API discussed in Section 4.2. A VSF up-
date FlexRAN protocol message designates the name of the
control module and the VSF that the new code is intended
for and contains the actual code in the form of a shared li-
brary that has been compiled against the agent architecture.
The pushed code is initially stored in a cache memory at the
agent-side until the master decides to modify the behavior of
the corresponding VSF. The agent cache can store many dif-
ferent implementations for a specific VSF, which the master
can swap at runtime. As an example, considering the case of
the downlink UE scheduling VSF, the master could push two
schedulers to the agent, a local proportional fair scheduler
and a stub for a centralized remote scheduler, which it could
switch at runtime (e.g., based on the network conditions).
Policy reconfiguration This mechanism is complementary
to VSF updation since it allows the master to swap the agents’
VSFs and reconfigure their parameters at runtime. A pol-
icy reconfiguration FlexRAN protocol message indicates the
VSFs to be modified using YAML syntax (Fig. 3). At the
top level, the control module name is indicated, followed by
a sequence of VSFs to be modified, each composed of two
(optional) sections; behavior and parameters. The behavior
section is used for swapping VSFs, i.e., it is an instruction
to the agent to link a specific CMI function call to one of the
callbacks stored at its cache through the VSF updation mech-
anism. The parameters section indicates a list of parameters
that can be modified for the specific VSF. These parameters
act as a public API that the controller can modify and can
either refer to a single value or a sequence of values (e.g., an
array). The available parameters depend on the VSF imple-
mentation (e.g., two scheduler implementations could have
different sets of parameters based on their functionality).

<Control Module Name>:
- <VSF Namel>:
behavior: <callback name>
parameters:
parameter<i>: val
- <VSF Name2>:
behavior: <callback name>
parameters:
parameter<j>: [vall, val2, val3]

Figure 3: Structure of a policy reconfiguration message.

The control delegation capabilities through the virtualiza-
tion of control functions offered by FlexRAN follow the NFV
principles and indeed bring runtime service function chain-
ing capabilities to the RAN by adding a virtualization layer
over the RAN infrastructure and allowing the flexible place-
ment of RAN control functions closer or further away from

the base station based on the networking conditions, the avail-
able computing resources and the requirements of the opera-
tor in terms of performance. However, it should be noted that
such capabilities relevant to the RAN are yet to be considered
by NFV standards specifications, like that of ETSI NFV.

An important issue when considering control delegation
via the above mechanisms is concerned with the security im-
plications that might arise from pushing new VSFs to the
agent which modify the behavior of the eNodeB. One way to
deal with this is to force the agent to accept only code that is
signed from a trusted authority, similarly to how third-party
device drivers for an operating system need to be verified be-
fore installation. Since FlexRAN targets a critical part of the
mobile infrastructure, getting certification from trusted au-
thorities is expected to become a common practice for devel-
opers of VSFs; one could also envision an online VSF store
similar to mobile app stores. Another measure to limit the ef-
fects of unwanted behavior from the VSFs is to allow the con-
trol modules of the agent to run in a sandboxed mode, where
each VSF will need to ask for permissions to use the various
parts of the FlexRAN agent API, similarly to how Android
apps request the permission of the user to access different ser-
vices of their device. In this way, the network operator could
quickly identify VSFs that present an unexpected behavior.

eNodeB Report and Event Management. One of the re-
sponsibilities of the FlexRAN agent is to provide statistics re-
ports and event notifications to the master for the various con-
trol modules (e.g., transmission queue sizes and random ac-
cess attempts for the MAC module, radio bearer statistics and
reference signal received power measurements for the RRC
module). The master can use the FlexRAN protocol to make
asynchronous requests for such reports and notifications and
the FlexRAN agent is responsible to register these requests
and to notify the master through the Reports & Events Man-
ager (illustrated in Fig. 2) once the results are available.
FlexRAN supports three types of reports: one-off, periodic
and triggered. A one-off report is sent by the agent to the
master only once as a reply to its initial request, while a peri-
odic report is sent at fixed intervals that are designated in the
initial request sent by the master, using the TTI as a time ref-
erence for the length of the interval. A triggered reportis sent
by the agent aperiodically and only when there is a change in
the contents of the requested report. Similarly, the master
can choose whether or not to be notified for a specific event
occurring at the eNodeB by registering for it at the agent us-
ing the FlexRAN protocol. These statistics reports offer high
level of flexibility in tuning the level of interaction between
the agents and the master, thereby the degree of coordination.
For example, triggered reports of MAC statistics is required
for a remote scheduler deployed at the master. However, if
the scheduling application of the controller is intended to be
used as a non-real time application at a more coarse-grained
timescale as a hypervisor of a local agent-side scheduler, the
master can only request periodic or even one-off reports.

Extending OpenAirInterface with FlexRAN. We imple-

ment the FlexRAN platform over OpenAirInterface (OAI) [31].

OAI to our knowledge is the most complete open-source LTE

software implementation. As such, it provides the right base
to realize FlexRAN. Recall that the focus of FlexRAN is to
achieve software based control of a mobile RAN that is to-
tally decoupled from the data plane. Since we use LTE as
the concrete setting for our implementation, it essentially in-
volves using the implementation of FlexRAN as the LTE RAN
control plane over the data plane implementation that is re-
tained from the base OAI. To achieve this, we had to bypass
the control plane of OAI, which does not clearly separate con-
trol and data planes, and then interface it with FlexRAN via
the newly defined FlexRAN Agent API. This clean separa-
tion offered by FlexRAN simplifies the development of con-
trol applications, which now appear as modules completely
separated from the data plane (based on OAI in the current
implementation); this is not possible with the standard LTE
RAN and therefore even with vanilla OAIL. Although in our
implementation the FlexRAN Agent resides over OAl eNodeB
data plane, it is important to note that FlexRAN as a whole (in-
cluding the FlexRAN Agent) is a separate entity allowing the
agent to be realized even on a physically different machine.

