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Abstract
If Voigt-wave propagation is possible in a dissipative anisotropic dielectric
material characterised by the permittivity dyadic e, then it is also possible in
the analogous energetically active material characterised by the permittivity
dyadic ẽ, where ẽ is the hermitian conjugate of e. This symmetry follows
directly from a theoretical analysis of the necessary and sufficient conditions
for Voigt-wave propagation in anisotropic materials. As a consequence of this
symmetry, a porous dissipative material that exhibits Voigt-wave propagation
can be used to construct a material that allows the propagation of Voigt waves
with attendant linear gain in amplitude with propagation distance, by means of
infiltration with an electrically or optically activated dye, for example. This
phenomenon is captured by the Bruggeman formalism for homogenised
composite materials based on isotropic dielectric component materials that are
randomly distributed as oriented spheroidal particles.

Keywords: Voigt-wave propagation, active materials, anisotropic dielectric
materials, homogenised composite materials, Bruggeman formalism
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1. Introduction

Plane-wave analysis is a cornerstone of electromagnetic theory. Although plane waves
themselves are idealisations, possessing limitless spatial and temporal extents and limitless
energy, they can facilitate deep insights into fields distant from sources; moreover, realistic
signals may be conveniently represented as superpositions of plane waves. Therefore,

Figure 1. Two-dimensional representations of the surfaces described by the ordinary
wavenumber kor (red circles) and the extraordinary wavenumber kex (blue ellipses) in a
nondissipative uniaxial dielectric material characterised by the relative permittivity
dyadic e e- +^ ( ˆ ˆ) ˆ ˆI u u u u , where û is aligned with the optic axis while e >^  0, .
The radius of the red circle is êk0 , while the semiaxes of the blue ellipse are of
lengths êk0 and ek0 . Top: negative uniaxiality (i.e., e e>^ ). Bottom: positive

uniaxiality (i.e., e e<^ ).
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undergraduate textbooks on electromagnetics and optics invariably present plane waves right
after introducing the frequency-domain Maxwell equations and the standard boundary con-
ditions [1–3].

Although many different mathematical techniques can be used to investigate plane-wave
propagation either co-parallel or anti-parallel to the unit vector ûprop in a given homogeneous
medium, a general method is to substitute ´ by ´ˆkui prop in the frequency-domain Maxwell
curl postulates. Here k is the wavenumber, = -ı 1 , and an w-( )texp i dependence on time t
is assumed with ω being the angular frequency. The substitution results in four algebraic
equations containing the two components of the electric field and the two components of the
magnetic field that are orthogonal to ûprop. These four algebraic equations can be written
using a 4×4 plane-wave propagation matrix [ ]P and a column vector containing the four
transverse field components [4]. Usually, [ ]P has four distinct eigenvectors and therefore is
diagonalizable [5]. Each eigenvector and the corresponding wavenumber together describe a
plane wave. Two of the four plane waves propagate parallel to ûprop, while the other two
propagate parallel to- ûprop. In the remainder of this paper, we consider the two plane waves
propagating parallel to ûprop, being focused on the situation when the corresponding two
eigenvectors are not distinct from each other.

In a nondissipative isotropic dielectric material (as well as in vacuum), both plane waves
propagating parallel to ûprop have the same wavenumber but their eigenvectors are distinct
(and therefore are mutually orthogonal [5]). As there is only one wavenumber, such a material
is called unirefringent. The sole wavenumber does not depend on the direction of propaga-
tion. In a nondissipative anisotropic dielectric material, the two plane waves will, in general,
have different wavenumbers [6, 7]. Accordingly, such a material is called birefringent. In any
uniaxial dielectric material, one of the two plane waves is classified as ordinary while the
other is classified as extraordinary. The wavenumber of the ordinary plane wave does not
depend on the direction of propagation, but the wavenumber of the extraordinary plane wave
does. Along the two directions aligned with the optic axis of the material, the wavenumbers of
the ordinary and the extraordinary plane waves are the same, but their eigenvectors are
distinct from each other. The dependences of the wavenumbers of ordinary and extraordinary
plane waves are schematically illustrated in figure 1. In a biaxial dielectric material, both
plane waves are extraordinary. They have distinct wavenumbers and eigenvectors that depend
upon the direction of propagation. There are two optic axes for a biaxial dielectric material,
with the wavenumbers of both plane waves being the same for propagation along an
optic axis.

