

Edinburgh Research Explorer

Robust and Noise Resistant Wrapper Induction

Citation for published version:
Furche, T, Guo, J, Maneth, S & Schallhart, C 2016, Robust and Noise Resistant Wrapper Induction. in
SIGMOD '16 Proceedings of the 2016 International Conference on Management of Data. ACM, pp. 773-
784, 2016 International Conference on Management of Data, San Francisco, United States, 26/06/16. DOI:
10.1145/2882903.2915214

Digital Object Identifier (DOI):
10.1145/2882903.2915214

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
SIGMOD '16 Proceedings of the 2016 International Conference on Management of Data

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/77047594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2882903.2915214
https://www.research.ed.ac.uk/portal/en/publications/robust-and-noise-resistant-wrapper-induction(74cf2757-521b-4d21-9135-fc69f6708329).html

Robust and Noise Resistant Wrapper Induction∗

Tim Furche and Jinsong Guo and Sebastian Maneth and Christian Schallhart
Department of Computer Science, Oxford University, Wolfson Building, Parks Road, Oxford OX1 3QD

firstname.lastname@cs.ox.ac.uk

ABSTRACT
Wrapper induction is the problem of automatically inferring a
query from annotated web pages of the same template. This query
should not only select the annotated content accurately but also
other content following the same template. Beyond accurately
matching the template, we consider two additional requirements:
(1) wrappers should be robust against a large class of changes to
the web pages, and (2) the induction process should be noise re-
sistant, i.e., tolerate slightly erroneous (e.g., machine generated)
samples. Key to our approach is a query language that is powerful
enough to permit accurate selection, but limited enough to force
noisy samples to be generalized into wrappers that select the likely
intended items. We introduce such a language as subset of XPATH
and show that even for such a restricted language, inducing optimal
queries according to a suitable scoring is infeasible. Nevertheless,
our wrapper induction framework infers highly robust and noise
resistant queries. We evaluate the queries on snapshots from web
pages that change over time as provided by the Internet Archive,
and show that the induced queries are as robust as the human-made
queries. The queries often survive hundreds sometimes thousands
of days, with many changes to the relative position of the selected
nodes (including changes on template level). This is due to the few
and discriminative anchor (intermediately selected) nodes of the
generated queries. The queries are highly resistant against positive
noise (up to 50%) and negative noise (up to 20%).

1. INTRODUCTION
Web wrappers are programs that extract information from web

pages. For instance a wrapper may extract the names of movie di-

∗The research leading to these results has received funding from
the European Research Council under the European Commu-
nity’s Seventh Framework Programme (FP7/2007–2013) / ERC
grant agreement DIADEM, no. 246858. Christian Schallhart has
also been supported by the Oxford Martin School, Institute for
the Future of Computing. The current affiliation of Sebastian
Maneth is the School of Informatics at the University of Edin-
burgh (email address: smaneth@inf.ed.ac.uk).The current affili-
ation of Christian Schallhart is Google London (email address:
christian.schallhart@gmail.com).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

rectors from movie listings such as IMDB. Wrappers have always
played a significant role in accessing the web as data—whether to
extract competitors’ prices for competitive intelligence (see [10]
for a recent survey) or as bridge between traditional web pages and
linked data [19]. Wrapper induction is then the process of inferring
a wrapper from a given sample of annotated data which follows a
certain template. A good wrapper is expected to select the same
intended information also from other pages of the same template.
For instance, given a sample with “Martin Scorsese” (more specif-
ically, its enclosing span-node) annotated, a wrapper that searches
for this particular string would be far too specific in most cases: it
works only for movies of this single director. A wrapper is (1) ac-
curate if it infers the full set of intended information from the given
examples. This is a notion common to most wrapper induction ap-
proaches. Our wrappers should additionally be (2) robust against
structural changes of the web page over time, and—different from
previous approaches—(3) the induction process should be resistant
to noise in the annotations. E.g. if all but one of several movie
directors are annotated on a page, then the induced wrapper should
select all directors, i.e., treating the missing director as noise.

Previous wrapper induction approaches [18, 1, 16] have focused
on the supervised setting where a human annotator provides a per-
fect set of annotations. We consider a very different setting for
wrapper induction, motivated by a recent rise in automated data
extraction [15, 5, 13] and wrapper maintenance approaches [22].
Samples are no longer provided by humans but automatically by
entity recognizers [5, 13] or by finding known instances in new [15]
or modified [22] web pages. For both cases, only as much annota-
tions may be provided for any single page or site as there is overlap
between the page’s items and the recognized entities or known in-
stances. Different from the supervised setting, automatically gen-
erated samples can be noisy—some annotations might be missing
and others might be incorrectly placed.

