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The Art of Detection

Elliot J. Crowley and Andrew Zisserman

Visual Geometry Group, Department of Engineering Science
University of Oxford

{elliot,az}@robots.ox.ac.uk

Abstract. The objective of this work is to recognize object categories in
paintings, such as cars, cows and cathedrals. We achieve this by training
classifiers from natural images of the objects. We make the following
contributions: (i) we measure the extent of the domain shift problem
for image-level classifiers trained on natural images vs paintings, for a
variety of CNN architectures; (ii) we demonstrate that classification-
by-detection (i.e. learning classifiers for regions rather than the entire
image) recognizes (and locates) a wide range of small objects in paintings
that are not picked up by image-level classifiers, and combining these
two methods improves performance; and (iii) we develop a system that
learns a region-level classifier on-the-fly for an object category of a user’s
choosing, which is then applied to over 60 million object regions across
210,000 paintings to retrieve localised instances of that category.

1 Introduction

“It is of the highest importance in the art of detection to be able to recognize
out of a number of facts which are incidental and which vital. Otherwise your
energy and attention must be dissipated instead of being concentrated.”

– Sherlock Holmes, “The Reigate Puzzle”

The ability of visual classifiers to label the content of paintings is of great
benefit to art historians, as it allows them to spend less time arduously searching
through paintings looking for objects to study, and more time studying them.
However, such visual classifiers are generally trained on natural images, for which
there is a copious amount of annotation (and which is often lacking for paintings).
Unfortunately, as Hall et al. observe [24], there is a drop in performance in
training on natural images rather than paintings. So we ask, when it comes to
classifying paintings using natural images as training data, what are we missing?

We investigate the answer to this question from two directions: first, by
measuring quantitatively the domain shift problem for image-level classifiers,
and second, by looking at what is missed by image-level classifiers, but not
missed by detectors.

The task of interest here is image classification – classifying an image by the
objects it contains. With increasingly powerful image representations provided
by each generation of Convolutional Neural Networks (CNNs) there has been a
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steady increase in performance over a variety of challenging datasets of natural,
photographic images [17, 31, 34] (and for a variety of tasks [15, 22, 29, 32]). It has
been shown that these representations transfer well between domains such as
between DSLR and webcam images [39], natural images and sketches [43] and
of particular interest to us, between images and paintings [12, 11].

Our first contribution is to compare image-level-classifiers (i.e. representing
an entire image by a single vector) trained on natural images to those trained
on paintings at the task of painting classification. This allows us to observe how
severe the drop in performance is for different architectures when they have to
cope with domain shift.

It transpires that a major shortcoming of natural image-trained, image-level-
classifiers is their inability to retrieve very small objects in paintings. Small
objects are particularly prevalent in paintings, for example: animals dotted across
the countryside in landscape scenes; boats that are often small regions in a
seascape; and aeroplanes that are sometimes little more than a speck in the
sky. Our second contribution is to demonstrate that classification-by-detection
(i.e. finding regions in an image and classifying them) finds such objects for a
variety of classes. We also show that combining the two methods, image-level
classification and classification-by-detection, leads to improved performance.

Finally, we build upon the detector by contributing a system that detects an
object of a user’s choosing in paintings on-the-fly. The system downloads natural
images from the web and learns a region-level classifier. This classifier is applied
to over 60 million regions across 210,000 paintings to retrieve a large range of
objects with high precision. The detected objects are given in their paintings
with a bounding box, allowing for easy comparison of objects. We evaluate this
system for many different queries.

The paper is organized as follows: section 3 describes the datasets of natu-
ral images and paintings used in this work. An evaluation of painting classifica-
tion for different network architectures with natural image-trained and painting-
trained image-level classifiers is carried out in section 4. In section 5 object detec-
tors are utilised for the retrieval of small objects in paintings. Lastly, we describe
the on-the-fly learning system for detecting objects in paintings in section 6.

