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SUMMARY

Microtubule actin crosslinking factor 1 (MACF1)
plays a role in the coordination of microtubules and
actin in multiple cellular processes. Here, we show
that MACF1 is also critical for ciliogenesis in multiple
cell types. Ablation of Macf1 in the developing retina
abolishes ciliogenesis, and basal bodies fail to dock
to ciliary vesicles or migrate apically. Photoreceptor
polarity is randomized, while inner retinal cells
laminate correctly, suggesting that photoreceptor
maturation is guided by polarity cues provided by
cilia. Deletion of MACF1 in adult photoreceptors
causes reversal of basal body docking and loss of
outer segments, reflecting a continuous requirement
for MACF1 function. MACF1 also interacts with
the ciliary proteins MKKS and TALPID3. We propose
that a disruption of trafficking across microtubles to
actin filaments underlies the ciliogenesis defect in
cells lacking MACF1 and that MKKS and TALPID3
are involved in the coordination of microtubule and
actin interactions.

INTRODUCTION

While the primary cilium was first identified over a century ago

(Zimmermann, 1989), its significant roles in regulating develop-

mental pathways and tissue homeostasis were only recognized

in the past decade (Eggenschwiler and Anderson, 2007; Gerdes

et al., 2009; Singla and Reiter, 2006). A genetically heteroge-

neous group of human diseases, termed ciliopathies, many

involving retinal dysfunction, are now known to be associated

with primary cilia dysfunction (Rachel et al., 2012). The mamma-

lian retina develops from a single layer of neuroectoderm into a

light-sensing multilayered neuroepithelial structure required for
This is an open access article und
visual function. The retinal neuroepithelium is composed of

multipotent progenitors that undergo differentiation, migration,

and patterning to develop into a fully laminated mature retina

comprising polarized photoreceptors and five other neural cell

types (Reese, 2011). Understanding the development and ho-

meostasis of the retina is important, because it both serves as

a paradigm for understanding CNS development and provides

a basis for developing stem cell transplantation as a therapy

for retinal degeneration, a common cause of blindness. Of

particular importance is the development of photoreceptors,

the light-sensing neurons required for visual perception. Upon

exiting the cell cycle, maturation of photoreceptors requires

cell polarization coupled with highly organized intercellular con-

nections, prior to extension of the connecting cilia and outer seg-

ments. These characteristics make the mammalian retina an

excellent model in which to study both ciliogenesis and polariza-

tion during tissue morphogenesis.

A key cellular event during retinal development is the estab-

lishment and maintenance of cell polarity, aided by a highly

dynamic cytoskeletal infrastructure composed of microtubules

and actin filaments. The migration and anchoring of centro-

somes to the apical domain is a hallmark of apicobasal polarity

establishment. Centrosomal anchoring is also required for the

extension of a microtubule-based ciliary axoneme during cilio-

genesis. Ciliogenesis is initiated when the mother centriole

docks with a primary ciliary vesicle within the cytoplasm (Gar-

cia-Gonzalo and Reiter, 2012; Sorokin, 1962). The ciliary vesicle

grows in size by the fusion of additional secondary vesicles, and

the centriole begins to extend microtubule structures to initiate

the formation of the ciliary axoneme. Two different modes of

ciliogenesis may be used by different cell types: an ‘‘intracel-

lular’’ pathway, where vesicles dock to the centriole cytoplasmi-

cally prior to axoneme extension and fusion with the plasma

membrane; and an ‘‘extracellular’’ pathway, in which centrioles

migrate and dock at the plasma membrane directly, followed

by axoneme extension (Ghossoub et al., 2011; Molla-Herman

et al., 2010). Once docked, the centriole becomes the basal
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body and anchors the membrane-encapsulated cilium. Several

studies have highlighted a primary role for the actin cytoskeleton

in addition to microtubules in these processes. (Boisvieux-Ulrich

et al., 1987, 1990; Hirota et al., 2010; Klotz et al., 1986; Lemullois

et al., 1987, 1988; Molla-Herman et al., 2010). Specifically, dock-

ing of the basal body at the cell membrane requires active actin

cytoskeletal remodeling, mediated via apical activation of the

GTPase RhoA (Pan et al., 2007). Therefore, proteins that mediate

interactions between actin and microtubules may be important

during ciliogenesis.

Microtubule actin crosslinking factor 1 (MACF1/ACF7), one

of two spectraplakins found in mammals, is a giant protein with

multiple functional motifs. It interacts with F-actin, microtubules,

and intermediate filaments to organize cytoskeletal networks

and participate in intracellular trafficking (Sonnenberg and

Liem, 2007; Suozzi et al., 2012). MACF1 concentrates at distal

ends (plus ends) of microtubules and polarized cell borders,

where it couples the microtubule network to membrane-associ-

ated junctions, facilitating actin-microtubule interactions at the

cell periphery and enabling rapid turnover of focal adhesion

molecules (Wu et al., 2008). The Drosophila MACF1 homolog

shot localizes to the apical side of stable microtubule extensions

in the rhabdomere terminal web of developing photoreceptors

(Mui et al., 2011), structures that coordinate membrane-cyto-

skeleton trafficking (Chang and Ready, 2000). Genetic inter-

action studies also suggest that shot modulates the Crumbs

(Crb) membrane domain, a component required for establishing

apicobasal cell polarity during rhabdomere elongation (Mui et al.,

2011). Interestingly, MACF1 is one of the most abundant pro-

teins in the photoreceptor ciliary proteome (Liu et al., 2007)

and interacts with ciliopathy protein MKKS/BBS6 (May-Simera

et al., 2009). These observations suggest that MACF1-mediated

interaction between microtubule and actin networks may play a

role in ciliogenesis and photoreceptor differentiation. To test

these hypotheses, we ablated Macf1 in select tissues and

show that Macf1 is essential for cilia biogenesis and mainte-

nance, which, in turn, play critical roles in retinal lamination dur-

ing development and homeostasis of mature photoreceptors.