All the FlexRAN Agent Management Modules (Fig. 2) and
the FlexRAN Agent API were implemented from scratch, cre-
ating a basic agent stub that could be enriched with func-
tionality through the implementation of the FlexRAN Control
Modules identified earlier in this section. For our prototype
the focus was on the RLC/MAC control module, due to the
significant challenges that it presents in terms of its stringent
time constraints. For this module, the proper CMI was iden-
tified and the corresponding scheduling VSFs were imple-
mented. Even though the functionality related to these VSFs
was already present in OAI, the involved control and data
plane operations were tightly coupled, which was counter
to the intention behind FlexRAN. To overcome this, the OAI
eNodeB source code was refactored to allow the separation
of the eNodeB data plane from the control logic as per the
design of FlexRAN and all the required function calls were
added to the FlexRAN Agent API to support this separation.
For example, function calls were added to the API to obtain
data plane MAC/RLC related information like transmission
queue sizes of UEs, along with calls for applying scheduling
decisions. To better highlight the effort required for this pro-
totype implementation, more than 10000 lines of code were
written for the agent management modules and Agent API
and more than 6000 lines of original OAI code were refac-
tored to support the control and data plane separation.

The FlexRAN agent API, as well as the CMIs are written in
C, while the whole eNodeB/agent implementation currently
supports x64 and ARM Linux systems. As a consequence,
any VSF written for an OAI FlexRAN agent currently needs
to be implemented in C and compiled against this architec-
ture. The agent is multi-threaded with one thread responsible
for the management of reports and events, one for dispatch-
ing the incoming protocol messages to the control modules
and calling the corresponding VSFs, and two for the asyn-
chronous network communication with the master controller.

4.3.2 FlexRAN Protocol

The abstract communication channel is another feature of

the FlexRAN agent (Fig. 2) for the interactions of the agent
with the master. The main FlexRAN agent components com-
municate and exchange protocol messages with the master
through an asynchronous interface that abstracts the commu-
nication operations. The communication channel implemen-
tation can vary (socket-based, pub/sub etc) depending on the
master that the agent is interfacing with. It should be noted
that the interface between the master and the agent needs
to be asynchronous as the agent may need to perform cer-
tain operations in specific time intervals (e.g., a scheduling
decision per TTI) while protocol messages from the master
can arrive in asynchronously (e.g., receiving a request for a
measurement report). In the current implementation, TCP is
used for the communication of the agents with the master and
the exchange of protocol messages. The protocol messages
are implemented using Google Protocol Buffers [1], which
provides an optimized platform-neutral serialization mech-
anism and allows the expression of protocol messages in a
language-agnostic manner. Detailed specification of the pro-
tocol messages are omitted due to space constraints.

4.3.3 FlexRAN Master Controller

The master controller (Fig. 4) constitutes the brain of the
FlexRAN control plane as it manages the operation of the
FlexRAN agents. In FlexRAN, we employ a custom design for
the master instead of using a conventional OpenFlow-based
one and this is for two reasons: (1) the nature of control in
the RAN is tied to a significant extent to the control of radio
resources which cannot be effectively captured by the flow
abstraction; (2) the RAN presents a requirement for the sup-
port of real-time applications with very quick reaction times,
a feature not essential for SDN control in the wired domain.

Management of network information. The RAN Informa-
tion Base (RIB) is a key component that maintains all the
statistics and configuration related information about the un-
derlying network entities, i.e. UEs, eNodeBs and FlexRAN
agents. The RIB is always loaded in memory for improved
performance and is structured as a forest graph. The root
node of each tree in this forest is an agent associated with the
master, while the nodes of the second level are the cells as-
sociated with a specific agent/eNodeB. Finally, the leaves of
the trees are the UEs associated to a specific (primary) cell.
It should be noted that the current implementation of the RIB
does not provide any high-level abstraction for the stored in-
formation, revealing raw data to the northbound API.

Support for real-time applications. The applications as
well as the Events Notification Service of the master con-
sult the RIB to perform any operation, but they do not mod-
ify the RIB directly. Instead they issue control commands
through the northbound interface, which indirectly affect the
RIB state through the modifications performed to the eN-
odeB data plane and the agent state. These modifications
are reflected back to the master through the statistics reports
and event notifications sent by the agents. Only the RIB Up-
dater component of the master can update the RIB with the
information received from the agents (Fig. 5). This design
decision improves the support of real-time applications (e.g.,

MAC scheduler) that must be non-blocking in order to meet
their time constraints (e.g., a TTI for the scheduler). Allow-
ing all components to modify the RIB could give rise to write
conflicts, negatively affecting the system performance. Hav-
ing just a single writer (the RIB Updater) and multiple read-
ers helps avoid this problem. The update frequency of the
RIB depends on the way the FlexRAN agent reporting and
event notification mechanism is configured by the master.

I Application I I Application I I Application I

Application Layer

[FlexRAN Application API }
Northbound Interface

Events Notification | RAN Information & &
Service Base (RIB) : {

Task Manager &

Registry Service REllECatey

FlexRAN Master Controller

FlexRAN protocol FlexRAN protocol

FlexRAN FlexRAN
Agent Agent

Figure 4: Components of the FlexRAN master controller and
its interface to the application layer.

FlexRAN protocol
commands

_Application

RIB queries (Events Notification
Service

Stats & notifications
(protocol messages)

RIB update

calls g5
RIB Up —
.

FlexRAN
Agent

Figure 5: Flow of information for updating the RIB.

Since the FlexRAN controller is designed to support real-
time RAN applications, a Task Manager is responsible for
handling all the tasks (both applications and core manage-
ment modules) running on the master. More specifically, it
is responsible to start, stop and pause applications; to assign
priorities to running services and to allow them to execute
based on their time constraints. For example, the Task Man-
ager would assign a very high priority to a centralized MAC
scheduler running on the master, whereas a non time-critical
monitoring application would get a lower priority. To support
real-time control, the Task Manager is implemented as a non-
preemptive thread running in an infinite loop and operating
in cycles of length equal to a TTI, where each cycle is com-
posed of two slots — one for the execution of the RIB Updater
(e.g., 20% of the TTI) and the other for the execution of the
applications as well as the Event Notification Service threads
(e.g., 80% of the TTI). This guarantees the mutual exclusion
of the reads and writes in the RIB and allows the applications
to operate in a non-blocking mode while accessing the RIB,
ensuring the real-time operation of the controller.

