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Abstract
The propagation of Dyakonov–Tamm waves guided by the planar interface of an isotropic
topological insulator and a structurally chiral material, both assumed to be nonmagnetic, was
investigated by numerically solving the associated canonical boundary-value problem. The
topologically insulating surface states of the topological insulator were quantitated via a surface
admittance gTI, which significantly affects the phase speeds and the spatial profiles of the
Dyakonov–Tamm waves. Most significantly, it is possible that a Dyakonov–Tamm wave
propagates co-parallel to a vector u in the interface plane, but no Dyakonov–Tamm wave
propagates anti-parallel to u. The left/right asymmetry, which vanishes for g = 0TI , is highly
attractive for one-way on-chip optical communication.

Keywords: chiral smectic liquid crystal, Dyakonov–Tamm wave, one-way device, sculptured
thin film, structurally chiral material, topological insulator

(Some figures may appear in colour only in the online journal)

1. Introduction

Dyakonov–Tamm waves are electromagnetic surface waves
whose propagation is guided by the planar interface of two
dielectric materials, one of which is isotropic and homo-
geneous whereas the second is anisotropic and periodically
nonhomogeneous normal to the interface plane [1]. In con-
trast, the second partnering material must be isotropic for
Tamm-wave propagation [2–5], whereas that material must be

homogeneous for Dyakonov-wave propagation [6–8]. All
three types of surface waves propagate ideally without
attenuation, unlike surface-plasmon-polariton waves [9], as
all three exist in all-dielectric metamaterial architectures [10].
Dyakonov and Dyakonov–Tamm waves offer different phase
speeds in different directions of propagation in the interface
plane, which makes them more attractive than Tamm waves
for communication. But, while the allowed directions of
propagation of Dyakonov waves are confined to two minute
angular sectors (typically, each less than 1° in width [8, 11])
in the interface plane, Dyakonov–Tamm waves were theore-
tically predicted not to suffer from that restriction. The exis-
tence of these waves has been confirmed recently in two
distinct experimental configurations [12, 13].
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Theoretical investigation [14] has recently shown that
left/right asymmetry can be introduced in Dyakonov-wave
propagation by

(i) endowing the isotropic, homogeneous, dielectric part-
nering material with topologically insulating surface
states (TISS) [15–17] and

(ii) choosing the anisotropic, homogeneous, dielectric
partnering material to possess orthorhombic crystal-
lographic symmetry such that no more than one of the
three eigenvectors of its relative permittivity dyadic lies
in the interface plane.

Then, the Dyakonov wave propagating coparallel to a vector
u in the interface plane has a different phase speed and
different spatial profile as compared to the Dyakonov wave
which propagates antiparallel to u. Indeed, it may be possible
for a Dyakonov wave to propagate coparallel to u but for no
Dyakonov to propagate antiparallel to u. We refer to this
asymmetry with respect to interchanging the direction of
surface-wave propagation as left/right asymmetry. The
exploitation of left/right asymmetry is promising for one-
way optical devices, which could reduce backscattering noise
[18] in optical communication networks, microscopy, and
tomography, for example. Let us note here that left/right
asymmetry is not exhibited when the TISS are replaced by
ordinary surface conducting states [19, 20].

Although the incorporation of an isotropic topological
insulator (TI) as a partnering material [16, 21] introduces left/
right asymmetry in surface-wave propagation, the angular
sectors of allowable propagation remain minute in extent [14].
With the aim of widening those angular sectors, we decided to
make the anisotropic partnering material periodically non-
homogeneous in the direction normal to the interface plane.
Specifically, we chose that partnering material to be a struc-
turally chiral material (SCM) [1]—exemplified by chiral
smectic liquid crystals [22] and chiral sculptured thin films
[23]—the other partnering material being an isotropic
TI [24, 25].

The plan of this paper is as follows. Section 2 contains a
formulation of the canonical problem for Dyakonov–Tamm-
wave propagation guided by the planar interface of an iso-
tropic TI and an SCM. In the canonical problem, all space is
partitioned into two half spaces, one of which is occupied by
one partnering material and the second by the other partnering
material. Although practically unimplementable in the strict
sense, the canonical problem lies at the heart of practically
implementable configurations such as the prism-coupled,
grating-coupled, and waveguide-coupled configurations
[26, 27]. Numerical results are provided and discussed in
section 3.