RESULTS

MACF1 Is Expressed in the Developing Postnatal Retina
Two MACF1 isoforms have been reported in mouse (Lin et al.,

2005). RNA sequencing (RNA-seq) analysis found that the devel-

oping retina expressed predominantly the Macf1a RNA tran-

script (Figure 1A). Macf1a RNA peaked in rod photoreceptors

around postnatal day (P)3. Because germline loss of Macf1 is

early embryonic lethal (Chen et al., 2006; Kodama et al., 2003),

we carried out conditional ablation by crossing Macf1-floxed

mice (Macf1fl/fl) (Wu et al., 2008) with mice expressing Six3p-

Cre to excise Macf1 in retinal progenitors from embryonic day

(E)9 onward (Macf1fl/fl;Six3-Cre). To assay for the MACF1 pro-

tein, we generated a polyclonal antibody against the N-terminal

domain of MACF1 (Figure 1A). MACF1 was absent in the condi-

tional Macf1fl/fl;Six3-Cre retinas (Figures 1B and 1C). In control

retina, MACF1 concentrated at the apical domain of the neuro-

blast layer (NBL; Figure 1C, white arrow) and in the inner plexi-

form layer (IPL) during early postnatal development. As the retina
1400 Cell Reports 17, 1399–1413, October 25, 2016
matured, MACF1 localization was enriched in the plexiform

layers and at the apical edge of the outer (photoreceptor) nuclear

layer (ONL) (Figure 1C). In the adult retina (P28), MACF1 protein

colocalized with the basal body beneath the photoreceptor con-

necting cilium. This labeling was corroborated by immuno-elec-

tron microscopy (immuno-EM), which revealed MACF1 at basal

body appendages (Figure 1D; Figure S4).

Ablation of Macf1 Disrupts Retinal Lamination and
Arrests Photoreceptor Maturation
To evaluate retinal function, electroretinograms (ERGs) were

performed at 6 weeks of age. ERG a- and b-waves were absent

in both dark- and light-adapted Macf1fl/fl;Six3-Cre mutants,

indicating loss of both rod and cone function (Figure 2A).

Mutant mice were non-responsive to a 10-Hz flicker test, which

isolates cone function, further confirming cone functional

deficit. Histological analysis revealed severe retinal dysplasia

in the MACF1 null retina, predominantly affecting the photore-

ceptor layer (ONL) (Figure 2B). At P0, Macf1 mutant retina

was indistinguishable from control, but by P5, the disruption

of outer retina lamination was evident. In control retinas, the

inner retinal layer (INL) and ONL began to emerge as distinct

layers, yet separation of the layers in the mutant was severely

disrupted. By P10, the ONL in the mutant appeared split and

fragmented. At maturity, mutant photoreceptor inner and outer

segments were absent, and no separation between the INL and

ONL was evident. Disruption of Macf1 using Rxp-Cre (Macf1fl/fl:

Rx-Cre) resulted in a similar but slightly milder retinal phenotype

(Figure S1).

Despite severe disruption of the outer retina, retinal cell fate

appeared to progress normally, as indicated by the appear-

ance of cell-specific markers. Rhodopsin and cone opsins

were expressed in Macf1fl/fl;Six3-Cre mutant photoreceptors,

though not polarized at the apical domain by P5 (Figure S2A)

or localized to any structure that resembles outer segments

by P21 (Figure 3A). Markers for amacrine, horizontal, and gan-

glion cells (choline acetyltransferase [ChAT], calbindin, and

calretinin) in the inner retina were comparable to controls (Fig-

ure 3B; ChAT not shown). Bipolar cell disorganization was

evident at P10, with some cell bodies interspersed with photo-

receptors, and this became more severe at P21 (Figure 3C).

Because bipolar cells make direct synaptic contact with pho-

toreceptors, bipolar cell disorganization is likely secondary to

photoreceptor lamination defects. Inner retina neurons (gan-

glion and amacrine cells) were spared, indicating that the

loss of Macf1 in the retina primarily disrupts photoreceptor

cell development.

Staining for OTX2, a marker for undifferentiated neuroblasts

in the NBL, was similar between Macf1 mutant and control at

P0 (Figure S2B), as was staining for early-born retinal neurons,

including amacrine, horizontal, and ganglion cells (Figure S2C).