A material can be idealized as nondissipative if attenuation of waves can be ignored over
the length scales of interest. Matters are further complicated if a material must be considered
as dissipative. In certain dissipative anisotropic dielectric materials, there exist directions of
propagation—distinct from the directions aligned with the optic axes—along which both
plane waves have only one wavenumber and their eigenvectors are not distinct from each
other. Both plane waves then coalesce into what is called a Voigt wave [8–12]. A Voigt wave
represents a singular form of plane-wave propagation that can arise inside certain dissipative
biaxial dielectric materials of the monoclinic and triclinic types [4], as well as inside certain
gyrotropic dielectric materials [13, 14], but neither inside nondissipative materials nor inside
isotropic or uniaxial dielectric materials.

Mathematically, Voigt-wave propagation arises when the plane-wave propagation matrix
[ ]P cannot be diagonalized [4, 5]. A crucial difference between a Voigt wave and a plane
wave propagating along an optic axis is that the amplitude of the Voigt wave varies linearly
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with propagation distance whereas this is not the case for the plane wave propagating along
the optic axis.

Voigt waves were first investigated experimentally and theoretically for pleochroic
crystals [8, 9, 12]. Visible light transmitted through a pleochroic crystal appears to be of
different colours when observed from different directions, because the transmission spectrum
is direction dependent. Beryl, iolite, and alexandrite are spectacular examples of pleochroic
minerals. However, recent research indicates that a greater scope for realizing Voigt-wave
propagation is offered by engineered materials [15, 16], especially homogenised composite
materials (HCMs) [17, 18]. The directions in which Voigt waves propagate in an HCM may
be controlled through careful design of the microstructure and selection of the constitutive
properties of the component materials [19], or by the application of an external field in the
case of electro-optic materials [20]. Indeed, the ability to control the directions for Voigt-
wave propagation is promising for technological applications such as optical sensing [21].

All previous works on Voigt waves have focused on dissipative materials. The issue of
Voigt waves in energetically active materials—that is, materials in which plane-wave pro-
pagation is accompanied by a net flow of energy from the material to the field—has not been
addressed hitherto. The energy that is delivered by an active material may originate exter-
nally, from a pump laser, an electrical source, or a radioactive source, for examples. Ener-
getically active materials are useful, or indeed essential, for a host of technoscientific
applications. Prime examples are provided by lasing materials, scintillators, and luminescent
solar concentrators [22–25]. In this context, let us, for example, single out doped tungstate
materials, which can both support Voigt-wave propagation due to their monoclinic crystal
symmetry and function as highly efficient lasing materials [26, 27].

The analytical and numerical treatment of Voigt waves involves electromagnetic theory,
and a commensurate level of mathematics, accessible to senior undergraduate students of the
physical sciences and related engineering disciplines. In particular, the following presentation
highlights the usefulness of matrix algebra and complex numbers in physics, and introduces
the notion of energetically active materials which is largely conspicuous by its absence in
undergraduate electromagnetics courses.

In the following, vectors are denoted by single underlining (with the additional ˆ symbol
indicating a unit vector) while dyadics (i.e., second-rank Cartesian tensors) [7] are denoted by
double underlining. The triad of Cartesian basis vectors is { ˆ ˆ ˆ}x y z, , . The identity dyadic is
= + +ˆ ˆ ˆ ˆ ˆ ˆI x x y y z z , and the null dyadic is 0. The permittivity and permeability of free

space are e = ´ -8.854 100
12 F -m 1 and m p= ´ -4 100

7 H -m 1, respectively. The
operators [·]Re and [·]Im deliver the real and imaginary parts of complex-valued quantities.

2. Symmetry considerations

Let us consider a general anisotropic dielectric material, characterised by the frequency-
domain constitutive relations [4]

e
m

=
=

⎫⎬⎭
( ) ( )
( ) ( )

( )
D r E r

B r H r

•
, 1

0

where the scalars eℓj ( Î { }ℓ j x y z, , , ) in the permittivity dyadic

e e e e e e e
e e e e

= + + + +
+ + + +

( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ) ( )
x x x y x z y x y y

y z z x z y z z 2
xx xy xz yx yy

yz zx zy zz

0
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are complex valued. Without any loss of generality, we focus upon plane-wave propagation
along the z axis, i.e., =ˆ ˆu zprop and =( ) ˜ ( )E r E kzexp i with = + +˜ ˜ ˆ ˜ ˆ ˜ ˆE E x E y E zx y z . The
Maxwell curl postulates then yield the 2×2-matrix equation [28]

d d
d d

e=
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

˜
˜

˜
˜ ( )