An ( )w- texp i dependence on time t is implicit, with ω

denoting the angular frequency and = -i 1 . The free-space
wavenumber, the free-space wavelength, and the intrinsic
impedance of free space are denoted by w e m=k0 0 0 ,

l p= k20 0, and h m e=0 0 0 , respectively, with e0 and m0
being the permeability and permittivity of free space. The
speed of light in free space is denoted by e m=c 10 0 0 .

Vectors are in boldface; dyadics are underlined twice; Car-
tesian unit vectors are identified as û ,x û ,y and û ;z column
vectors are in boldface and enclosed with square brackets; and
matrixes are underlined twice and enclosed with square
brackets.

2. Theory

A schematic of the boundary-value problem for the propa-
gation of the Dyakonov–Tamm wave is provided in
figure 1. The half-space <z 0 is occupied by an isotropic TI
with a relative permittivity e = nTI TI

2 and a surface admit-
tance gTI which quantifies the TISS [16] that arise in con-
sequence of a geometric phase that cannot be gauged away
in a cyclic system [28, 29]. Alternatively, the half-space
<z 0 can be modeled as being occupied by an isotropic,

nonreciprocal, achiral, nonmagnetic material with relative
permittivity eTI and Tellegen parameter g ;TI but we prefer
the former description because it brings out the presence of
TISS very clearly [20] and conforms to the Post con-
straint [21].

The half-space >z 0 is occupied by an SCM whose
permittivity dyadic is given by

( ) ( ) · ( ) · · ( ) · ( ) ( )◦e e c e c= - -z S z S S S z . 1z y y zSCM 0 ref
1 1

Here, the dyadics

( ) ( ˆ ˆ ˆ ˆ ) ( )
( ˆ ˆ ˆ ˆ ) ( ) ˆ ˆ

( ) ( ˆ ˆ ˆ ˆ )
( ˆ ˆ ˆ ˆ ) ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

( )

◦

p

p
c c

c
e e e e

= + W

+ - W +
= +

+ - +
= + +

⎫

⎬
⎪⎪⎪

⎭
⎪⎪⎪

S z z

h z

S

u u u u

u u u u u u

u u u u

u u u u u u

u u u u u u

cos

sin

cos

sin

; 2

z x x y y

y x x y z z

y x x z z

z x x z y y

a z z b x x c y yref

h=1 for structural right-handedness and = -h 1 for
structural left-handedness; W2 is the structural period of the
SCM along the z axis; and ( ]c pÎ 0, 2 . Whereas
e e e= ¹a c b and c = 0 for cholesteric liquid crystals,

Figure 1. Schematic of the boundary-value problem solved.
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e e e¹ ¹a b c and ( ]c pÎ 0, 2 for chiral smectic liquid
crystals [22] and chiral sculptured thin films [23]. Both
partnering materials are assumed to be nonmagnetic.

2.1. Field representations

We consider the Dyakonov–Tamm wave to be propagating
parallel to the unit vector ˆ ˆ ˆy y= +u u ucos sinx yprop ,

[ )y Î  0 , 360 , in the xy plane and decaying far away from
the interface z = 0. With q as the wavenumber of the Dya-
konov–Tamm wave, the electric and magnetic phasors can be
represented everywhere by

( ) ( ) ( ˆ · )
( ) ( ) ( ˆ · )

( )
=
=

⎫⎬⎭
z q

z q

E r e u r

H r h u r

exp i

exp i
. 3

prop

prop

In the region <z 0, the field phasors may be written as
[21, 27]

( ) [ ( ˆ ˆ )

ˆ ˆ

( ) ( )

y y

a

a

= - +

+ +

´ - <

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

z A

A
k

q

k

z z

e u u

u u

sin cos

exp i , 0 4

x y

z

1

2
TI

0
prop

0

TI

and

( ) ˆ ˆ

( ˆ ˆ )]
( ) ( )

h
a

y y
a

= +

- - +
´ - <

-
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟z A

k

q

k

A n

z z

h u u

u usin cos

exp i , 0, 5

z

x y

0
1

1
TI

0
prop

0

2 TI
2

TI

where A1 and A2 are unknown scalars, q is positive and real-
valued for unattenuated propagation in the xy plane,

a e+ =q k2
TI
2

0
2

TI, and ( )a >Im 0TI for attenuation
as z→−¥.