Dividing cells, marked by phosphohistone-H3, localized entirely

to the apical margin of the neuroepithelium in controls at P0. In

contrast, dividing cells frequently located ectopically in the

mid-NBL ofMacf1mutants (Figures S2D and S2E). These results

suggest that MACF1 function is dispensable in early-born retinal

neurons but necessary during differentiation of later-born photo-

receptor/retinal neurons (Reese, 2011).
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(C) Immunohistochemistry of retinal sections using antibodies against MACF1 in control andMacf1-excised sections. To visualize relevant structures in each time

point, F-actin was stained with phalloidin, the emerging connecting cilium was stained with GT335, and the base of the cilium was stained with pericentrin. OPL,

outer plexiform layer; OS, inner segment; IS, inner segment; CC, connecting cilia.

(D) Immuno-EM using an antibody against MACF1. Immuno-gold particles were concentrated near the basal body in the photoreceptor inner segment

(3 months; 3M).

Scale bars represent 50 mm in (C) and 100 nm in (D).

See also Figure S4.
Polarity of Developing Photoreceptors Is Disrupted in
Macf1 Null Retina
By P10, photoreceptors are well polarized, as indicated by the

apical alignment of ciliary rootlets, and begin to elaborate outer

segments (Figure 4A; Figure S2F). In Macf1 mutants, however,

rootlets fail to align along the apical margin of the retina (Fig-

ure 4A). Localization of the Crumbs protein complex is an early

determinant of apical junctions and marker of apicobasal polar-

ity. Discontinuous CRB1 localization along the apical edge of
mutant neuroepithelia at P5 (Figure 4B) and P0 (Figure 4C) indi-

cates a defect in polarity establishment. Other polarity markers,

including PALS1 and PAR3, also failed to align at the apical

margin of theNBL inP0mutant retina (Figure 4C). Electron-dense

junctional complexes were observed by transmission electron

microscopy (TEM) in P1 and P5 mutant retinas, suggesting that

junctions could still form where neighboring cells are aligned

(Figures S3A–S3C). These data suggest that Macf1 function is

essential for the establishment of photoreceptor polarity.
Cell Reports 17, 1399–1413, October 25, 2016 1401



(legend on next page)

1402 Cell Reports 17, 1399–1413, October 25, 2016



Failed Ciliogenesis Underlies Loss of Apicobasal
Polarity of Developing Photoreceptors
At P5, ciliary rootlets were aligned to the apical edge of the

ONL. Co-labeling with glutamylated tubulin (GT335), a ciliary

transition zone marker, showed emergence of the connecting

cilium (Figure 4D). In contrast, ciliary rootlets were scattered

throughout all retina layers of Macf1 mutants, and the connect-

ing cilium was absent. As early as P0, displaced basal body

profiles could be observed throughout the developing NBL of

mutant retinas (Figure 4E). The early stages of ciliary biogenesis

were observed in electron micrographs taken at the apical edge

of the NBL in P1 retina. A ciliary vesicle docks onto the distal

end of the mother centriole/basal body (Figure 4F, left panel),

begins to nucleate the microtubule-based ciliary axoneme

(middle panel), and eventually fuses with the plasma membrane

(right panel). Basal bodies identified in multiple TEM images

were scored on the basis of having a ciliary vesicle or an

emerging cilium, and the results were quantified (Figure 4G).

Mislocalized basal bodies throughout the mutant retina were

difficult to observe; therefore, only basal bodies near the apical

membrane could be readily identified and quantified, and thus,

the percentage of abnormal basal body profiles is likely an un-

derestimate. In Macf1 mutants, the majority of basal bodies

lacked a docked ciliary vesicle, which suggests that they are un-

able to fuse with the plasma membrane, and thus, ciliogenesis

is inhibited. Therefore, in the retina, failed ciliogenesis in the

Macf1 mutant precedes or coincides with the beginning stage

of retinal lamination. We propose that cilia biogenesis and

positioning are a determinant of the neuroepithelial lamination,

similar to what has been reported in brain development

(Wilsch-Bräuninger et al., 2012).

Macf1 Is Required for Maintaining the Photoreceptor
Outer Segments in Adult Retina
To determine whether MACF1 also plays a role in fully differenti-

ated photoreceptors, we disrupted the gene in 3-month-old

Macf1-floxed (Macf1fl/fl) mice by subretinal injection of AAV8-

Cre recombinase under the control of a rhodopsin kinase

promoter (AAV8-RKp-Cre). AAV8-RKp-EGFP was co-injected

to visualize transduced cells. Wild-type (non-floxed) mice were

also injected and served as negative controls. Six weeks after in-

jection, AAV transduction coverage was greater than 70% and

restricted to photoreceptors, as indicated by GFP (Figure 5A).

Compared to the controls, ERG a- and b-waves were signifi-

cantly decreased in injected Macf1-floxed mice under dark-

adapted conditions (Figure 5B). Additionally, ONL thinning, upre-

gulation of GFAP (glial fibrillary acidic protein, an indicator of

photoreceptor degeneration), and mislocalized rhodopsin were

observed readily in injected floxed mice (Figures 5C and 5D).
Figure 2. Loss of Macf1 Impairs Retinal Function and Disrupts Retinal

(A) Representative ERG traces from control (Macf1+/+;Six3-Cre/Macf1fl/+;Six3-C

(n = 5–6 mice). Mean a- and b-wave amplitudes at six different light intensities a

reduced in Macf1 homozygous mutants. Amp, amplitude.

(B) H&E staining of developing retina showed severe retinal dysplasia in Macf1 m

OS, outer segment; IS, inner segment; ONL, outer nuclear layer; INL, inner nuclea

layer. Scale bars represent 50 mm.