Master controller implementation. The master controller
is implemented from scratch using C++ and currently sup-
ports x64 Linux systems (kernel >= 3.14 for support of real-

time applications). The master can operate in a non real-
time mode, supporting only applications that are not time-
critical, with the advantage of being more lightweight. The
Task Manager in the non-real time mode does not enforce a
strict duration of the cycle as tasks are not scheduled with a
real-time priority and thus could take longer than a TTL

4.4 Northbound API and Applications

RAN control and management applications in the applica-
tion layer communicate with the master through the north-
bound interface (Fig. 4), which allows the applications to
monitor the infrastructure through the information obtained
from the RIB and apply their control decisions through the
agent control modules. The applications run as threads and
use the FlexRAN Application API (currently in C++) to reg-
ister with the Registry Service of the master, access the RIB
and send control messages to the agents. Applications can
be broadly divided into two categories: (periodic or event-
based). Periodic applications employ a periodic execution
pattern (e.g,, a periodic scheduler) whereas the execution of
event-based applications is triggered by specific events (e.g.,
a mobility manager that expects changes in the received sig-
nal strength of a UE to react). The Events Notifications Ser-
vice of the master controller notifies the applications (mainly
of the event-based type) about any changes that might have
occurred on the agent side. Some applications could fall into
both categories and it is ultimately the application developer
who would choose the appropriate execution pattern.

S. SYSTEM EVALUATION

In this section we evaluate the engineering decisions and
the design choices behind FlexRAN. For the experiments, a
FlexRAN master controller was deployed, in which one or
more agent-enabled eNodeBs (depending on the experiment)
were connected through dedicated Gigabit Ethernet connec-
tions. Each eNodeB was also connected to a machine acting
as the EPC, running the corresponding EPC software im-
plementation (openair-cn [2]). All the test machines were
equipped with quad-core Xeon CPUs at 3.4GHz and 16GB
of RAM. Depending on the experiment, the testbed was used
either in emulation mode (emulated PHY layer and emulated
UEs) or with a real RF front-end (Ettus B210 USRP) and a
COTS UE (Nexus 5 smartphone). All the experiments were
conducted with the same eNodeB configuration, namely FDD
with transmission mode 1 and 10MHz bandwidth in band 5.

5.1 Comparison to Vanilla OAI

We begin by investigating the overhead introduced to an
eNodeB by the addition of the FlexRAN agent in terms of
memory and CPU utilization (Fig. 6a) comparing a vanilla
OAI eNodeB and a FlexRAN-capable eNodeB in two cases;
one with the system in idle state and one with a COTS UE
connected and performing a speedtest. As we can observe,
there is a very slight increase in the memory footprint and
the CPU utilization in the FlexRAN case, due to the threads
used for the operation of the agent and the protocol messages
exchanged with the FlexRAN master controller. Despite the

aforementioned overhead incurred from the FlexRAN agent,
the communication of the eNodeB with the UE is fully trans-
parent, with the UE experiencing the same service quality in
its connection as with the vanilla OAI (Fig. 6b).

[Vanilla OAI
Il OAI+FlexRAN

)

10

N
(3

- N
o o

-
o

CPU Utilization (%)

o
(4]

Memory Footprint (GB)
Throughput (Mb/s)

No UE UE NoUE UE
Vanilla OAI OAIl + FlexRAN
Downlink Uplink

(a) Normalized CPU utiliza-
tion (8-processors) and mem-
ory footprint with(out) UE

(b) Downlink and Uplink
throughput comparison

Figure 6: Comparison of Vanilla OAI to FlexRAN .

5.2 Scalability

Next, we evaluate how FlexRAN scales as the number of
eNodeBs and UEs increases. For these experiments we used
OAI in emulation mode with the PHY layer abstracted in or-
der to perform tests with a large number of UEs. It is noted
that this choice has a minimum effect in the obtained results,
since the focus of our evaluation was in operations occurring
above the PHY which were unaffected by the emulation.

5.2.1 Controller-agent signaling overhead

One very important element regarding the scalability of
FlexRAN is the network overhead incurred by the FlexRAN
protocol, especially when support for real-time applications
is required. For this, we measured the signaling overhead be-
tween the agent and the master in the demanding case of de-
ploying a centralized scheduling application and for a vary-
ing number of UEs. To study the system’s scalability, we
tested a scenario with the worst case configuration signaling-
wise, where statistics reports were sent from the agent to
the master every TTI, the centralized scheduler undertook all
scheduling decisions at a TTI granularity and the master was
fully synchronized with the agent at a TTI level using the ap-
propriate FlexRAN protocol synchronization messages. Dur-
ing the experiment uniform downlink UDP traffic was gener-
ated for all the UEs, in order to force the centralized scheduler
to frequently send scheduling decisions to the agent.

The agent-to-master network overhead for 50 UEs can reach
100 Mb/s (Fig. 7a). The main source of this overhead are the
periodic statistics reports (buffer status reports, CQI mea-
surements etc.) followed by the master-agent synchroniza-
tion messages, with the overhead of the agent management
related messages being negligible. One important thing to
notice is that the agent-to-master signaling overhead increases
sublinearly with the number of connected UEs due to the
aggregation of relevant information in the FlexRAN protocol
messages (e.g. list of UE status reports) and their optimized
serialization by the Google Protocol Buffers library.

In the case of the master-to-agent signaling (Fig. 7b), the
overhead is much lower compared to the previous case (less
than 4Mb/s) and comes almost entirely from the scheduling

o

-
o
=]

[l Agent management
[MMaster-agent sync
[IStats reporting

Il Agent management
[_IMaster commands

x10°8

IS

@
o

@

5

& O
o ©
N

n
(=]
-

=]
o

10 20 30 40 50
Number of UEs

10 20 30 40 50
Number of UEs

Signaling overhead (Mb/s)
Signaling overhead (Mb/s)

(a) Agent-to-master (b) Master-to-agent
Figure 7: Signaling overhead for the communication between
the master and the agent using the FlexRAN protocol.

decisions sent by the centralized scheduler. In contrast to
the previous case, this overhead is increasing with a higher
rate as the number of UEs goes up. The reason is that the
larger the number of UEs, the less resources are available for
scheduling each UE and therefore more TTIs will be required
for scheduling, leading to an increase in the overall number
of scheduling decisions sent by the controller to the agent.
The aforementioned results show that FlexRAN is suitable
even in demanding scenarios like multi-cell scheduling on a
per-TTI basis, where depending on the deployment (macro
or small-cell) the agent can be connected to the master either
through a dedicated high-bandwidth channel (e.g. optical
fibers) or through a lower bandwidth channel (e.g. a VDSL
connection). In practice, the controller will apply policies or
delegate the scheduling to the agent, which will significantly
reduce the network overhead. This overhead could be further
reduced through agent configuration changes. For example,
by setting the periodicity of the MAC reports to 2 TTIs, this
overhead could be reduced to almost half without any sig-
nificant impact in the system’s performance. Other methods
that could be considered to reduce this overhead could be
compression algorithms for the protocol messages or event-
triggered instead of periodic message transmissions.