The field representation in the region >z 0 requires the
formulation of the column vector [23, 27]

[ ( )] [ ( ) ( ) ( ) ( )] ( )=z e z e z h z h zf 6x y x y
T

which satisfies the matrix differential equation [1]

[ ( )] · [ ( )] ( )p
y=

W
>⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥z

z P h
z

z zf f
d

d
i , , 0, 7

where the 4×4 matrix
and the scalar

( )e
e e

e c e c
=

+cos sin
. 9d

a b

a b
2 2

Equation (7) has to be solved numerically in order to
determine the matrix [ ]Q that appears in the relation

[ ( )] [ ] · [ ( )] ( )W = +Qf f2 0 10

to characterize the optical response of one period of the SCM.
By virtue of the Floquet theory [30], we can define a

matrix [ ˜]Q such that

[ ] { [ ˜]} ( )= WQ Qexp i2 . 11

Both [ ]Q and [ ˜]Q share the same eigenvectors, and their
eigenvalues are also related. Let [ ]( )t n , ( )=n 1, 2, 3, 4 , be
the eigenvector corresponding to the nth eigenvalue sn of
[ ]Q ; then, the corresponding eigenvalue an of [ ˜]Q is given
by

( )a
s

= -
W

i
ln

2
. 12n

n

[ ( )]
( ) ( )

( ) ( )

( )

( )

z y w

m
m

e e e z z e e z e z
e e z e z e e e z z

e e e
e e

c c

z y z y
z y z y

z y z y
z y z y

we
e
e e

y y y
y y y

wm y y y
y y y

=
-

- - +
+ - -

+
-

´
-

-

+

-
-

+ -
-

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

P q

q

q

,

0 0 0

0 0 0

cos sin cos sin 0 0

sin cos cos sin 0 0

sin cos

cos cos sin cos 0 0
cos sin sin sin 0 0

0 0 sin sin sin cos
0 0 cos sin cos cos

0 0 cos sin cos

0 0 sin cos sin
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

cos sin cos 0 0

sin cos sin 0 0

8

c d c d

c d c d

d a b

a b

d

a b

0

0

0 0
2 2

0
2 2

0

2

0

2

2

2

0
2

2
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2.2. Dispersion equation

For the Dyakonov–Tamm wave to propagate parallel to û ,prop

we must ensure that ( )a >Im 01,2 , and set

[ ( )] [ [ ] [ ] ] · ( )( ) ( )=+
⎡
⎣⎢

⎤
⎦⎥

B
B

f t t0 , 131 2 1

2

where B1 and B2 are unknown scalars, and [ ( )]zf stands for
[ ( )]dd zflim 0 with d 0. The other two eigenvalues of

[ ˜]Q describe waves that amplify as  ¥z and cannot
therefore contribute to the Dyakonov–Tamm wave. At the
same time

[ ( )] · ( )

y y

y y

h y h y

h y h y

=

-

-

a

a

a

a

-
- -

- -

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡
⎣⎢

⎤
⎦⎥n

n

A
A

f 0

sin cos

cos sin

cos sin

sin cos

, 14

k

k

k

k

0
1

TI
2

0
1

0
1

TI
2

0
1

1

2

TI

0

TI

0

TI

0

TI

0

by virtue of equations (4) and (5).
Whereas the tangential component of the electric field

phasor is continuous across the plane z=0, the existence of
the protected TISS on the boundary of the TI implies a dis-
continuity in the tangential component of the magnetic field
phasor across the same plane [14, 20, 21]. Accordingly

· [ ( )] [ ( )] ( )g
g

-
-

=- +

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥ f f

1 0 0 0
0 1 0 0

0 1 0
0 0 1

0 0 , 15
TI

TI

which may be rearranged as

[ ] · ( )=

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
M

A
A
B
B

0
0
0
0

. 16

1

2

1

2

For a nontrivial solution, the 4×4 matrix [ ]M must be
singular, so that

[ ] ( )=Mdet 0 17

is the dispersion equation for the Dyakonov–Tamm wave.

3. Numerical results and discussion

We numerically solved the dispersion equation to obtain the
normalized wavenumbers ˜ =q q k0 of the Dyakonov–Tamm
waves. Knowing q, we can calculate the phase speed

˜=v c qph 0 of the Dyakonov–Tamm wave. The spatial profile
of the rate of energy flow associated with a Dyakonov–Tamm
wave is provided via the time-averaged Poynting vector

( ) ( ) ( ) [ ( ) ( )]*º = ´x y z z zP r P e h, , 1 2 Re , where the
asterisk denotes the complex conjugate.