See also Figure S1.
TUNEL staining revealed apoptotic photoreceptor cells (Figures

5E and 5F). TEM images of inner segments showed a loss of

basal body anchoring at the connecting cilium in injected mu-

tants (Figure 5G). Basal bodies were ‘‘undocked’’ from the apical

inner segments, similar to the observed loss of basal body dock-

ing in developing photoreceptors. Numerous detached basal

bodies could be found in injected floxed mice (Figure S4A), but

none were found in controls. The average distance between a

basal body and the base of the outer segment was 1.83 mm in

mutant compared to 1.29 mm in control (Figure 5H). Quantifica-

tion was performed using TEM images. These data suggest

that MACF1 is also required for actively maintaining basal body

positioning in mature photoreceptors.

Macf1 Is Required for Ciliogenesis in Multiple Tissues
and Cell Types
Next, we sought to determine whether MACF1 was broadly

required for ciliogenesis. Ependymal epithelial cells line the ven-

tricular walls of adult brain and are covered with multiple motile

cilia. Development of ventricular neuroepithelia requires polari-

zation of a primary cilium, which precedes the emergence

of multiple motile cilia on mature ependymal cells (Mirzadeh

et al., 2010; Tissir et al., 2010). Embryos in which MACF1 was

excised using Foxg1p-Cre (expressed in the developing telen-

cephalon) did not survive past E18.5, a time when primary cilia

are well developed. Scanning electron microscopy of E18.5 mu-

tants showed a loss of primary cilia on ependymal epithelia (Fig-

ure 6A, red arrows). Additionally, a failure of the lateral ventricles

to expand dorsally resulted in smaller ventricles (Figures 6A and

S5A, red arrows). Using a different Cre driver, Six3p-Cre (ex-

pressed in the ventral forebrain), mutants survived to adulthood

but exhibited slightly enlarged ventricles (Figure S5B), a hallmark

of cilia mutant mousemodels and human ciliopathy patients (Ra-

chel et al., 2015). Altered shapes of lateral ventricles were also

found in mutant mice in which MACF1 was conditionally ablated

in the brain (Goryunov et al., 2010).

An additional ciliated tissue targeted by Foxg1p-Cre is the co-

chlea sensory epithelium, which contains polarized actin-based

stereociliary bundles that sit atop rows of mechanosensory hair

cells. Closely attached to each stereociliary bundle is a microtu-

bule-based kinocilium, which is required for correct bundle

development. Stereocilia bundle abnormalities have been re-

ported in numerous ciliamutants (Jones et al., 2008;May-Simera

et al., 2015; Ross et al., 2005). Macf1 mutant cochlea epithelia

exhibited shortened actin bundles (Figure 6B) and shorter kino-

cilia (Figures 6C and 6F) compared to controls. The stereocilia

and kinocilia defects are consistent with enriched distribution

of MACF1 at the cuticular plate and at the kinocilium basal

body (Antonellis et al., 2014).
Lamination

re) (Ctrl.) and mutant (Macf1fl/fl;Six3-Cre) (cKO;Six3) mice at 6 weeks of age

re plotted, with error bars indicating ±SEM. Both rod and cone functions were

utant mice (Macf1fl/fl;Six3-Cre), predominantly affecting the outer retina by P5.

r layer; OPL, outer plexiform layer; IPL, inner plexiform layer; GCL, ganglion cell
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(A) Immunohistochemistry on retina sections (P21) stained with antibodies against rhodopsin, blue opsin, and green opsin, showing normal photoreceptor

differentiation in Macf1-null retina (cKO;Six3-Cre). Ctrl., control.

(B) Staining for calretinin and calbindin showed that amacrine, horizontal, and ganglion cells were relatively unaffected in Macf1-null retina.

(C) Staining for PKCa to label bipolar cells (PKCa) showed increased disruption with age (P10 versus P21) and predominantly affected the scleral side of the retina.

ONL, outer nuclear layer; INL, inner nuclear layer. Scale bars represent 25 mm.

See also Figure S2.
Deletion of MACF1 in immortalized mouse embryonic fibro-

blasts (MEFs) abolished ciliogenesis upon serum starvation (Fig-

ures 6D and 6G). Ciliary axonememarkers Arl13b and acetylated

tubulin confirmed the loss of ciliary extension. Retention of

GT335 at the basal body in mutant cells, in comparison to

GT335 expansion into the proximal cilium in control, corrobo-

rated these findings (Figure 6E). Structurally, basal bodies were

present, and high-resolution fluorescence microscopy showed

that markers for basal body distal (CEP164) and subdistal

appendages (NINEIN, EB1) remained unchanged in the mutant
1404 Cell Reports 17, 1399–1413, October 25, 2016
(Figures S6A–S6C). These data indicate that MACF1 is broadly

required for ciliogenesis.

Macf1 InteractswithCiliary andBasal BodyProteins and
Promotes Anchoring of Microtubules to the Mother
Centriole
We previously found a direct interaction between MACF1 and

basal body protein MKKS (BBS6) (May-Simera et al., 2009). To

confirm these findings, we performed co-immunoprecipitation

pull-downassays using both tagged constructs and endogenous
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Figure 4. Polarity, Basal Body Docking, and Cilia Extension Are Disrupted in Macf1 Mutant Retina

Immunohistochemistry on control (Macf1fl/+;Six3-Cre) (Ctrl.) and Macf1 mutant (Macf1fl/fl;Six3-Cre) (cKO;Six3) retina sections.