5.2.2 Master controller resources

Using the previous setup, we measured (Fig. 8) the require-
ments of the master in computing resources and memory for
a varying number of connected agents (16 UEs/eNodeB). As
already discussed, the master operates in TTI cycles, where
part of each cycle is allocated to the execution of applica-
tions (80% in this experiment) and the rest to the execution
of the core components of the master. As we can observe,
the operation of the master is lightweight, with only a small
fraction of the total cycle being actually utilized. The execu-
tion time of the core components increases as we add more
agents, mainly due to the increase in the updates that need to
be performed by the RIB updater. The memory footprint of
the master is also very small and its increase is mainly related
to the increase of the RIB size.

5.3 Control channel latency impact

One very important aspect for real-time control in FlexRAN
is the impact of the control channel latency between the mas-
ter and the agent. To test its effect we used a COTS UE sched-

w
Ml Apps E 25
__0.8 @ cCore Components 5 _
g Jidle Time 8 H 202
- 0.6 | |=-Memory Footprint o B .
Eoa = g E
- © £
=) 6 8 vy
Fo2| | 7] 5 s E
e 0 £
0 4 3 oH 0
(1] 1 2 3] 20 40 60
Number of FlexRAN agents a RTT delay (ms)

Figure 8: Utilization of mas-
ter TTI cycle and memory
footprint (16 UEs/eNodeB).

Figure 9: Effect of latency
and scheduling ahead time
on downlink throughput.

uled in the downlink by a centralized scheduling application
running at the master. The scheduler was implemented so
that it could be parametrized to make scheduling decisions
n subframes ahead of time, meaning that the scheduler would
observe the MAC state (transmission queue sizes of UEs, sig-
nal quality etc) at subframe 2 and would issue a scheduling
decision that should be applied by the data plane in subframe
x + n. The scheduling decision will be valid and can be ap-
plied by the agent only if its designated time is greater than
the latency in the master-agent control channel.

Based on this setup we modified the schedule ahead pa-
rameter of the application and the latency in the control chan-
nel using the netem tool [3] and measured the UE downlink
throughput for various configurations (Fig. 9). As we can
observe, the lower triangular region of the figure depicts a
throughput of 0, indicating that for these configurations the
UE was unable to complete network attachment. This is due
to the one-way delay of the control channel being greater than
the schedule ahead time, meaning that scheduling decisions
always miss their deadline. Moreover, the control channel
delay affects the synchronization between the master and the
agent, since the agent subframe reported to the master is al-
ways outdated by an offset equal to half the RTT delay. Since
the scheduler relies to this outdated value to make a schedul-
ing decision, the scheduling ahead time should take it into
account. Assuming a symmetrical RTT delay, the schedule
ahead time should be set to a value that is at least equal to it;
half to make up for the outdated subframe value reported by
the agent and half to ensure that the scheduling decision will
be valid at the time it arrives to the agent.

In the upper triangular region we have all the cases in which
the controller application successfully manages to schedule
the UE. In this case the application is able to schedule the
UE even for a control channel with a very high latency, as
long as the schedule ahead parameter is configured properly.
As the RTT delay and the schedule ahead time increases, the
throughput gradually drops. One reason for this is that higher
RTT delays make the information stored in the RIB (e.g. CQI
measurements) more outdated, leading to wrong scheduling
decisions (e.g. due to a bad modulation and coding scheme
choice) that could affect the throughput. Moreover, for in-
creased values of the schedule ahead parameter, the scheduler
needs to make predictions further into the future, while mak-
ing assumptions about the outcome of previous transmissions
for which it has not yet received any feedback. Depending

on the use case and on the scheduling performance require-
ments, one could choose to either use approximation methods
like scheduling ahead of time to mitigate the effect of latency
or to delegate control to the agents for the time critical func-
tions that are affected by this latency as long as coordinated
operation among the eNodeBs is not a hard constraint.

5.4 Control delegation performance

Since control delegation is one of the most important fea-
tures of FlexRAN we evaluated the mechanisms of VSF upda-
tion and policy reconfiguration in terms of efficiency and ser-
vice continuity. For this experiment we used the same setup
as in Section 5.3, starting with a centralized scheduler run-
ning as an application at the master. At the same time, we
built an equivalent (in terms of functionality) local scheduler,
as a VSF for the MAC control module of the agent, using the
FlexRAN agent API. The experimental scenario involved the
pushing of this code to the agent using the FlexRAN protocol
and the dynamic switching between the local and the remote
scheduler through the policy reconfiguration mechanism.

Using this setup, we tested the downlink throughput of the
attached UE, while swapping the local and the remote sched-
ulers with various frequencies down to the TTI level (1ms),
and observed the same application performance of 25 Mb/s
(figure not included for brevity). The code is pushed to the
agent-side only once and is stored in its local cache meaning
that no additional overhead is incurred for the control del-
egation. Moreover, the absolute VSF load time required to
swap between the local and remote scheduler is very small
(~103ns) and therefore does not disrupt service continuity as
it only forms an insignificant fraction of the overall TTI.

6. FlexRAN USE CASES

Till date, the lack of an implemented SD-RAN platform
meant that there was no way to actually study SD-RAN bene-
fits and use cases. To demonstrate the usefulness of FlexRAN
towards this end, we now present diverse use cases that SD-
RANS in general and FlexRAN in particular can enable.

6.1 Interference Management

One of the ways to cope with the requirement for higher
throughput in the RAN is the creation of Heterogeneous Net-
works (HetNets) composed of multiple small cells within the
area of a macro cell. However, such dense network deploy-
ments are more susceptible to interference. One proposed
solution is the enhanced Inter-Cell Interference Coordination
(eICIC) [21] that introduces the concept of Almost-Blank
Subframes (ABS) during which the macro cells are muted to
allow small-cells to transmit user traffic. Even though eICIC
is one effective way to manage interference, the semi-static
configuration of ABSs can lead to an underutilization of the
radio resources when small cells are idle. To remedy this,
we consider an optimized eICIC mechanism that allows the
macro-cell to exploit periods of inactivity of the small-cells
to transmit to UEs even during ABSs as long as no small-cell
is transmitting at the same time. Such a mechanism requires a
high-level of coordination among cells which cannot be eas-
ily achieved using the traditional X2 interface [18] [11]. To

deal with this, we build a downlink UE scheduling applica-
tion over FlexRAN that exploits its consolidated control plane
to implement this optimized eICIC mechanism.