E

E

k

k

E

E
, 3x

y
zz

x

y

11 12

21 22

2

0
2

where w e m=k0 0 0 is the free-space wavenumber and the scalar parameters

d e e e e
d e e e e
d e e e e
d e e e e

= -
= -
= -
= -

⎫
⎬
⎪⎪

⎭
⎪⎪

( ). 4

xx zz xz zx

xy zz xz zy

yx zz yz zx

yy zz yz zy

11

12

21

22

Two possible values for the wavenumber k emerge from equation (3), namely

d d d d d d

d d d d d d
=

+ + - +

+ - - +

e

e

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

{( ) [( ) ] }

{( ) [( ) ] }
( )k

k

k

4

4
. 5

0
1

2 11 22 11 22
2

12 21
1 2

1 2

0
1

2 11 22 11 22
2

12 21
1 2

1 2

zz

zz

Usually, in anisotropic dielectric materials these two wavenumbers are distinct from each
other, and they are associated with two mutually orthogonal eigenvectors of the 2×2 matrix
on the left side of equation (3). However, in the anomalous case of Voigt-wave propagation,
these two wavenumbers are identical and the 2×2 matrix on the left side of equation (3) has
only one eigenvector. Accordingly, Voigt-wave propagation emerges when the following
conditions are satisfied [28]:

(i)  e d d d d= - + =( ) ( ) 4 0I 11 22
2

12 21 , and
(ii)  e d= ¹( ) 0II 12 and/or  e d= ¹( ) 0III 21 .

The flow of energy associated with propagation is represented by the time-averaged
Poynting vector *= ´( ) ( ) [ ( ) ( )]P r E r H r1 2 Re , with the superscript * denoting the
complex conjugate. In particular, the divergence of the time-averaged Poynting vector is
given by [7]

* *
w

 = -{ }( ) [ ( ) ( ) ( ) ( ) ] ( )P r H r B r E r D r• Re
i

2
• • . 6

For the anisotropic dielectric material characterised by the constitutive relations (1), the right
side of equation (6) simplifies to [7]

*
w

e e = -( ) ( ) ( ˜) ( ) ( )P r E r E r•
i

4
• • , 7

where ẽ is the hermitian conjugate of e; i.e., the components of e e˜ 0 are *e e=˜ℓj jℓ

( Î { }ℓ x y z, , and Î { }j x y z, , ).
Now, if the material characterised by the constitutive relations (1) is:

• dissipative then  <( )P r• 0, which, according to equation (7), implies that the three
eigenvalues of the dyadic e eY = -( ˜ )i are negative valued (i.e., the dyadic Y is negative
definite) [5];

• energetically active then  >( )P r• 0, which, according to equation (7), implies that the
three eigenvalues of Y are positive valued (i.e., Y is positive definite) [5].Therefore, if the
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material possessing the permittivity dyadic e is dissipative then the material described by
the permittivity dyadic ẽ is energetically active, and vice versa.

Let us turn to the conditions (i) and (ii) that must be satisfied for Voigt-wave propagation.
After some algebraic manipulations, one finds

*

*

*

 

 

 

e e

e e

e e

=

=

=

⎫
⎬⎪

⎭⎪

(˜) ( )
(˜) ( )
(˜) ( )

( ). 8
I I

II III

III II

Therefore, if a dissipative (or energetically active) material described by the permittivity
dyadic e supports Voigt-wave propagation then so too must the analogous energetically active
(or dissipative) material described by the permittivity dyadic ẽ.

3. Numerical studies

The Voigt-wave symmetry established in section 2 can be demonstrated, numerically through
a consideration of HCMs that permit Voigt waves to propagate, as follows.

3.1. Homogenisation basics

For simplicity, let us consider an HCM comprising just two component materials, one
labelled a and the other b. Each component material is taken to be an isotropic dielectric
material: the permittivity dyadics e e e= Ia a0 and e e e= Ib b0 characterize the electro-
magnetic properties of the two component materials. The volume fraction of material a is

Î ( )f 0, 1 ;a correspondingly, the volume fraction of material b is = - Î ( )f f1 0, 1b a .
Let us imagine that each component material is randomly distributed as spheroidal

particles. All particles of material a have the same orientation and all particles of material b
have the same orientation, but the orientations of the particles of the different component
materials are different. For simplicity, let all particles of both component materials have the
same shape, as described by the dyadic

= + +ˆ ˆ (ˆ ˆ ˆ ˆ) ( )U U x x
U

y y z z
1

. 9

The shape parameter Î ¥( )U 1, for prolate spheroidal particles, U=1 for spherical
particles, and Î ( )U 0, 1 for oblate spheroidal particles.