(A) Ciliary rootlets (rootletin) were aligned along the apical edge of the neuroepithelium in control retina but abnormally distributed in Macf1 mutants.

(B) Compared to control, Macf1 mutant retina showed discontinuous localization of polarity marker Crb1 and failed alignment of the ciliary connecting cilium

(GT335).

(C) As early as P0, Crb1 and additional polarity markers Pals1 and Par3 were abnormally distributed in Macf1 mutant retina.

(D and E) Mislocalization of basal bodies (rootletin) was observed in mutant retina at (D) P5 and (E) P0, and the emergence of the transition zone (GT335) was only

observed in controls.

(legend continued on next page)
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protein. After co-transfectingHEK293 cells withMACF1-SR2-HA

(hemagglutinin) and full-lengthMKKS-myc constructs, and using

an anti-HA antibody for pull down, we were able to identify

MKKS-myc (Figure S6E). We were also able to pull down trans-

fected MKKS with cell-endogenous MACF1, using our custom

made antibody (Figure S6F). Because the same MACF1 domain

(SR2) was also identified as a binding partner with basal body

protein TALPID3 (yeast two-hybrid screen), we similarly per-

formed a co-immunoprecipitation pull-down assay. GFP-tagged

TALPID3 was able to pull down MACF1-SR2-HA (Figure S6G).

These findings suggest that MACF1-dependent functions during

ciliogenesis may be mediated, in part, through interactions with

TALPID3 and BBS6.

Closer examination revealed a loss of microtubule anchoring

in mutant MEFs (Figure 7A) and cochlea hair cells (Figure 7B).

Examination of microtubule growth after nocodazole treat-

ment revealed normal nucleation but perturbed microtubule

anchoring (Figure 7C). Loss of MACF1 was accompanied

with an increase in actin stress fibers (Figure S6D). PCM1, a

component of the pericentriolar matrix (PCM) required for ciliary

trafficking (Stowe et al., 2012), was condensed around centri-

oles upon loss of MACF1, rather than dispersed as seen in

control MEFs (Figures 7D and 7E). Altered PCM formation and

aberrant microtubule anchoring, could, in turn, disrupt traf-

ficking to the centrosome (Dammermann and Merdes, 2002).

Intriguingly, localization of DNAH5 (dynein heavy chain 5) was

lost frommutant cells (Figure 7F). Although traditionally a motile

ciliary protein, DNAH5 labeled the basal body in control cells yet

was completely absent in the mutant. This suggests the pres-

ence of axonemal dyneins at the base of the cilium, similar to

Leishmania (Wheeler et al., 2015), where they may be assisting

cargo loading.

Changes in the Cellular Transcriptome and Proteome
upon Loss of Macf1
To explore the downstream molecular and cellular events

brought on by the loss of MACF1, we analyzed the transcrip-

tome and proteome of homozygous and heterozygous MEF

cells by RNA-seq and mass spectrometry analyses. Mass

spectrometry on whole-cell lysates from Macf1 mutant and

control MEFs identified 90 proteins that were significantly

differentially expressed with a fold change of 1.5 or higher

(Figures S7A–S7C; Table S1). We analyzed identified proteins

using a Gene Ontology tool (http://www.geneontology.org).

We found hits for focal adhesions and/or adherens junctions,

as well as proteins related to vesicles and extracellular vesi-

cles (Figure S7C). The role of MACF1 in focal adhesions has

been well documented, yet the association with vesicles was

surprising and further suggests a role in vesicle trafficking up-

stream of ciliogenesis. Strikingly, RNA-seq analysis (Figures

S6, S7D, and S7E) revealed primarily downregulation of bio-

logical processes involved in cell migration and movement of
(F) Electron micrographs of basal bodies at the apical edge of the neuroblast lay

initiation of ciliary axoneme extension (middle), and fusion with the apical memb

(G) These events were quantified and were less readily observed in Macf1 mutan

ONL, outer nuclear layer; CC, connecting cilia. Scale bars represent 50 mm in (A

See also Figures S2 and S3.
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cellular components, as well as changes in focal adhesion

and intercellular junctional components (Figure S7E). These

findings are consistent with the known role of MACF1 in cell

migration and focal adhesion dynamics.

DISCUSSION

Because MACF1 was identified as a potential interacting partner

with basal body protein MKKS (BBS6) (May-Simera et al., 2009)

and is highly enriched in the photoreceptor ciliary proteome (Liu

et al., 2007), we hypothesized that Macf1 is important for ciliary

function and retinal development. In this study, we found

defects caused by Macf1 deletion in multiple cell types that

were attributable to its ubiquitous requirement during the early

stages of ciliogenesis. MACF1 was also shown to be actively

required in differentiated tissues to maintain basal body posi-

tioning and for localization of key polarity proteins. Moreover,

lack of ciliogenesis inMacf1-null retina perturbed the apicobasal

polarity of photoreceptors, causing severe disruption of retinal

lamination, primarily affecting photoreceptors, concomitant

with loss of visual function. In the developing retina, loss of

MACF1 abolished docking of the basal body and subsequent

extension of the ciliary axoneme at the apical domain of the neu-

roepithelia. As a result, the photoreceptor connecting cilium and

outer segments failed to develop. Absence ofMACF1 in ependy-

mal epithelia lining the brain ventricles also impaired ciliogenesis

and resulted in ventricle malformation. Although the kinocilium

in the developing cochlea emerged, its length was significantly

shortened. It is unclear why the kinocilium in the cochlea was

partially retained, but functional redundancy (there are two spec-

traplakin homologs in the mammalian genome), the diversity of

Macf1 splice variants, and the incomplete action of the Cre driver

in the cochlea are possible explanations. In MEF cells in which

MACF1 loss was complete, ciliogenesis was entirely abolished.