Specifically, we implemented a centralized scheduler ap-
plication on top of the master and two different types of local
agent-side downlink schedulers, one for the macro-cell and
one for the small-cells of a region. During a non-ABS, the
macro-cell eNodeB performs the scheduling using its agent-
side scheduler, while the agent-side schedulers of the small-
cells remain inactive exactly as in a normal eICIC case. How-
ever, during an ABS the centralized scheduler at the master
performs a coordinated UE scheduling of all cells and de-
cides whether the macro or the small cells should be sched-
uled, always giving priority to the small-cells. The schedul-
ing decisions are then pushed to the agents using the FlexRAN
protocol and are applied by the agent-side schedulers that
during an ABS act as stubs of the centralized scheduler.

Two agent-enabled OAI eNodeBs were used, one acting
as a macro-cell and one as the small-cell, both running in
emulation mode over the same physical machine. The rea-
son we resorted to emulation over the same machine is that
eICIC requires a microsecond-level synchronization of eN-
odeBs, which was not supported by our hardware. Moreover,
due to a limitation of the current OAI implementation, the as-
sociation of UEs over different eNodeBs is not supported in
emulation mode when the PHY is abstracted. This forced us
to use the more computationally intensive full-PHY emula-
tion mode of OAI (that involves convolution of the real PHY
signal with an emulated-channel in real time) and to limit the
number of emulated UEs used for this experiment to 4.

One UE was associated with the small-cell and three were
associated with the macro-cell. Downlink UDP traffic was
generated uniformly for all the UEs and the overall network
throughput was measured (Fig. 10a) in three cases: (i) an un-
coordinated case, where each eNodeB performed scheduling
independently, (ii) a simple eICIC use case with 4 ABSs and
(iii) the optimized eICIC use case with the same ABS con-
figuration as case (ii). The optimized eICIC use case almost
doubled the overall network throughput over the uncoordi-
nated scenario and had an improvement of about 22% over
the simple eICIC scenario. The reason for the difference be-
tween the two elCIC use cases is that while the small-cell
throughput remains the same (Fig. 10b), the throughput of
the macro-cell increases under optimized eICIC because the
ABSs not used by the small-cell are assigned by the central-
ized scheduling application to the macro-cell.

6.2 Mobile Edge Computing

For our second use case, we consider FlexRAN as a de-
ployment platform for Mobile Edge Computing (MEC) ap-
plications. MEC allows developers and content providers to
deploy their services over the network edge. This presents
many benefits including ultra-low latency, high bandwidth
and real-time access to radio network information which can
be used by applications for optimization purposes [23]. Such
applications are expected to be deployed in a centralized man-
ner and therefore doing this using the conventional LTE ar-
chitecture becomes a challenging task. Moreover, their de-

8 e
— __5 | [EHOptimized elCIC
0 = | lelciC
Se =X
< = £
5 s
2 4 N E_ 3
S| = S
e 32
£2 [Uncoordinated < 4
x [JelcIC [
o [JOptimized elCIC 3
20 oo
g Small Cell Macro Cell

(b) Overall macro and small cell
downlink throughput for simple
and optimized eICIC.

(a) Downlink network through-
put in uncoordinated, simple
and optimized eICIC.

Figure 10: Throughput benefits of optimized eICIC.

ployment assumes the existence of a programmable network,
which is naturally enabled by FlexRAN.

In this context, we show how the consolidated control plane
and the real-time network information provided by FlexRAN
can be beneficial for services such as video streaming. To
show this, we used the DASH [34] streaming service and
studied the effects of fluctuating a mobile’s signal strength
to the video streaming bitrate adaptation performed by the
DASH reference client [4]. The idea of the experiment is
that the channel quality reported by the UEs to the eNodeB
through a Channel Quality Indicator (CQI) value (in the range
[0,15]) indicates the modulation and coding scheme that the
scheduler should use for the data transmissions of a UE and
therefore has a direct impact in its highest achievable through-
put. Knowing this can allow the streaming service to make
smarter decisions regarding the optimal bitrate compared to
a case when only transport layer information is available.

In order to obtain reproducible results, we emulated the
fluctuations of the channel quality between the eNodeB and
the UE and measured the maximum achievable TCP through-
put of a COTS UE for various fixed CQI values. Moreover,
for the same CQI values, we used the reference DASH client
and the available test videos that it offered, to measure the
maximum sustainable bitrate of a video stream (i.e. a bitrate
that would never lead to buffer freezes) for the offered bitrate
levels. The measurement results (Table 2) indicate that the
TCP throughput needs to be greater (even double) than the
video bitrate in order to always maintain a high quality; this
is consistent with related observations in the literature [37].

CQI | TCP Throughput (Mb/s) | Max sustainable bitrate (Mb/s)
2 1.63 14
3 2.2 2
4 3.3 2.9
10 15 7.3

Table 2: Measurements of max TCP throughput and max sus-
tainable bitrate of video stream for various CQI levels.

We used FlexRAN to implement a simple MEC application
that uses the RIB to obtain real-time information about the
CQI values of the attached UEs. The application computes
an exponential moving average of the UE CQI and maps it to
the optimal video bitrate based on the measurements of Ta-
ble 2. The bitrate is then forwarded through an out-of-band

channel to a modified version of the DASH reference client
where it is used to adapt the video stream’s quality. To sim-
plify things, we performed the experiment in an ideal setting,
where the channel quality fluctuation was the only cause for
a change in the bitrate (a single UE attached to the network
with the DASH video being the only source of traffic).

For our experiment, we considered two cases. In the first,
we used a video [5] with three bitrates (1.2, 2 and 4 Mbps)
and we introduced a small variation in the CQI value (from
3 to 2 and vice versa). In the second, we used a 4K video [6]
with six available bitrates (2.9, 4.9, 7.3, 9.6, 14.6 and 19.6
Mbps) in which the CQI value was changed drastically (from
10 to 4 and vice versa). In both cases, we measured the bi-
trate selected by the default and the FlexRAN-assisted players
in comparison to the maximum achievable TCP throughput,
as well as their buffer sizes (Fig. 11). In the first case (Fig.
11a), the default player always kept the bitrate at the lowest
value (1.2 Mb/s), even in times when the available throughput
increased by 40%, meaning that the change in channel quality
did not become apparent to the transport layer. On the other
hand, the FlexRAN-assisted player exploited the information
obtained by the RAN and managed to better adapt to the
changing network conditions. Therefore, even though nei-
ther player experienced buffer freezes, the default player un-
derutilized the available resources. In the second case (Fig.
11b), the default player aggressively attempts to increase the
bitrate when the CQI increases, setting it to 19.6 Mb/s, even
though the maximum achievable throughput is 15 Mb/s. This
quickly results in TCP congestion, leading the player to sig-
nificantly lower the bitrate (lower than the max sustainable bi-
trate) in order to adapt. At the same time this leads to frequent
and sometimes long buffer freezes (e.g. sec 5-30). On the
other hand, the MEC application running over FlexRAN can
quickly identify the maximum sustainable bitrate (7.3 Mb/s)
given the CQI measurements observed at the RIB and does
not follow the same aggressive behavior as the default player,
leading to a more stable and overall higher video quality.