The position vector

h= =ˆ ( ) ( )r U q ℓ a b• , , 10ℓ ℓ ℓ

prescribes the surface of every component particle relative to its centroid. On the right side of
equation (10), q̂ is the radial vector that prescribes the surface of the unit sphere, the real
symmetric dyadic [7] U ℓ maps the spherical surface into a spheroidal one, and h > 0ℓ is a
linear measure of particle size. As the process of homogenisation requires that the component
particles be electrically small, let us adopt the standard practice by restricting attention to the
limiting regime h  0ℓ . Parenthetically, the typically small effects on Voigt wave
propagation that may be introduced by considering the regime wherein hℓ is small but not
vanishingly small are analytically tractable [19] but lie outside the scope of this paper.

Suppose that the axis of rotational symmetry for the spheroidal particles of material a lies
in the xy plane at an angle j to the x axis; i.e.
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j j= ( ) ( ) ( )U R U R• • , 11
a z z

T

where the superscript ‘T’ denotes the transpose operation and the orthogonal rotation dyadic

j j j= + + - +( ) ( ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ) ˆ ˆ ( )R x x y y x y y x z zcos sin . 12z

Without loss of generality, the axis of rotational symmetry for the spheroidal particles of
material b is aligned with the x axis; i.e.

= ( )U U. 13
b

A schematic representation of the two component materials, randomly distributed as oriented
spheroidal particles, is provided in figure 2.

Since the orientations of the particles of the two component materials are different from
each other, the HCM is a biaxial dielectric material specified by the permittivity dyadic

e e e e e e= + + + +[ ˆ ˆ ˆ ˆ ( ˆ ˆ ˆ ˆ ) ˆ ˆ] ( )x x y y x y y x z z . 14x y t zHCM 0

which is symmetric. In order to estimate e HCM, the Bruggeman homogenisation formalism is
implemented. This well-established formalism treats both component materials on an equal
footing [29]. Neither component material acts as a host material for the other component

Figure 2. A two-dimensional representation of the two component materials, randomly
dispersed as oriented spheroidal particles. Particles of material a (yellow) are oriented
at angle j relative to the particles of material b particles (red). In the Bruggeman
formalism, the component particles are supposed to be dispersed inside the
HCM (blue).
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material. On the contrary, the particles of both component materials are taken as dispersed in
the HCM itself [30], as indicated in figure 2. As a consequence of this symmetric approach,
the Bruggeman formalism may be used for arbitrary values of the volume fractions.

Thereby, e HCM is extracted from the nonlinear dyadic equation

e e e e

e e e e

- + -

+ - + - =

-

-

{( ) [ ( )] }
{( ) [ ( )] } ( )

f I D

f I D

• •

• • 0, 15
a a a a

b b b b

HCM HCM
1

HCM HCM
1

using standard numerical techniques such as the Jacobi method [31]. The depolarisation
dyadics Da b, on the left side of equation (15) are formulated as the integrals [32, 33]


p e

= =
- -

- -∬ ( ˆ) ( ˆ)

( ˆ) ( ˆ)
( ) ( )D

U q U q

U q U q
S ℓ a b

1

4

• •

• • • •
d , , , 16ℓ

ℓ ℓ

ℓ ℓ

1 1

1
HCM

1

on the surface  of the unit sphere.

Figure 3. The real and imaginary parts of the HCM’s relative permittivity scalars
plotted against volume fraction fa for j = 30 (red, solid curves), 45° (blue, dashed
curves), and 60° (green, broken dashed curves), when e = - i2 0.1a , e = + i2 0.1b ,
and U=5. The graphs of e[ ]Im y and e[ ]Im z are not plotted as they are almost identical
to the graph of e[ ]Im x .
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3.2. Voigt-wave propagation in the HCM

Let us now explore Voigt-wave propagation in the HCM formulated in section 3.1 for all
possible propagation directions. It is convenient to do so indirectly, by exploring Voigt-wave
propagation along the z axis for all possible HCM orientations. Accordingly, the HCM
permittivity dyadic is considered in a rotated coordinate system per

e a b g g b a e a b g=( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )† R R R R R R, , • • • • • • , 17z y z z y zHCM HCM
T T T

wherein the orthogonal rotation dyadic

b b b= + + - +( ) ( ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ) ˆ ˆ ( )R x x z z z x x z y ycos sin , 18y

and α, β, and γ are the three Euler angles required to obtain the rotated coordinate
system [34].