Thus, our study identifies a previously unrecognized function of

MACF1 in ciliogenesis and apicobasal polarity establishment in

the neuroepithelia.

Although MACF1 is known for its coordination of microtubules

and actin at focal adhesions (Karakesisoglou et al., 2000), the

ciliogenic defects suggest impaired cytoskeletal interactions at

the basal body. We observed enriched MACF1 labeling around

the base of the connecting cilium, a finding consistent with the

photoreceptor ciliary proteome data (Liu et al., 2007) and what

has been found at the kinocilium of cochlear hair cells (Antonellis

et al., 2014). In cells lacking MACF1, the anchoring of micro-

tubules around the basal body was disrupted. PCM1, a protein

required for radial organization of microtubules at the basal

body (Dammermann and Merdes, 2002; Farina et al., 2016),

was also less dispersed in the absence of MACF1. Two other

known direct binding partners of MACF1, EB1 and EB3, promote

ciliogenesis via microtubule anchoring at the subdistal append-

ages, similarly to the proposed mechanism for Macf1 (Schrøder
er in P1 retina. Images from control retina show a docked ciliary vesicle (left),

rane (right).

t retina. Lower panel shows examples of basal body profiles found in mutant.

), 25 mm in (B)–(D), 10 mm in (E), and 500 nm in (F) and (G).

http://www.geneontology.org
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Figure 5. Macf1 Is Required for Photoreceptor Homeostasis in Mature Retina
(A) Whole-retina cross-sections of Macf1fl/+ (Ctrl.) and Macf1fl/fl (cKO;AAV-Rk-Cre) mice 4–6 weeks post co-injection of AAV-Rk-Cre and AAV8-RKp-EGFP.

Co-transduced regions are visualized by GFP expression.

(B) Mean ERG a- and b-wave amplitudes (Amp) (n = 4 mice) are plotted, with error bars indicating ±SEM.

(C) Confocal and corresponding differential interference contrast (DIC) images show elevatedGFAP expression extending into a thinning outer nuclear layer (ONL)

in the mutant. INL, inner nuclear layer.

(D) Vibratome sections show rhodopsin mislocalization in the ONL of mutant retina.

(E and F) TUNEL-positive nuclei (red) were readily observed in mutant, but not control, retinas.

(G) Electron micrographs of the basal body at the photoreceptor transition zone.

(H) Quantification of ‘‘dropped’’ basal bodies in control and mutant photoreceptors, measured as the distance between the basal body profile and start of the

outer segment (n > 10 basal bodies per treatment group).

Scale bars represent 50 mm in (C)–(E) and 500 nm in (G).

See also Figure S4.
et al., 2011). We also found that MACF1 interacts withMKKS and

TALPID3, basal body proteins that, when lost, result in ciliopathy

phenotypes (Ross et al., 2005; Stephen et al., 2015). Interest-
ingly, the behavior of MACF1-null centrosomes, basal body

misorientation, and disrupted docking, is strikingly similar to

that caused by loss of TALPID3 (Stephen et al., 2015). This
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Figure 6. Cilia Fail to Extend in Multiple Macf1-null Cell Types
(A) Scanning electron micrographs (SEMs) of exposed lateral ventricle inMacf1fl/+;Foxg1-Cre (Ctrl) andMacf1fl/fl;Foxg1-Cre (cKO;Foxg1) brain show diminished

ventricle size (upper panels) in themutant. Ventricle epithelial cells have a primary cilium extending into the ventricle (lower panels, red arrows), whichwere scarce

and stumpy in the mutant compared to control.

(B andC) SEM (B) and immunohistochemistry (C) of the cochlea basal turn. One rowof inner hair cells (IHC) is separated from three rows of outer hair cells (OHC) in

both control and mutant (B, upper panel). Higher magnification images revealed shorter outer hair cells in the mutant (lower panel). The microtubule-based

kinocilium at the vertex of each stereocilia bundle was also slightly shorter (inset cartoon; pink represents actin bundles, and blue represents kinocilium).

A schematic representation of hair cells (round circles, blue kinocilia) and support cells (gray ovals, gray primary cilia) is shown. Hair cell kinocilia were shortened in

Macf1 mutants, while support cell cilia were unaffected.

(D) Staining of confluent serum-starved MEFs with ciliary markers Arl13b and acetylated tubulin showed failure of ciliary axoneme extension inMacf1-null MEFs.

Tubulin was increasingly dispersed in the mutant, and ciliary rootlets (rootletin) were still present in mutant cells.

(E) In heterozygous cells, the ciliary transition zone (GT335) extended past the basal body, unlike in mutant, where it was confined to the basal body (top panels,

confocal; lower panels, super-resolution).