.6 . 100

Q) Max Throughput 25 D0 Max Throughput

S5 Assisted-DASH bitrate] Assisted-DASH bitrate 80

= " —_ — DASH bitrate —_

= - EJ\AS_H‘b:r;;\eSH buft 203 ‘E: — Assisted-DASH buffer O

54 — Assisted-| uffer = |===DASH buffer

s — DASH buffer 15 8 2_20 60 8
AUV [[

O3 R 10 5 S 5

2, £ 210 £

E 58 E @

o, == 2

&1 0 T o0

=0 50 100 g0 50 100

@ Time(s) Time(s)

(a) Low throughput variability ~ (b) High throughput variability
Figure 11: Rate adaptation of DASH vs FlexRAN assisted
DASH and corresponding buffer sizes.

6.3 RAN Sharing & Virtualization

A side effect from the densification of cells is the increase
of the infrastructural CAPEX and OPEX. This leads to the
creation of new business models, where multiple Mobile Net-
work Operators (MNOs) share the same passive infrastruc-
ture such as masts and backhaul links in order to save costs.
On top of that, a second level of active sharing can happen,

where MNOs share the network equipment as well as pro-
vide wholesale access to Mobile Virtual Network Operators
(MVNQO:s), allowing them to provide voice and data services
using part of the available resources [19]. However, this can
pose a significant challenge for the management of the RAN,
since the requirements of operators in terms of the radio re-
sources and the applied policies of scheduling and mobil-
ity management can constantly change based on the needs
of their subscribers and the underlying setting. The control
and management of such operations can be greatly simplified
through the introduction of programmability in the RAN.

Based on this, we used FlexRAN as an enabler of active
RAN sharing and on-demand resource allocation over an LTE
network. More specifically, exploiting the virtualization ca-
pabilities of FlexRAN , we implemented a downlink UE sched-
uler for the agent-side that supports the dynamic introduction
of new MVNOs to the RAN and the on-demand modification
of the scheduling policy per operator. An application running
at the master exploits the policy reconfiguration mechanism
of FlexRAN to modify the parameters of the agent-side sched-
uler (scheduling policy and number of resource blocks per
MVNO). To test this and in order to be able to support a large
number of UEs, we used a single agent-enabled OAI eNodeB
in emulation mode with the PHY abstraction enabled. We
configured the agent-based scheduler to support one MVNO
that shared the available resources with the RAN’s MNO.

For our first experiment, each operator was assigned 5 UEs
for which uniform UDP downlink traffic was generated, while
the percentage of radio resource blocks allocated to each op-
erator was dynamically adjusted based on their requirements.
The results in terms of the total throughput per operator are
illustrated in Fig. 12a. Initially, the MNO was allocated 70%
of the radio resources and the MVNO was allocated the re-
maining 30%. At 10s, the master controller application sent
a policy reconfiguration message, setting the available re-
sources of the MNO to 40% and of the MVNO to 60%, sim-
ulating a brief requirement for additional resources for the
MVNO. Then, at 140s, the application sent a second policy
reconfiguration message that re-adjusted the radio resources
so that 80% were allocated to the MNO.

6 1
==MNO ==MNO (Fair)
0 ==*MVNO 0.8 ==*MVNO (Group-based)
34 '..........,‘ :
Sa T e
bt u 06 .
32k : O o4 P
ol . .
=4 H
32 S 0.2
£
Fo 0 :
0 50 100 150 0 200 400 600
Time (s) Throughput (Kb/s)

(b) CDF of UE throughput
based on scheduling type

(a) Dynamic allocation of re-
sources

Figure 12: Policy reconfiguration for MVNO management

As a second experiment, we implemented an agent-side
scheduler supporting a fair scheduling policy and a group-
based policy of premium and secondary users, with 70% of
the resources allocated to the premium users and the rest to
the secondary. One MNO and one MVNO was employed,

where the MNO was assigned the fair policy and the MVNO
the group-based one. Each operator was allocated half of
the available radio resources and was assigned 15 UEs. In
he group-based MVNO case, nine UEs belonged to the pre-
mium group and the remaining six acted as secondary users.
We generated uniform UDP downlink traffic for all the UEs
and measured the throughput of each UE per operator. The
results are illustrated in the CDFs of Fig. 12b. In the case
of the MNO, all the UEs had a throughput of about 380Kb/s
due to their fair scheduling policy. On the other hand, in the
case of the MVNO, UEs assigned to the premium group had a
throughout of about 450Kb/s, while the UEs of the secondary
group achieved a throughput of less than 200Kb/s.

7. DISCUSSION
7.1 Other Example Use Cases

Here we make a brief discussion on a non-exhaustive list
of further use cases that were currently not implementable
due to the limitations posed either by the OAI platform un-
derlying FlexRAN or by the current LTE specifications.

Mobility Management. In current practice, handover deci-
sions mainly rely on the signal strength of mobile devices.
However, the centralized network view offered by FlexRAN
could enable more sophisticated mobility management mech-
anisms that consider additional factors, e.g., the load of cells
or use-driven resource requirements of mobile devices, lead-
ing to an optimization of the device-network associations.
Network Slicing. Future 5G networks are envisioned to sup-
port a wide range of vertical segments with a diverse set of
performance and service requirements through the Slicing of
the physical network into multiple isolated logical networks
[30] [7]. Among the key features required to achieve network
slicing is the existence of an end-to-end management and or-
chestration framework (e.g. [35]) and the means to virtualize
the network resources. FlexRAN can be seen as a key enabler
of virtualization in the RAN, providing a simple and flexi-
ble platform for the dynamic control and allocation of radio
resources based on the needs of the deployed services.
Device Centric Networking. Another interesting application
of FlexRAN could be in the domain of device-centric net-
working [16]. In this, the association of mobile devices is de-
coupled from the cell, e.g. by using different cells for control
and data traffic, simplifying the adoption of new communi-
cation paradigms like D2D. While realizing such a paradigm
would also require changes in the physical layer, its deploy-
ment could greatly be simplified through the centralized con-
trol of FlexRAN, as it inherently involves the coordinated con-
trol of multiple network nodes, e.g. control traffic through
one cell and data traffic through another.