Since propagation parallel to the z axis (of the rotated coordinate system) is independent
of rotation about that axis, the angle γ need not be considered henceforth. Furthermore, since
e †

HCM
is symmetric, the conditions (8)2 and (8)3 are identical. Hence, the angles α and β are

sought for which the Voigt-wave conditions  e =( )† 0I HCM
and  e ¹( )† 0II HCM

are satisfied.

3.3. An illustrative example

Suppose that the component material a is an energetically active material with relative
permittivity e = - i2 0.1a . This value of ea sits within the range commonly used for laser-
excited active materials used in metamaterials engineered for the optical regime. For example,
across the frequency range 440–500 THz, a mixture of the dyes Rhodamine 800 and Rho-
damine 6G (which are two widely used amplification materials) exhibits a relative permit-
tivity with real part in the range ( )1.8, 2.3 and imaginary part in the range - -( )0.15, 0.02 ,
with the actual values determined by the relative concentrations and the external pumping rate
[35]. Accordingly, component material a may be regarded as mixture of these dyes.
Component material b is chosen to be a dissipative material with relative permittivity
e = + i2 0.1b . The shape parameter is fixed at U=5.

The Bruggeman estimates of the HCMʼs relative permittivity scalars ex y z t, , , are plotted as
functions of the volume fraction fa in figure 3 forj Î   { }30 , 45 , 60 . The dependency upon
fa is such that (i) e e bHCM in the limit f 0a and (ii) e e aHCM in the limit f 1a .
These two limiting cases correspond to physical reality: particles of material b alone are
present when =f 0a , whereas particles of material a alone are present when =f 1a .

The real part of any of the relative permittivity scalars ex y z t, , , increases uniformly in
figure 3 as fa increases from 0, reaches a maximum value, and then decreases uniformly as fa
approaches 1, regardless of the value of j. The graphs of the real parts of ex y t, , are slightly
asymmetric with respect to reflection in the line =f 0.5a , whereas the graph of ez appears to
be symmetric in this regard. Also, the graph of the real part of ez is independent of the
spheroidal orientation in the xy plane (as gauged by the angle j), which is in contrast to the
graphs of the real parts of ex y t, , . The imaginary part of ex decreases in a linear fashion as fa
increases from 0 to 1. Values of e[ ]Im x for the three values of j considered differ by no more
than 0.007%. Furthermore, as the corresponding graphs of the imaginary parts of e[ ]Im y and

e[ ]Im z are almost identical to the graphs of e[ ]Im x , there is no need to display the graphs of
e[ ]Im y and e[ ]Im z here. The graph of e[ ]Im t with respect to fa has a sinusoidal shape with
e >[ ]Im 0t for ⪅f 0.5a and e <[ ]Im 0t for ⪆f 0.5a . The magnitude of e[ ]Re t is much

smaller than the corresponding magnitudes of the real parts of e ;x y z, , similarly, the magnitude
of e[ ]Im t is much smaller than the corresponding magnitudes of the imaginary parts of ex y z, , .
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For which values of fa is the HCM an energetically active material and for which values
of fa is the HCM a dissipative material? To answer this question, the three eigenvalues of the
real symmetric dyadic e eY = -( ˜ )iHCM HCM HCM must be considered. Let us denote these
three eigenvalues by e1, e2, and e3, with  e e e1 2 3.

The eigenvalue e1 is plotted in figure 4 against the volume fraction fa for
j Î   { }30 , 45 , 60 . The value of e1 increases in a linear fashion from −0.2 at =f 0a to 0.2
at =f 1a . Values of e1 for the three values of j differ by no more than 0.007%. Furthermore,
there is no need to display here the corresponding graphs for e2 and e3 since these are very
similar to those for e1 in figure 4. Although the values of e1,2,3 are not exactly the same, they
are very close because the degree of anisotropy exhibited by the HCM here is rather modest.