(legend continued on next page)
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phenotype has been previously associated with abnormal actin

organization ultimately leading to ciliogenesis failure (Dawe

et al., 2007a; Dawe et al., 2007b) as is seen in TALPID3 null cells

(Yin et al., 2009). Accumulation of actin stress fibers were also

observed in our mutant MEFs, consistent with slowed actin fila-

ment dynamics, as previously reported (Wu et al., 2008).

Disruption of the cytoskeleton around the basal body likely im-

pairs ciliary trafficking, and because maturation of the cilium re-

lies on robust trafficking of cilia components, this suggests that

Macf1 may be required for cilia-targeted vesicle exchange at

this actin/microtubule interface. Cilia-targeted vesicles arrive at

the basal body via mictotubules and are subsequently trans-

ferred to the mother centriole via an actin-mediated process

(Benmerah, 2013; Molla-Herman et al., 2010). Interestingly,

localization of ciliopathy proteins have been observed in cellular

regions where high rates of microtubule-to-actin trafficking

occur (Hernandez-Hernandez et al., 2013; Sedmak and Wolf-

rum, 2010). This may explain the interactions that we demon-

strated between MKKS and TALPID3. Both MKKS and TALPID3

bind to the same central domain of the extremly large MACF1

protein, far from the distinct actin- andmicrotubule-binding sites

located at opposite ends of the polypepide. Associations

with these proteins may affect the functional conformation of

MACF1, thus serving to modulate interactions with microtubles

and actin filaments. Both Macf1 and Talpid3 null cells are able

to initiate microtubule nucleation but have delayed microtubule

growth (Yin et al., 2009). Loss of DNAH5 from the basal body

inMacf1 null cells may also suggest a role for axonemal dyneins

in facilitating cargo loading similar to what has been shown in

Leishmania (Wheeler et al., 2015). Support for the role of

MACF1 in vesicle trafficking also comes from an earlier report

showing that MACF1 was required for protein transport from

the Golgi to the cell periphery (Kakinuma et al., 2004). Alterna-

tively, recent publications point to the successive remodeling

of actin filament architecture and disruption of branched actin

networks as having a stimulatory role in ciliogenesis (Antoniades

et al., 2014; Reiter et al., 2012), such as in the movement of basal

bodies apically and the accumulation of ciliary vesicles, although

MACF1 and TALPID3 null cells also abnormally accumulate peri-

centriolar satellites, as shown by condensed PCM1 localization

(Stephen et al., 2015). Previous studies showed that MACF1 ap-

pears to accelerate branched-actin-filament remodeling at focal

adhesions (Wu et al., 2008). Therefore, loss ofMacf1may cause

failure of ciliogenesis due to loss of actin remodeling at the basal

body, similar to its suggested role at focal adhesions. These two

scenarios need not be mutually exclusive and could both oper-

ate in executing MACF1-mediated basal body movement and

apical docking.

It is quite remarkable that our RNA-seq data analysis identi-

fied marked downregulation of biological processes involved in

cell migration and movement of cellular components, as well as

changes in focal adhesion and cellular junctional components.
(F) Kinocilium length was quantified using Arl13b and acetylated tubulin-stained

(G) Quantification of ciliation in Macf1 heterozygous and null MEFs cells (n > 400

Scale bars represent 0.5 mm in (A) and 5 mm in (B)–(E).

See also Figure S5.
Defective cell migration, due in part to an inability to remodel

focal adhesions, is a well-documented cellular defect upon

loss of Macf1. Thus, the RNA-seq data reveal a downstream

effect on the mutant cell transcriptome that could have

further contributed to the observed defects in cell migration

and focal adhesion dynamics. Mass spectrometry analysis re-

vealed overlapping findings and additional changes in proteins

involved in vesicular trafficking. These findings are consistent

with the known role of MACF1 in cell migration and focal adhe-

sion dynamics and with our hypothesis that MACF1 plays a

role in promoting vesicle trafficking at the base of the cilium.

The identification of genes up- or downregulated in response

to Macf1 loss should prove very useful for understanding the

cell biological mechanism of MACF1 function and for future

studies.

Ciliogenesis is a critical determinant of neuroepithelial lamina-

tion (Paridaen et al., 2013; Wilsch-Bräuninger et al., 2012).

Cellular machinery involved in the formation of epithelial polarity

is also required in the formation and function of primary cilia

(Delous et al., 2009; Fan et al., 2004; Rodriguez-Boulan and

Macara, 2014; Sfakianos et al., 2007). A recent study showed

that cilia are required for cell adhesion (Schouteden et al.,

2015), which is a prerequisite of establishing polarity (Rodri-

guez-Boulan and Macara, 2014). Ablation ofMacf1 in the devel-

oping retina resulted in a severe defect in photoreceptor polarity

and outer segment formation. Inner retinal morphology was

relatively well preserved, and subtle disruptions seemed to

have occurred as a secondary phenomenon. The promoters

that are used to drive Cre-mediated excision of Macf1 are ex-

pressed early and in multiple retinal neuron progenitors (Furuta

et al., 2000; Swindell et al., 2006); therefore, the specific defect

in photoreceptors may result from their unique reliance on po-

larity-mediated developmental cues. In contrast to inner retinal

neurons, photoreceptor development and maturation are criti-

cally dependent on neuroepithelial configuration and apicobasal

polarization (Reese, 2011). Once inner retinal neurons detach

from the apical junctions, they no longer manifest apicobasal

polarity. In contrast, when photoreceptors fail to develop cilia,

they lose their position cues along the apicobasal axis. As

observed in Macf1 mutant retinas, many photoreceptors orient

their apical domain toward the inner retina (split retina). Once

photoreceptors assume this orientation, they are unable to

form junctional complexes with neighboring cells due to

misaligned adherens junctions. Thus, our data showed that

photoreceptor terminal differentiation is guided by polarity

cues provided by primary cilia.