2 Related Work

Domain Adaptation. There is a wealth of literature on adapting hand-crafted
(i.e. shallow) features between domains (from a source domain to a target do-
main): Daumé [14] augments the feature space of source and target data. Oth-
ers [27, 30] have re-weighted source samples based on target sample similarity.
Saenko et al. [35] map source and target data to a domain-invariant subspace;
several later works build upon this idea [19, 23, 26, 38]. For deep learning, Ganin
and Lempitsky [20] incorporate a branch in their network architecture that clas-
sifies an input sample as being from one of two domains. The resulting loss is
back-propagated, and then reversed before being passed to the original network
to maximise domain confusion – the idea being that this should create a domain-
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invariant network. Tzeng et al. [39] learn domain invariant representations by
adding two losses to their network architecture: (i) a loss based on a domain
classifier similar to [20], and (ii) a ‘domain confusion’ loss that forces samples
from different domains to appear similar to the network. Aljundi and Tuyte-
laars [3] propose a method that identifies those filters in the first convolutional
layer of a network that are badly affected by domain shift. These filters are then
reconstructed from filters less affected by the domain shift in order to achieve
domain adaptation.
Natural Images to Paintings. In the vast majority of the domain adaptation
literature, the source and target data both consist of natural images. Evalu-
ation is mainly carried out on the ‘Office Dataset’ [35] where the domains in
questions are images taken with a DSLR camera, a webcam, and images from
the Amazon website. There is however, work on the specific problem of learn-
ing from natural images and retrieving paintings: Shrivastava et al. [36] use an
Exemplar-SVM [28] to retrieve paintings of specific buildings. Aubry et al. [5]
improve on this by utilising mid-level discriminative patches, the patches in ques-
tion demonstrating remarkable invariance between natural images and paintings.
Our previous work [13] demonstrates that this patch-based method can be ex-
tended to object categories in paintings beyond the instance matching of [5].
Others [41, 42] have considered the wider problem of generalising across many
depictive styles (e.g. photo, cartoon, painting) by building a depiction-invariant
graph model. Cai et al. [6] utilise query expansion to refine a DPM [18] model
learnt on natural images with confident detections found on artwork.

3 Datasets

In this section we describe the datasets used in the paper: one of natural images,
that will be used for training the source image classifiers and detectors; and the
other of paintings that will be used to provide the target training images, and
also a test set. The statistics for these datasets are given in table 1.

3.1 Paintings

The Paintings Dataset introduced in [13], and available at the website [2], is
a subset of the publicly available ‘Art UK’ dataset [1] – over 200,000 paintings
from British galleries, of different styles and eras (formerly known as ‘Your Paint-
ings’) – for which each painting is annotated for the occurrence of 10 classes –
aeroplane, bird, boat, chair, cow, dining-table, dog, horse, sheep, train. The an-
notation is complete in the PASCAL VOC [16] sense – in that every occurrence
is annotated at the image-level. These classes were chosen because they are all
present in PASCAL VOC (used for the natural image dataset below), allowing
us to assess the domain shift problem between the two datasets directly by class.
Example images of the dataset are shown in figure 1.

The entire ‘Art UK’ dataset [1] is used in the on-the-fly system (section 6)
to provide the variety required for general searches. This dataset consists of over
210,000 oil paintings.
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Fig. 1: Example class images from the Paintings Dataset. From top to bottom row:
aeroplane, cow, sheep. Notice that the dataset is particularly challenging: objects can
be large or minuscule, may often be occluded, and are depicted in a large variety of
styles such as photo-realistic, abstract and impressionist.

3.2 Natural Images

The VOC12 dataset is the subset of PASCAL VOC 2012 [16] TrainVal images that
contain any of the 10 classes. Only 10 of the 20 VOC classes are used, because
the ‘Art UK’ dataset does not have a sufficient number of annotated examples
of the other 10 classes.

Table 1: The statistics for the datasets used in this paper: each number corresponds to
how many images contain that particular class. Note, because each image can contain
multiple classes, the total across the row does not equal the total number of images.
Train/Validation/Test splits are also given.