Spectrum Sharing. Shared spectrum access is seen as a promis-

ing solution that allows operators to cope with the high in-
crease of mobile data traffic. One spectrum sharing mecha-
nism that is of particular interest to MNOs is Licensed Shared
Access (LSA) [26]. It enables incumbents not concerned
with civilian wireless and mobile data communications to au-
thorize other users (e.g. the MNOs) to access all or part of the

spectrum allocated to them for designated periods of time and
in designated places based on some agreement. An LSA con-
troller dynamically manages the access to the shared spec-
trum based on these agreements. Such an operation could
easily be implemented as an application on top of FlexRAN.

7.2 Adaptability Beyond LTE

As already discussed in Section 3, FlexRAN was presented
in the context of LTE for concreteness and to match its cur-
rent implementation. However, the design and the mecha-
nisms supported by FlexRAN are not LTE-specific and are
therefore equally suitable for future mobile RAN architec-
tures. More specifically, the mechanisms of virtualized con-
trol functions and control delegation are technology-agnostic
and use API calls and protocol messages that are completely
decoupled from the underlying technology. The main differ-
ence that these mechanisms would present in the context of
another technology is that the number and type of the control
modules and VSFs on the agent side would change to reflect
the capabilities and needs of the new technology (e.g. no
PDCP module for WiFi). However, the mechanisms of pol-
icy reconfiguration and VSF updation make no assumption
about the exact type and structure of the control modules at
the agent side, allowing the controller to designate it on the
fly based on the underlying implementation (see Fig. 3).

Apart from the technology agnostic part of the agent API,
FlexRAN also requires a number of technology specific API
calls. For example, LTE requires scheduling commands which
are not applicable and therefore are not required in the WiFi
domain. This means that for FlexRAN to be fully compliant
with other technologies, the FlexRAN Agent API needs to be
extended with additional function calls specifically tailored
for the domain of interest, closely resembling the idea of de-
vice drivers found in operating systems. The more extended
the API is for a specific technology, the more capabilities are
offered for the control of the underlying radio access technol-
ogy (RAT). It should also be noted that the FlexRAN protocol
has been structured in such a way that it could be easily ex-
tended to support new messages that are technology specific
without affecting the functionality of the existing ones.

Another important issue is the extensibility of FlexRAN
in future 5G fronthaul architectures where base stations are
expected to adopt a distributed design, with Remote Radio
Units (RRUs) decoupled from the Baseband Unit (BBU) and
connected through a fronthaul link (e.g. optical fibers) [18].
In such an architecture, the functional split between the RRU
and the BBU is expected to play a significant role, depend-
ing on the capacity and the latency of the fronthaul link. The
design of FlexRAN could be adopted in such an architecture,
where the data plane and the agents could be placed on the
RRU side and the control plane could be consolidated at the
master residing at the BBU. Based on the quality of the fron-
thaul link, the control delegation features of FlexRAN could
be exploited to perform a dynamic and adaptive functional
split of the control operations while retaing the realtime dead-
lines. For example, in case of a high latency fronthaul link,
the master could delegate control of the time critical PHY and

MAC operations to the RRU, while in case of a low latency
link all operations could be residing at the BBU side.

7.3 Issues for Future Work

Here we outline several extensions and aspects for future
work on FlexRAN. Firstly, a conflict resolution mechanism
ensuring state consistency becomes valuable when third-party
network applications need to be supported. For example,
such a mechanism should prohibit the deployment of mul-
tiple applications that may simultaneously issue scheduling
decisions for the same resource blocks, effectively leading to
conflicts. Secondly, a significant issue is related to control
delegation, where the VSF code pushed to the agents by the
controller needs to be compiled against the processor archi-
tecture of the target agent using the programming language of
the FlexRAN agent API (currently in C). Introducing a high-
level domain-specific language that would make the devel-
opment of VSFs technology-agnostic would greatly simplify
this process, especially in cases where the underlying infras-
tructure is heterogeneous in terms of the agent implemen-
tation. Another issue that needs to be further considered is
related to the security concerns of the VSF updation mech-
anism, which could cause complications for the deployment
of third-party applications (see Sec. 4.3.1). Furthermore, as
already discussed, FlexRAN does not currently employ any
high-level abstractions in the northbound API and instead re-
veals raw information. Therefore, introducing abstractions
for control and for RIB access could greatly simplify the de-
velopment of control and management applications. Finally,
improving the scalability of FlexRAN for wide area settings
by introducing another layer of control and broadening its
scope to go beyond the control and management of the radio
resources in the cellular RAN by considering other domains
like the core network and multi-RAT settings would provide
a more holistic SDN solution for future mobile networks.

8. CONCLUSIONS

In this paper we have presented FlexRAN, a flexible and
programmable SD-RAN platform. FlexRAN enables the sep-
aration of the control from the data plane through a custom-
tailored southbound API, while providing inherent support
for real-time RAN applications. FlexRAN offers significant
benefits to the RAN, including the flexibility to dynamically
modify the degree of coordination among base stations to re-
alize both distributed and centralized modes of operation and
the programmability to adapt control over time turning the
RAN into an evolvable network. All these while being trans-
parent to end-devices, simplifying its deployment and pro-
moting innovation both for the industrial and the academic
research community. The implementation of FlexRAN over
the OpenAirInterface LTE platform and our evaluation re-
sults confirm the feasibility of its deployment even when con-
sidering time critical operations like MAC scheduling. The
effectiveness of FlexRAN as an SD-RAN platform was high-
lighted through a diverse set of use cases in the context of
current 4G and future 5G networks, focusing on interference
management, mobile edge computing and RAN sharing.

Acknowledgments

We thank our shepherd Wenjun Hu and the anonymous re-
viewers for their helpful suggestions on improving the pa-
per. This work was partly funded by the European FP7 FLEX
project (612050) and H2020 COHERENT project (671639).

9. REFERENCES

[1] https://developers.google.com/protocol-buffers/.

[2] https://gitlab.eurecom.fr/oai/openair-cn.

[3] http://www.linuxfoundation.org/collaborate/
workgroups/networking/netem.