For all numerical results reported here, we fixed
l = 633 nm0 and W = 197 nm. For definiteness, the SCM

Figure 2. q̃ as a function of both ψ and ḡ for (a) c = 7.2v , =nTI

1.64; (b) c = 15v , =n 1.7;TI and (c) c = 19.1v , =n 1.8TI . Cross
hatching identifies those values of ψ for which a Dyakonov–Tamm
wave exists but does not exist for y  180 . Blank areas: no solution
of equation (17).

4

J. Opt. 18 (2016) 115101 F Chiadini et al



was taken to be a chiral sculptured thin film, which comprises
an array of parallel nanohelixes that rise at an angle χ to the
interface plane by means of a vapor deposition process [23].
In accordance with empirical relationships determined for a
columnar thin film of patinal titanium oxide produced by
directing the vapor flux at an angle cv onto a rotating sub-
strate, the principal relative permittivities are [31]

( )

e
c c

e
c c

e
c c

= + -

= + -

= + -

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫

⎬

⎪⎪⎪⎪

⎭

⎪⎪⎪⎪

1.0443 2.7394
90

1.3697
90

1.6765 1.5649
90

0.7825
90

1.3586 2.1109
90

1.0554
90

18

a
v v

b
v v

c
v v

2 2

2 2

2 2

with cv being in degree, and the angle

( ) ( )c c= arctan 2.8818 tan . 19v

We considered { }c =   7.2 , 15.0 , 19.1v along with
{ }=n 1.64, 1.7, 1.8TI , but kept ¯ ˜g h g a= -

0 TI
1 variable,

where ã = ´ -7.297352566 10 3 is the fine structure constant
[32]. The direction of propagation was also varied in the xy
plane, i.e., [ )y Î  0 , 360 . All calculations were restricted to

˜ <n q 3TI to avoid computational instabilities that emerged

Table 1. Parameters in equation (20) delineating the regions in the
¯yg plane in which the propagation of Dyakonov–Tamm waves is

allowed in figures 2(a)–(c).

Figure 2 cv nTI yC yD ḡC ḡD

(a) 7.2° 1.64 −38° 52° 80 450
(b) 15.0° 1.70 −18° 21° 248 145
(c) 19.1° 1.80 −16° 53° 415 395

Figure 3. Spatial variations of the Cartesian components of the time-averaged Poynting vector ( )zP 0, 0, of the Dyakonov–Tamm wave
guided by the TI/SCM interface when c = 7.2v and =n 1.64TI . (a) y = 148 and ḡ = 100, (b) y = 148 and ḡ = -100, (c) y = 328
and ḡ = 100, (d) y = 328 and ḡ = -100. The components parallel to û ,x û ,y and ûz are represented by blue solid, black broken dashed,
and red dashed lines, respectively.
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for ˜ >q 3, whereas q̃ must be greater than nTI to ensure
that a = - <k n q 0TI

2
0
2

TI
2 2 .

In figure 2(a), q̃ is displayed as a function of both ψ and
ḡ when c = 7.2v and =n 1.64TI . Solutions to the dispersion
equation (17) were found in the range ˜ q1.6405 1.6435
corresponding to a normalized phase speed v cph 0 in the range

 v c0.6085 0.6096ph 0 . Dyakonov–Tamm-wave propa-
gation is exhibited for [ ] [ ]Èy Í     È0 , 16 92 , 196
[ ] 272 , 360 , the widths of the angular sectors available for
Dyakonov–Tamm-wave propagation being large in compar-
ison to the 1 widths of angular sectors for Dyakonov-wave
propagation [14].

The same is true in figure 2(b) for c = 15v and =n 1.7TI ,
and in figure 2(c) for c = 19.1v and =n 1.8TI . In figure 2(b),
the solutions cover the range ˜ q1.7394 1.7402, corresp-
onding to normalized phase speeds in the range

 v c0.5746 0.5749ph 0 . In figure 2(c), the solutions cover
the range ˜ q1.8193 1.8264, corresponding to normalized
phase speeds in the range  v c0.5475 0.5497ph 0 .