Dataset Split Aero Bird Boat Chair Cow Din Dog Horse Sheep Train Total

VOC12 Train 327 395 260 566 151 269 632 237 171 273 3050
Val 343 370 248 553 152 269 654 245 154 271 3028
TrainVal 670 765 508 1119 303 538 1286 482 325 544 6078

Paintings Train 74 319 862 493 255 485 483 656 270 130 3463
Dataset Val 13 72 222 140 52 130 113 127 76 35 865

TrainVal 87 391 1084 633 307 615 596 783 346 165 4328
Test 113 414 1059 569 318 586 549 710 405 164 4301
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4 Domain Adaptation

In this section, we compare image-level classifiers trained on features from natu-
ral images (VOC12) to classifiers trained on features from paintings (the training
set of the Paintings Dataset). In both cases these classifiers are evaluated on
the test set of the Paintings Dataset. The classifiers trained on paintings are
representative of the ‘best-case scenario’ since there is no domain shift to the
target domain. Performance is assessed using Average Precision (AP) per class,
and also precision at rank k (Pre@k) – the fraction of the top-k retrieved paint-
ings that contain the object – as this places an emphasis on the accuracy of the
highest classification scores. To evaluate the domain shift problem we examine
the ‘mAP gap’ – the change in mean (over class) AP between natural image and
painting-trained classifiers.

The classifiers used are linear one-vs-rest SVMs, and the features are pro-
duced using a CNN. In section 4.1 we determine how the mAP gap is affected by
the CNN architecture used to produce the feature, and in section 4.2 we discuss
train and test augmentations, and the per class performance. Implementation
details are given at the end of the section.

4.1 Networks

Three networks are compared, each trained on the ILSVRC-2012 image dataset
with batch normalisation: first, the VGG-M architecture of Chatfield et al. [8]
that consists of 8 convolutional layers. The filters used are quite large (7 × 7 in
the first layer, 5 × 5 in the second). The features produced are 4096-D. Second,
the popular ‘very deep’ model of Simonyan and Zisserman [37] VD-16 that
consists of 16 convolutional layers with very small 3 × 3 filters in each layer of
stride 1. The features produced are again 4096-D. Third, the ResNets of He et
al. [25] that treat groups of layers in a network as residual blocks relative to
their input. This allows for extremely deep network architectures. The 152-layer
ResNet model RES-152 is selected for this work. The features extracted are
2048-D.
Network comparison. Table 2 gives the mAP performance for the three net-
works trained on VOC12 or the Paintings Dataset. Three things are clear: first,
and unsurprisingly, for features from the same network, classifiers learnt on paint-
ings are better at retrieving paintings than classifiers learnt on natural images;
second, RES-152 features surpass VD-16 features, which in turn surpass VGG-M
features; and finally, that the mAP gap decreases as the network gets better –
from a 14.9% difference for VGG-M to a 12.7% for RES-152. Thus improved
classification performance correlates with increased domain invariance.

From here on only ResNet features are used for image-level classifiers.

4.2 Augmentation

Four augmentation schemes available in the MatConvNet toolbox [40] are com-
pared, and are applied to each image to produce N crops. In all cases the image



6 Crowley and Zisserman

Table 2: mAP for retrieval using image-level classifiers trained on VOC12 vs the Paint-
ings Dataset. Both the networks used to generate the features and the the augmentation
schemes are varied. ‘Net’ refers to the network used. ‘none’, ‘f5’, ‘f25’ and ‘Stretch’ are
augmentation schemes and each column gives the corresponding mAP. Augmentation
schemes are described further in section 4.2. The last column shows the gap in mAP
between natural image and painting-trained classifiers for ‘Stretch’ augmentation.

Net Training Set none f5 f25 Stretch mAP gap

VGG-M VOC12 50.8 51.9 52.9 52.9
14.9

VGG-M Paintings Dataset 65.1 67.8 67.8 67.8

VD-16 VOC12 54.8 56.2 56.7 56.8
14.0

VD-16 Paintings Dataset 68.7 71.2 71.2 70.8

RES-152 VOC12 60.5 61.6 62.0 62.3
12.7

RES-152 Paintings Dataset 72.5 74.6 74.6 75.0

is first resized (with aspect ratio preserved) such that its smallest length is 256
pixels. Crops extracted are ultimately 224× 224 pixels. The schemes are: none,
a single crop (N=1) is taken from the centre of the image; f5, crops are taken
from the centre and the four corners. The same is done for the left-right flip of
the image (N=10); f25, an extension of f5. Crops are taken at 25% intervals in
both width and height, this is also carried out for the left-right flip (N=50); and
finally, Stretch, a random rectangular region is taken from the image, linear
interpolation across the pixels of the rectangle is performed to turn it into a
224 × 224 crop, there is then a 50% chance that this square is left-right flipped.
This is performed 50 times (N=50). Note that the same augmentation scheme
is applied to both training and test images.