[4] http://dashif.org/reference/players/javascript/v2.1.1/
samples/dash-if-reference-player/index.html.

[5] http://dash.edgesuite.net/dash264/TestCases/2a/
qualcomm/1/MultiResMPEG2.mpd.

[6] http://dash.edgesuite.net/akamai/streamroot/0507 14/
Spring_4Ktest.mpd.

[7] 5G PPP Architecture Working Group. View on 5G
Architecture, 2016.

[8] L. F. Akyildiz et al. SoftAir: A software defined
networking architecture for 5G wireless systems.
Computer Networks, 85:1-18, 2015.

[9] H. Ali-Ahmad et al. CROWD: an SDN approach for
DenseNets. In Second European Workshop on
Software Defined Networks (EWSDN), pages 25-31.
IEEE, 2013.

[10] J. G. Andrews et al. What will 5G be? IEEE Journal
on Selected Areas in Communications,
32(6):1065-1082, 2014.

[11] A. Apostolaras et al. Evolved User Equipment for
Collaborative Wireless Backhauling in Next
Generation Cellular Networks. In 12th Annual IEEE
International Conference on Sensing, Communication,
and Networking (SECON), pages 408—416. IEEE,
2015.

[12] M. Arslan et al. Software-Defined Networking in
Cellular Radio Access Networks: Potential and
Challenges. Communications Magazine, IEEE,
53(1):150-156, 2015.

[13] A. Banerjee et al. Scaling the LTE Control-Plane for
Future Mobile Access. In Proceedings of the 11th
ACM CoNEXT. ACM, 2015.

[14] M. Bansal et al. OpenRadio: A Programmable
Wireless Dataplane. In Proceedings of the 1st
workshop on Hot topics in Software Defined Networks,
pages 109-114. ACM, 2012.

[15] C. Bernardos et al. An Architecture for Software
Defined Wireless Networking. Wireless
Communications, IEEE, 21(3):52-61, 2014.

[16] F. Boccardi et al. Five Disruptive Technology
Directions for 5G. Communications Magazine, IEEE,
52(2):74-80, 2014.

[17] T. Chen et al. SoftMobile: Control Evolution for
Future Heterogeneous Mobile Networks. Wireless
Communications, IEEE, 21(6):70-78, 2014.

[18] I. Chih-Lin et al. Recent Progress on C-RAN

Centralization and Cloudification. Access, IEEE,
2:1030-1039, 2014.

[19] X. Costa-Pérez et al. Radio Access Network
Virtualization for Future Mobile Carrier Networks.
Communications Magazine, IEEE, 51(7):27-35, 2013.

[20] S. Costanzo et al. OpeNB: A framework for
Virtualizing Base Stations in LTE Networks. In /EEE
International Conference on Communications (ICC),
pages 3148-3153. IEEE, 2014.

[21] S. Deb et al. Algorithms for Enhanced Inter Cell
Interference Coordination (eICIC) in LTE HetNets.
IEEE/ACM Transactions on Networking (TON),
22(1):137-150, 2014.

[22] A. Gudipati et al. SoftRAN: Software Defined Radio
Access Network. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software
defined networking, pages 25-30. ACM, 2013.

[23] Y. C. Hu et al. Mobile Edge Computing - A Key
Technology Towards 5G. ETSI White Paper, 11, 2015.

[24] X. Jin et al. SoftCell: Scalable and Flexible Cellular
Core Network Architecture. In Proceedings of the 9th
ACM CoNEXT, pages 163—-174. ACM, 2013.

[25] S. Katti and L. E. Li. RadioVisor: A Slicing Plane for
Radio Access Networks. In Open Networking Summit
2014 (ONS 2014), 2014.

[26] J. Khun-Jush et al. Licensed shared access as
complementary approach to meet spectrum demands:
Benefits for next generation cellular systems. In ETSI
Workshop on reconfigurable radio systems, 2012.

[27] L. E. Li et al. Toward Software-Defined Cellular
Networks. In European Workshop on Software Defined
Networking (EWSDN), pages 7-12. IEEE, 2012.

[28] T. Mahmoodi and S. Seetharaman. Traffic Jam:
Handling the Increasing Volume of Mobile Data
Traffic. Vehicular Technology Magazine, IEEE,
9(3):56-62, 2014.

[29] M. Moradi et al. SoftMoW: Recursive and
Reconfigurable Cellular WAN Architecture. In
Proceedings of the 10th ACM CoNEXT, pages
377-390. ACM, 2014.

[30] NGMN Alliance. 5G White Paper, 2015.

[31] N. Nikaein et al. OpenAirlnterface: A flexible
platform for 5G research. ACM SIGCOMM CCR,
44(5):33-38, 2014.

[32] K. Pentikousis et al. MobileFlow: Toward
Software-Defined Mobile Networks. Communications
Magazine, IEEE, 51(7):44-53, 2013.

[33] Z. A. Qazi et al. KLEIN: A Minimally Disruptive
Design for an Elastic Cellular Core. In Proceedings of
the 2nd ACM SIGCOMM Symposium on Software
Defined Networking Research. ACM, 2016.

[34] 1. Sodagar. The MPEG-DASH Standard for
Multimedia Streaming Over the Internet. /[EEE
MultiMedia, pages 62-67, 2011.

[35] A. Syed and J. Van der Merwe. Proteus: A network
service control platform for service evolution in a

mobile software defined infrastructure. In Proceedings [38] W. Wu et al. PRAN: Programmable Radio Access

of the 22nd Annual International Conference on Networks. In Proceedings of the 13th ACM Workshop
Mobile Computing and Networking, pages 257-270. on Hot Topics in Networks, page 6. ACM, 2014.
ACM, 2016. [39] M. Yang et al. OpenRAN: A Software-defined RAN
[36] K. Tsagkaris et al. SON Coordination in a Unified Architecture Via Virtualization. ACM SIGCOMM
Management Framework. In 77th IEEE Vehicular Computer Communication Review, 43(4):549-550,
Technology Conference (VIC Spring), pages 1-5. 2013.
IEEE, 2013. [40] V. Yazici et al. A new control plane for 5G network
[37] B. Wang et al. Multimedia Streaming via TCP: An architecture with a case study on unified handoff,
Analytic Performance Study. ACM Transactions on mobility, and routing management. Communications
Multimedia Computing, Communications, and Magazine, IEEE, 52(11):76-85, 2014.

Applications (TOMM), 4(2):16, 2008.