All three panels in figure 2 indicate that the propagation
of Dyakonov–Tamm waves, if it can occur for chosen values
of the pair { }c n,v TI , is possible in two non-overlapping
regions in the ¯yg plane. Each region is bounded by an

elliptical contour represented parametrically as the ellipse
{ ( ) ¯ ( )}y J g J, , with

( ) ( )
¯ ( ) ( ) ¯ ¯

[ ] { }
( )

y J y y J
g J g g J

J

= +  + 
= - +

Î   Î

⎫⎬⎭
ℓ

ℓ

180 cos mod 360

1 sin

0 , 360 , 1, 2 .

20
C D

ℓ
C D

The region described by =ℓ 1 is located roughly in the center
of the ¯yg plane in each panel, while the region described by
=ℓ 2 is split into two parts because ( )y J is cyclic with

period 360°. The center of the ellipse is located at
{ ( ) ¯ }y g+  -ℓ180 , 1C

ℓ
C for { }Îℓ 1, 2 , the projection of

each ellipse on the ψ axis is y2 D, and the projection of each
ellipse on the ḡ axis is ḡ2 D. Values of the parameters yC D, and
ḡC D, for all three panels are provided in table 1.

Figure 2 clearly shows that Dyakonov–Tamm waves are
allowed for both positive and negative values of the surface
admittance gTI. However, the angular sectors (on the ψ axis)
are different for g > 0TI than for g < 0TI .

Whereas Dyakonov–Tamm-wave propagation is possible
for g = 0TI in figure 2(a), that is not true in figures 2(b) and
(c). Therefore, the incorporation of the protected TISS with an

Figure 4. Same as figure 3 except that the magnitudes of the Cartesian components of the electric field phasor ( )zE 0, 0, are plotted.
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appropriate value of gTI can trigger the excitation of Dyako-
nov–Tamm waves.

Left/right asymmetry is evident in all three panels in
figure 2. If Dyakonov–Tamm waves are allowed to propagate
in the two directions indicated by [ ]y Î  0 , 180 and
y + 180 for a specific value of g ¹ 0TI , the two Dyakonov–
Tamm waves have different phase speeds (and, therefore,
other characteristics). More significantly, figure 2 makes it
clear that if a Dyakonov–Tamm wave can propagate in the
direction indicated by [y Î  0 , 360 ), there is also the like-
lihood that no Dyakonov–Tamm wave can propagate in the
direction indicated by y  180 . Cross hatching in all three
panels highlights the values of ψ for which Dyakonov–
Tamm-wave propagation is possible but not for y  180 .
These regions of total left/right asymmetry are very attractive
for one-way devices, although they require high values of
∣ ¯∣g [17].

Further insights into the nature of these Dyakonov–
Tamm waves may be gained by considering the spatial pro-
files of the Cartesian components of the electric and magnetic
field phasors, along with those of the corresponding time-
averaged Poynting vector. To allow for a consistent

comparison, the amplitude of the time-averaged Poynting
vector was constrained as ˆ · ( ) =-u P 0, 0, 0 1prop Wm−2.
Then, by virtue of equations (4) and (5), we get

∣ ∣
˜

∣ ∣ ( )
h

e= -A
q

A
2

211
2 0

TI 2
2

which allows all coefficients in the column vector on the left
side of equation (16) to be specified.

The Cartesian components of ( )zP 0, 0, are plotted ver-
sus z in figure 3 for the Dyakonov–Tamm wave excited when
c = 7.2v , =n 1.64TI , and ( ¯ ) {( )y g Î  , 148 , 100 ,
( )} 328 , 100 . A comparison of figures 3(a) and (b) reveals
that, for y = 148 , the power density is slightly more con-
fined to the TI when gTI is positive while for negative gTI the
confinement is slightly greater to the SCM. In contrast, a
comparison of figures 3(c) and (d) reveals that, for y = 328 ,
the power density is slightly more confined to the TI for
negative gTI while the confinement is slightly greater to the
SCM for positive gTI. After noting that  =  + 328 148 180 ,
left/right asymmetry becomes evident on comparing
figures 3(a) and (c) and/or comparing figures 3(b) and (d).
The signs of Px and Py are reversed when together ûprop

changes to ˆ-uprop and gTI changes to g- TI, as may be

Figure 5. Same as figure 3 except that the magnitudes of the Cartesian components of the magnetic field phasor ( )zH 0, 0, are plotted.
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appreciated after comparing figures 3(b) and (c) and/or
comparing figures 3(a) and (d).