Table 2 shows that the type of augmentation is important: ‘stretch’ generally
produces the highest performance – a 2% or more increase in mAP over ‘none’,
and equal to or superior to ‘f5’ and ‘f25’. This is probably because the stretch
augmentation also mimics foreshortening caused by out-of-plane rotation for
objects.

Table 3: Retrieval performance comparison on the test set of the Paintings Dataset

for classifiers trained using ResNet features. The images have been augmented using
‘Stretch’. ‘Set’ refers to the training set used and the performance metric is given under
‘Metric’: Average Precision (AP) or Precision at rank k (Pre@k).

Set Metric Aero Bird Boat Chair Cow Din Dog Horse Sheep Train Avg.

VOC AP 69.4 42.0 88.7 57.3 62.4 48.4 50.5 73.5 48.7 81.9 62.3
Pre@k=50 94.0 94.0 100.0 72.0 84.0 92.0 100.0 100.0 98.0 100.0 93.4
Pre@k=100 61.0 82.0 99.0 72.0 89.0 84.0 98.0 100.0 86.0 98.0 86.9

Paint AP 77.1 54.1 94.3 78.7 68.3 76.3 62.7 83.5 68.8 85.7 75.0
Pre@k=50 96.0 100.0 100.0 98.0 92.0 94.0 100.0 100.0 100.0 100.0 98.0
Pre@k=100 65.0 100.0 99.0 97.0 90.0 92.0 98.0 100.0 91.0 100.0 93.2
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Fig. 2: Precision-Recall curves for different classes, comparing natural image-trained
(red) and painting-trained (blue) classifiers learnt on ResNet features. Notice for ‘sheep’
that the gap in the curves is very significant even at low recall.

Results and discussion. Table 3 shows the per class AP and Pre@k for the
best performing case (ResNet with stretch augmentation), with the correspond-
ing PR curves given in figure 2. The datasets are not class balanced, and the
ratio of number of TrainVal samples between natural images and paintings varies
considerably over classes, but there does not seem to be an obvious correlation
with performance – aeroplane classifiers learnt on paintings significantly outper-
form those learnt on natural images despite being trained with far fewer positive
samples (87 vs. 670); and the ‘chair’, ‘dining table’ and ‘dog’ classes have similar
numbers in the painting dataset, but with ‘dining table’ only having half the
TrainVal images of the other two in VOC12, yet (based on AP) their relative
performance does not reflect these ratios at all.

One clear observation though is that the performance of natural image-
trained classifiers is inferior to painting-trained classifiers, with an AP gap of
around 0.1 for most classes. Pre@k sees a similar decrease. There are some par-
ticularly bad cases: ‘sheep’ has a colossal 20% decrease in AP, and the furniture
classes (‘chair’ and ‘dining table’) endure a significant drop. There are several
reasons for this inferior performance: first, a few of the paintings are depicted
in a highly abstract manner, understandably hindering classification; second,
some objects are depicted in a particular way in paintings that isn’t present in
natural images, e.g. aeroplanes in paintings can be WWII spitfires rather than
commercial jets. A third reason is size in the painting; in spite of many paintings
being depicted in quite a natural way small objects are missed. Some examples
of paintings containing small objects that have been ‘missed’ (i.e. received a low
classifier score) are given in figure 3. We investigate this problem in section 5.

4.3 Implementation details

Each image (both training and test) undergoes augmentation to produce N crops.
The mean RGB values of ILSVRC-2012 are subtracted from each crop. These
crops are then passed into a network, and the outputs of the layer before the
prediction layer are recorded, giving N feature vectors. These are averaged and
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Fig. 3: Examples of paintings where a small object has been ‘missed’ (i.e. given a low
score) by a classifier. In each case, the object under consideration is brought to attention
with a red box. From left to right: aeroplane, dog, sheep, chair. These small objects
are found with confidence by a detector.

then normalised to produce a single feature. Linear-SVM Classifiers are learnt
using the training features per class in a one-vs-the-rest manner for assorted
regularisation parameters (C). The C that produces the highest AP for each class
when the corresponding classifier is applied to the validation set is recorded. The
training and validation data are then combined to train classifiers using these
C parameters. These classifiers are then applied to the test features, which are
ranked by classifier score. Finally, these ranked lists are used to compute APs.