From figure 4, we infer that the HCM is a dissipative material for ⪅f 0.5a and an
energetically active material for ⪆f 0.5a . Parenthetically, there exists a tiny range of the
volume fraction fa, centred at =f 0.5a , for which the three eigenvalues e1,2,3 do not all have
the same sign and hence the dyadic Y HCM is neither positive definite nor negative definite,
but is indefinite instead. In this tiny range of fa, the HCM can simultaneously amplify
electromagnetic signals for certain propagation directions and attenuate electromagnetic
signals for other propagation directions [36]. However, for the example considered here, this
volume fraction range is so small that we need not consider this matter further.

Now we turn to Voigt-wave propagation in the HCM characterised in figures 3 and 4. In
general, at fixed values of fa and j, the Voigt-wave conditions  e =( )† 0I HCM

and

 e ¹( )† 0II HCM
are satisfied for two distinct orientations, as specified by the angle pairs

a b{ },1 1 and a b{ },2 2 . In figure 5, a1, b1, and the corresponding value of the quantity
 e∣ ( )∣†

II HCM
are plotted against fa for j Î   { }30 , 45 , 60 . The angle a1 increases uniformly

as fa increases from 0 to 1, for all values of j considered. On the other hand, the angle b1

decreases uniformly as fa increases from 0, reaches a minimum at =f 0.5a , and then
increases uniformly as fa increases to 1, for all values of j considered. The quantity
 e ¹∣ ( )∣† 0II HCM

for < ⪅f0 0.5a and for <⪅ f0.5 1a . However,  e »∣ ( )∣† 0II HCM
at

»f 0.5a . Thus, Voigt-wave propagation is not possible when the HCM is neither energeti-
cally active nor dissipative, i.e., when e HCM is real valued.

Figure 4. The largest eigenvalue e1 of the real symmetric dyadic Y HCM plotted against
volume fraction fa, for j = 30 (red, solid curves), 45° (blue, dashed curves), and 60°
(green, broken dashed curves), when e = - i2 0.1a , e = + i2 0.1b , and U=5.
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Figure 5. The angles a1 and b1, and the corresponding quantity  e∣ ( )∣†
II HCM

, plotted

against volume fraction fa, for j = 30 (red, solid curves), 45° (blue, dashed curves),
and 60° (green, broken dashed curves), when e = - i2 0.1a , e = + i2 0.1b ,
and U=5.
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The analogous plots of the angles a2 and b2 are very similar to those of a1 and b1

provided in figure 5. Indeed, our numerical investigations revealed that the differences
between a1 and a2, and between b1 and b2, were less than 1% (and often much smaller). A
representative illustration of the closeness of the two distinct directions for Voigt-wave
propagation is presented in figure 6. Therein, the normalised values of the quantity  e∣ ( )∣†

I HCM
are depicted for a Î  ( )167.9 , 168.9 and b Î  ( )68.2 , 68.7 , when =f 0.7a and j = 45 .
For this example, the zeros of  e∣ ( )∣†

I HCM
occur at a b =  ( ) ( ), 168.23 , 68.42 and

a b =  ( ) ( ), 168.57 , 68.42 . Greater differences between the two orientations for Voigt-wave
propagation emerge for HCMs that exhibit greater degrees of anisotropy—as may be
achieved when one (or more) of the component materials is itself anisotropic, for exam-
ple [17].

4. Closing remarks

An important implication of this study is as follows. Suppose we consider a certain dissipative
material, say a porous composite material that should have monoclinic symmetry according to
homogenisation formalisms. Voigt waves can propagate in this composite material with
attendant linear attenuation as the propagation distance increases [17]. Now if this composite
material were to be infiltrated with a sufficient quantity of an energetically active dye (which
is fluorescent [37]), such that the monoclinic symmetry remained unchanged, then Voigt
waves could propagate in this material with attendant linear gain as the propagation distance
increased. Thus, the usual exponential amplification of power density with distance (that will
occur in every direction and will depend on birefringence) will be enhanced by linear
amplification with distance only along the directions that allow Voigt-wave propagation. This
highly directional amplification could be exploited, for example, to enhance visible light
communication for extremely rapid uploading and downloading of information [38, 39].

Figure 6. The normalised value of  e∣ ( )∣†
I HCM

mapped as a function of the angles

a Î  ( )167.9 , 168.9 and b Î  ( )68.2 , 68.7 for =f 0.7a and j = 45 , when
e = - i2 0.1a , e = + i2 0.1b , and U=5.
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