In addition to a critical function during retinal development, we

also found that MACF1 is required for ongoing basal body posi-

tioning. When Macf1 was deleted in adult photoreceptors, the

basal body detached from its apical inner segment location

and ‘‘sank’’ into the interior of the inner segment, a phenotype

not previously observed in other ciliary mutants. These data
IHC images.

cells counted in four separate experiments).
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Figure 7. Loss of MACF1 Disrupts Microtubule Anchoring to Subdistal Appendages

(A) In control MEFs, microtubules (tubulin) extended radially from an anchored centrosome (pericentrin), which was lost in mutant.

(B) Outer hair cells of control cochlea showed microtubules (acetylated tubulin) emanating from the base of the kinocilium (Arl13b) and extending across the cell.

In the mutant, microtubules were disconnected from the kinocilium and abnormally bundled in the cell center.

(C) Immunohistochemistry of stable microtubules (acetylated tubulin) and the centrosome (pericentrin) in MEFs at 0, 5, and 10 min post-nocodazole treatment.

Although microtubules began to nucleate from the centrosome in both control and mutant cells, within 10 min, microtubules were no longer anchored to the

centrosome in mutant cells.

(D and E) Pericentriolar material (PCM1) was more dispersed around the centrosome in control cells compared to mutant.

(F) DNAH5 (red) localized to the basal body (green) in control cells but was missing from the mutant.

(G) Schematic representation of the loss of microtubule anchoring and vesicle trafficking at the basal body, resulting in the lack of ciliary extension in the mutant.

Scale bars represent 5 mm in (A), 2 mm in (B) and (C), and 10 mm in (D) and (F).

See also Figure S7.
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suggest that the photoreceptor basal body requires an active

MACF1-mediated process to remain at its location similarly to

basal body anchoring at the apical membrane, which also re-

quires microtubule association with cortical actin lying just

beneath the plasma membrane (Antoniades et al., 2014; Reiter

et al., 2012). This could also explain why the establishment of

cilia goes hand in hand with establishing polarity (Delous et al.,

2009; Fan et al., 2004; Rodriguez-Boulan andMacara, 2014; Sfa-

kianos et al., 2007), which is an active process that needs to be

maintained throughout life.

The early embryonic lethality (at gastrulation) of germline-abla-

ted Macf1 mice precludes a detailed phenotypic analysis and

suggests that a complete absence of Macf1 is incompatible

with life inmammalian species, including humans. This is not sur-

prising, given the fundamental roles of MACF1 in multiple cell

types. We postulate that hypomorphic alleles ofMacf1, or muta-

tions that ablate select isoforms of MACF1, could lead to human

syndromes characterized by loss or dysfunction of cilia. These

may include retinal dystrophy, brain defects, cystic kidney, situs

inversus, and other manifestations of ciliopathies. Future genetic

investigations should uncover what human disease entities may

be associated with gene mutations in Macf1.

EXPERIMENTAL PROCEDURES

Mice

Macf1flox/flox mice were crossed with SixCre, RxCre, or Foxg1Cre animals. Het-

erozygous and homozygous conditional knockout mice were identified with

respect to the targeted allele by PCR. For postnatal staging, up to 24 hr after

birth was considered P0. Macf1flox/+;Cre mice were used as controls, unless

otherwise stated. All experiments with animals were approved by the Animal

Care and Use Committee at the National Eye Institute.

Electroretinography

ERG responses were recorded with an Espion E2 system (Diagnosys). For

dark-adapted responses, stimulus flash intensity varied from �4.0 to 1 log

sc cd.s/m2 (scotopic candela – second/meter2), with inter-stimulus intervals

of 10 to 60 s. Light-adapted ERG responses were obtained with flash inten-

sities from 0.3 to 100 sc cd.s/m2, and responses elicited at each intensity

were averaged 20 times.

Light and Electron Microscopy, Immunofluorescence, Immuno-EM,

and Immunoblotting

These procedures were carried out using standard protocols and described in

greater detail in the Supplemental Experimental Procedures.

Deletion of Macf1 in Adult Photoreceptors Using AAV8-RK-Cre

Using a Hamilton syringe, subretinal injections of 1 mL sterile PBS containing

AAV8-RK-Cre at 1 x109/mL, AAV8-RK-EGFP at 5 x108/mL, and 13 fluorescein

were performed on adult Macf1flox/flox and Macf1flox/+ mice. Animals were

anesthetized, and pupils were dilated as for ERGs. Eyes were harvested

3–5 weeks post-injection.

Statistics

Unpaired Student’s t tests were conducted to compare measured values be-

tween control and mutant samples. A p value of less that 0.05 was considered

significant, and a p value less than 0.01was considered highly significant. Error

bars indicate SD unless otherwise noted. ***, p % 0.001.
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