5 Classification by Detection

In this section we classify images by using a detector which is capable of lo-
cating small objects. For this we use the VGG-16 Faster R-CNN network of
Ren et al. [33]. Detection proceeds in two stages: first, a Region Proposal Net-
work (RPN) with an architecture resembling VGG-VD-16 [37] takes in an image
and produces up to 300 rectangular regions at a wide variety of scales and aspect
ratios each with an “objectness” score. These regions are then used in a Fast
R-CNN [21] network that identifies and regresses the bounding box of regions
likely to contain PASCAL VOC classes. To obtain a ranked list for a given class,
the entire VGG-16 Faster R-CNN network (both the RPN and the pre-trained
Fast R-CNN) is applied to each painting in the test set, and the images are
ranked according to the score of the highest confidence detection window.
Results and discussion. Some example detections are given in figure 5. The
AP and Pre@k per class is reported in table 4. The pointwise average mAP and
Pre@k curves are given in figure 4, and compared with those of the image-level
classifiers.

Very interestingly, the mAP resulting from this detection network is higher
than that of the image-level classifiers trained on natural images, marginally
outperforming even the most powerful ResNet classifiers (62.7% vs. 62.3%). The
most notable success is on the sheep class, (70.6% vs. 48.7%). This is probably
because sheep in natural images are typically quite large and near the foreground,
whereas in paintings they are often tiny and dotted across an idyllic Welsh
hillside. A similar, although smaller such discrepancy can be observed for dogs
which are depicted in paintings not only as beloved pets, but also in hunting
scenes where they are often small. However, Pre@k for small k is on average
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Fig. 4: Left: A point-wise average of mAP across Recall. Right: The average of class
precision at rank k for k < 1000. Plots are given for image-level classifiers learnt on
paintings (blue), and on natural images (red). The Faster-RCNN detector of section 5
is given (yellow), as well as the combinations with image-level classfiiers (green: ranked
list combination, cyan: score combination). Notice the significant gap in the perfor-
mance of natural image and painting-trained classifiers and how the classifier-detection
combination ameliorates this.

lower for the detector than the classifier. This is probably due to the detector
fixating on shapes, and not seeing enough context. For example, the ‘aeroplane’
detector incorrectly fires with confidence on a dragonfly as its wingspan resembles
that of a plane. The dragonfly is hovering above a table covered in fruit, clearly
not a setting for an aeroplane. This mistake would not be made if images (with
context) rather than regions were used for training.

In spite of this, we observe from the right-hand plot of figure 4 that when
k > 220, the mean Pre@k of the detector overtakes that of the classifier. As
we suspect, the detector is simply able to locate small objects the image-level
classifier is not. This is confirmed by the plots of figure 6, which compares the
image classifier score for each object label in a test image, to the size of the
detection window given by the Faster R-CNN network. The tall bins/light colours
in the lower-left corners confirms that typically, classifying the entire painting is
poor when the regions found successfully by the detector are smaller.

Combining Detection and Image-level Classification. We consider two
methods of combining the ranked lists produced by the image-level classifiers
(learnt on natural images), with those produced by the detector. Other methods
are discussed in [4]. The first method is a simple rank merge that combines the
two ordered lists (but does not require the scores). This obtains an mAP of
66.0% (table 4), closing the mAP gap to 9%. The second method uses a linear
combination of the scores: αA + (1 − α)B, and orders on these, where A is the
classifier score and B is the detector score. This gives an even higher mAP of
68.5% for α = 0.3. The pointwise average mAP and Pre@k curves for these two
combinations are given in figure 4. This high performance is probably because
the image-level classifier and detector are able to complement each other: the
classifier is able to utilise the context of a painting and the detector is able to
reach small objects otherwise unnoticed.
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Table 4: Retrieval performance comparison for image-level classifiers trained using
ResNet features where the images have been augmented using ‘Stretch’ vs. the Faster-
RCNN detector used for classification-by-detection on the test set of the Paintings
Dataset. Note that everything has been trained using natural images. C+D 1 refers to
the combination of the classifier and detector ranked lists, and C+D 2 is the combina-
tion of their scores.