Figures 4 and 5 show the magnitudes of the Cartesian
components of ( )zE 0, 0, and ( )zH 0, 0, respectively, plotted
against z for the same values of cv, n ,TI ψ, and ḡ as used for
figure 3. All Cartesian components decay exponentially inside

the TI as z→−¥, consistently with equations (4) and (5).
The periodic undulations of the Cartesian components inside
the SCM dampen as  ¥z , in accord with the periodic
nonhomogeneity of the SCM [27], as is warranted by Floquet
theory [30].

The spatial profiles of the Cartesian components of the
electric and magnetic field phasors in figures 4 and 5 vary
relatively little in the SCM when either ûprop changes to

ˆ-uprop or gTI changes to g- TI, but more substantial variations
are observed in the TI, especially for Ez, Hx, and Hy. Left/
right asymmetry is obvious, e.g., on comparing figures 4(a)
and (c) or comparing figures 5(b) and (d). Finally, the spatial
profiles of the fields remain unchanged when ûprop changes to

ˆ-uprop and gTI changes to g- TI, as may be appreciated by
comparing figures 4(b) and (c) and/or comparing figures 5(a)
and (d).

Similar conclusions can be drawn looking at the spatial
profiles for a case of total left/right asymmetry, in which
Dyakonov–Tamm-wave propagation is possible for some ψ

but not for y  180 . As an example, figure 6 provides the
spatial profiles of magnitudes of the Cartesian components of

( )zP 0, 0, , ( )zE 0, 0, , and ( )zH 0, 0, of the Dyakonov–
Tamm wave guided by the TI/SCM interface when c = 15v ,

=n 1.70TI , y = 162 , and ḡ = -248. Dyakonov-wave
propagation is not possible for y = 342 , other parameters
remaining unchanged, according to figure 2(b). The spatial
profiles in figure 6 are very similar to those in figures 3(b),
4(b), and 5(b), for which y < 180 and ḡ < 0.

A discussion of the discontinuities and continuities of the
Cartesian components of the electric and magnetic field
phasors across the plane z=0 is in order. Both Ex and Ey

must be continuous while Ez must be discontinuous, accord-
ing to the standard boundary conditions of electromagnetics
[33]. The plots in figures 4 and 6(b) are in accord with these
constraints. As both partnering materials have been taken to
be non-magnetic, Hz must be continuous across the plane
z=0 [33]. The plots in figures 5 and 6(c) show this con-
tinuity. The existence of the protected TISS must make Hx

and Hy discontinuous across the plane z=0, which is evident
in figures 5 and 6(c). The continuities of Ex and Ey and the
discontinuities of Hx and Hy were, of course, incorporated via
equation (15).

4. Concluding remarks

We formulated and solved the boundary-value problem for
electromagnetic surface waves guided by the planar interface
of an SCM and a TI, both materials assumed to be non-
magnetic. The protected TISS on the interface were quanti-
tated through a surface admittance gTI. Our numerical
investigation demonstrated that the phase speeds and the
spatial profiles of Dyakonov–Tamm waves are significantly
affected by gTI. A left/right asymmetry is exhibited whereby
the phase speed and electromagnetic field profiles for a
Dyakonov–Tamm wave that propagates co-parallel to a vec-
tor u in the interface plane are generally different to those for

Figure 6. Spatial variations of the Cartesian components of (a)
( )zP 0, 0, , (b) ( )zE 0, 0, , and (c) ( )zH 0, 0, of the Dyakonov–

Tamm wave guided by the TI/SCM interface when c = 15v ,
=n 1.70TI , y = 162 , and ḡ = -248. The components parallel to

û ,x û ,y and ûz are represented by blue solid, black broken dashed,
and red dashed lines, respectively.
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a Dyakonov–Tamm wave that propagates anti-parallel to u.
Even more importantly, the existence of a Dyakonov–Tamm
wave that propagates co-parallel to a vector u in the interface
plane does not imply the existence of a Dyakonov–Tamm
wave that propagates anti-parallel to u. The left/right asym-
metry, which vanishes if the surface admittance vanishes, is
highly attractive for one-way on-chip optical communication.
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