Method Metric Aero Bird Boat Chair Cow Din Dog Horse Sheep Train Avg.

Classifier AP 69.4 42.0 88.7 57.3 62.4 48.4 50.5 73.5 48.7 81.9 62.3
Pre@k=50 94.0 94.0 100.0 72.0 84.0 92.0 100.0 100.0 98.0 100.0 93.4
Pre@k=100 61.0 82.0 99.0 72.0 89.0 84.0 98.0 100.0 86.0 98.0 86.9

Detector AP 67.4 36.2 88.8 32.8 65.1 48.7 57.6 79.6 70.6 80.0 62.7
Pre@k=50 86.0 92.0 100.0 66.0 80.0 88.0 92.0 98.0 94.0 100.0 89.6
Pre@k=100 58.0 71.0 99.0 58.0 84.0 80.0 91.0 98.0 92.0 100.0 83.1

C+D 1 AP 72.7 42.8 90.9 48.1 67.0 52.4 58.4 79.6 65.3 83.1 66.0
Pre@k=50 90.0 92.0 100.0 74.0 86.0 96.0 96.0 98.0 94.0 100.0 92.6
Pre@k=100 62.0 80.0 99.0 66.0 84.0 83.0 94.0 98.0 93.0 99.0 85.8

C+D 2 AP 75.2 45.0 92.3 54.8 69.1 53.3 60.4 80.8 70.5 83.7 68.5
Pre@k=50 94.0 96.0 100.0 76.0 84.0 98.0 100.0 100.0 100.0 100.0 94.8
Pre@k=100 64.0 77.0 99.0 76.0 90.0 89.0 99.0 100.0 94.0 100.0 88.8

Fig. 5: Example detection windows obtained using the Faster R-CNN network. From
left to right: aeroplane, bird, chair, cow. Only, the highest ranked window is shown in
each image, even though multiple successful detection windows may have been found.
Notice that very small objects are captured, such objects are often missed by an image-
level classifier.

6 Detecting Objects in Paintings on-the-fly

It is evident from section 5 that by using the network of [33] it is possible to
retrieve objects in paintings through detection that are not retrieved using image-
level classification. However, these objects are limited to those of PASCAL VOC,
which isn’t very useful if an art historian is interested in search for depictions of
fruit or elephants. To accommodate for this, we provide a live system, inspired
by [7, 9, 12] where a user may supply a query, and paintings are retrieved that
contain the object with its bounding box provided. This improves on our image-
level painting retrieval system [12] in two ways: Firstly, it retrieves small objects
that cannot be located at image-level. Secondly, as the region containing the
object is provided it is much easily to locate. The method is demonstrated over
the entire 210,000 paintings of the ‘Art UK’ dataset [1].
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Fig. 6: Left: A 2-D histogram, showing the distribution of image classifier scores (com-
puted from a single vector representing the entire image) against the window size of
the highest scored detection window. Classifier scores are mapped between 0 and 1
and window sizes are relative to the size of the image (i.e. window area over image
area). Note that the image classifier score is low when the window is small. Right: An
overhead view of the histogram where tall peaks are represented by light colours, and
short ones by dark colours.

Overview. At run time, the user supplies an object query as text (e.g. “ele-
phant”). Images are then downloaded for this query using Bing/Google Image
Search, and object regions are extracted from them. The object regions are used
to generate features, which are used with a pool of negative features to learn
a classifier, which is then applied to the features of millions of object regions
across the ‘Art UK’ dataset. The paintings containing the highest scoring ob-
ject regions are retrieved with their object region annotated. A diagram of this
system is provided in figure 7.

Feature Representation. Here, we describe how, given an image, features
are produced for this system. The image is passed into the Region Proposal
Network (RPN) of [33]. This produces up to 300 rectangular regions at a wide
variety of scales and aspect ratios each with an “objectness” score. To allow
for context, each region is expanded by 5% in width and height. N of these
regions are cropped from the image and resized to 224 by 224, then passed into
the VGG-M-128 network of Chatfield et al. [8]. The 128-D output of fc7 (the
fully connected layer before the prediction) is extracted and L2-normalised. This
network is used primarily because the resulting small features minimise memory
usage.

Off-line Processing. The features for object regions across the ‘Art UK’ dataset,
and the features used as negative training examples for classification are com-
puted offline. For each painting in ‘Art UK’, features are produced as above with
N = 300 resulting in around 60 million features which are stored in memory.
This amounts to ∼32GB. A fixed set of 16,000 negative features are computed for
classification: Google and Bing image searches are performed for vague queries
(‘miscellanea’, ‘random stuff’ and ‘nothing in particular’ to name a few) and
the images are downloaded. For each image, the region from the RPN with the
highest “objectness” score is used to produce a feature i.e. N = 1.

On-line Processing. Computing positive training features and learning, then
applying a classifier occur online. Positive features are obtained as follows: a
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Fig. 7: A diagram of the on-the-fly system. The user types in a query, in this case
elephant. Images of that object are downloaded from Bing/Google and passed into a
region proposal network to localise the object. These localised regions are passed into
a CNN to produce features, which are used in conjunction with pre-computed negative
features to learn a region classifier. This region classifier is applied to 60 million object
regions across 210,000 paintings and the highest scoring regions are retrieved.

Bing/Google Image Search is carried out using the query as a search term. The
URLs for the first 100 images are recorded and downloaded in parallel across
12 CPU cores. Each of these images is passed into the RPN and the highest
“objectness” region is used to produce a feature (N = 1), operating on the
presumption that in these “Flickr style” images (the object is in focus, large and
is often against a plain background) the region with the highest “objectness”
score corresponds to the object in question. Instances of such windows can be
seen in figure 8 where it is evident that this is often the case.

The positive and negative features are used in a Linear-SVM to produce a
classifier. This can be done on a single core and takes a fraction of a second. The
classifier is applied to 60 million painting features in a single matrix operation.

6.1 Evaluation

The system is assessed for 250 different object queries over a variety of subjects.
This include vehicles (boats, cars), animals (elephants, dogs), clothes (uniform,
gown), structures (cottage, church), parts of structures (spires, roof) among
others. Performance is evaluated quantitatively as a classification-by-detection
problem as in section 5: we rank each of the 210,000 paintings according to the
score corresponding to its highest scoring object region and by eye, compute
Pre@k – Precision at k, the fraction of the top-k retrieved paintings that contain
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Fig. 8: Highest scoring “objectness” regions (in red) when images downloaded from
Bing/Google are passed into an RPN. Top row: ‘elephant’, Bottom row: ‘cottage’.
Notice that the regions manage to contain the object, with quite a tight bound.

the object – for the 50 top retrieved paintings. Some examples detections and
Pre@k curves are provided in figure 9.

This system is crucially able to overcome one of the difficulties experienced
by our image-level classification system [12]: a notable difference in performance
occurs when an object is large in natural images and small in paintings. A good
examples of this is ‘wheel’. Bing/Google images of wheels mainly comprise of a
single wheel, viewed head-on against a plain background. Conversely, wheels in
paintings are often attached to carriages (or to a lesser extent, cars) and are a
small part of the image. An image-level classifier succeeds if the natural images
resemble the paintings in their entirety so cannot cope with this discrepancy,
whereas a region-level classifier can cope with only a small part of a painting
resembling the natural image. However, a drawback of the system relative to
image-level classification occurs when the context of an object is lost. A similar
observation was made in section 5. A good example of this is for the query ‘tie’.
Some of the paintings retrieved are indeed of people wearing ties, but others are
abstract V shapes. Several natural images for ‘tie’ are of a person’s torso wearing
a tie but by isolating the object, this context has been lost. The bounding boxes
of the objects in paintings are often quite loose. Although not ideal, this isn’t
too important as the objects are sufficiently localised for human use.

7 Conclusion and Future Work

In this paper, we have explored the domain shift problem of applying natural
image-trained classifiers to paintings. We have further shown that detectors are
able to find many objects in paintings that are otherwise missed, and based
on this observation, have created an on-the-fly system that finds such objects
across hundreds of different classes. Future work could consist of utilising the
method of Cinbis et al. [10] to refine the locations of objects in natural images
and paintings further. By doing this, the painting regions would be well suited
for the query expansion method of [6].
Acknowledgements. Funding for this research is provided by EPSRC Programme

Grant Seebibyte EP/M013774/1.
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Fig. 9: Example detections for our on-the-fly system for assorted queries as well as the
Pre@k curve for the top 50 results.
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