Thus, our wrapper induction method considers samples that may
be both noisy and minimal, allowing wrappers to be induced from
annotations for a single page and from as little as a single sam-
ple. It achieves this primarily through the careful choice of an ex-
pressive subset of XPATH, that is sufficient to express most wrap-
pers, but limited enough to force noisy annotations to be gener-
alized into wrappers that select the likely intended items. The
proposed method achieves remarkable robustness. It does so in
a very different fashion than previous approaches—by optimizing
for short, selective wrappers that use HTML’s semantic markup
for selection where possible: our approach favors (1) short expres-
sions with a small number of steps over multi-step expressions. It
also prefers (2) selective expressions that drill down quickly into
a small portion of the HTML page over expressions that are un-
selective (though possibly shorter). Selective expressions are less

1

likely to be affected by changes in unrelated parts of the document.
It is also heavily biased towards exploiting hints about the (3) se-
mantic role of elements in the template. In HTML, these are typi-
cally expressed in id or class attributes and often used for styling
and scripting. HTML5’s Microdata adds further semantic attributes
such as itemprop. Many templates also provide static labels, either
visible or in form of title tooltips. These criteria are designed to
mimic human-created robust XPATH expressions.

As an example, consider the following wrapper, extracting (span-
elements of) directors from IMDB movie pages:

descendant::div[starts-with(.,"Director:")][1]/
descendant::span

This XPATH query selects the first div-element with text-value of
the form “Director: . . . ”. Starting from this div-element, the query
selects all descendant span-elements. There is only one such span-
element, and this element contains precisely the director names of
the movie. Thus, the above is an accurate wrapper for extracting
director names. However, this query is not robust against changes
to the web page: (1) Imagine more span elements (containing non-
director information) are inserted under the correct div-element.
The wrapper would wrongly select all of them. (2) Imagine that
more div-elements (without director information) are inserted be-
fore the div-element containing the director information. The wrap-
per would select the wrong div-element and return its contained
span elements, if any. Our approach does not attempt to build an
accurate model of changes done to a specific web site or class of
web sites. Instead, we aim to model heuristics for building robust
wrappers on any type of web site.

What then, is a robust wrapper for this example?

descendant::div[starts-with(.,"Director:")]/
descendant::span[@itemprop="name"]

This wrapper qdirector is the most robust one in our setting. It fol-
lows the heuristic outlined above for short, selective wrappers that
prefer semantic features in their predicates. It increases the selec-
tiveness of the span step by using a predicate on a semantic at-
tribute (itemprop) and shortens the div step by removing the posi-
tional predicate that is no longer needed (because of the itemprop-
attribute). We often refer to the intermediate nodes selected by an
XPATH expression as “anchors”. Figure 1 shows a fragment of the
tree structure of an IMDB movie page with “Martin Scorsese” as
director; the red shaded nodes are anchors of qdirector.

Contributions. We present a novel approach for inducing wrap-
pers under the combined requirements of robustness and noise re-
sistance.
(1) We define directed XPath with sideways checks (for short,

dsXPath). dsXPath is powerful enough to capture a large class
of wrappers and is weak enough to support the generalization
to correct queries from noisy samples.

(2) We define a natural framework for computing the robustness
of a query. The essential feature of this framework is its com-
posability: the robustness score of a composed query can be
computed from the scores of its constituents.

(3) We show that computing the top-k most robust queries is in-
tractable, hence there is no hope for an exact solution.

(4) We devise a recursive bottom-up scheme for estimating the top-
k most robust dsXPath queries for a given set of samples.

(5) We experimentally evaluate our approach using old versions of
popular pages from the Internet Achieve.

Noise Resistance. To deal with noisy samples, we restrict to
a particularly small XPATH fragment. This fragment is not selec-
tion complete, i.e., there are annotated documents for which no

query in the fragment selects the annotated positions accurately.
For instance, our fragment cannot select all but some particular el-
ements of a list. Most notably, the fragment misses important fea-
tures such as negation and union. Interestingly, while trying to keep
the XPATH fragment as restricted and small as possible, we found
that certain axes are crucially required in order to achieve full ac-
curacy for all our samples. Besides the four base axis of XPATH
(child, parent, descendant, and ancestor), we found that the two
“sideways” axes following-sibling and preceding-sibling are es-
sential for our wrappers. For instance, often we want to select all
elements of a list appearing after a specific determining element.

Experiments. Our evaluation validates three claims: (1) The ap-
proach generates robust wrappers, that remain effective as long as
the relevant data is present, often for hundreds of days. (2) The gen-
erated wrappers have comparable or higher robustness than human-
created ones. (3) The approach is able to generate such wrappers
even in presence of significant amount of noise in the annotations.
We selected over 100 popular web pages from more than 50 dif-
ferent sites. We track the evolution of the pages over six years in
the Internet Archive in 20 day intervals. For each of these over
> 10k “page versions”, we evaluate the human crafted wrapper, the
wrapper produced by our system, and a simple baseline wrapper.

Related Work
This paper introduces a novel wrapper induction approach tailored
to the emerging setting of automatic, rather than human provided
annotations. Wrapper induction is the process of inducing an ex-
traction program, often one or more XPATH or similar expressions
over the HTML tag tree, from a set of examples.

Supervised Induction. Initially, wrapper induction ap-
proaches [18, 1] have been supervised where annotations are
provided by humans (see [12]). The supervised setting has
seen a flurry of industrial tools such as Lixto [1] or Mozenda,
http://mozenda.com/. In fact, a simple incarnation of these
inducers has become an essential tool for web developers, to
inspect web sites and find relevant nodes. Firebug, as well as the
developer tools provided with Chrome, Firefox, and Safari, allow
to induce XPATH expressions from single samples. For neither of
these approaches has robustness of the expressions been a primary
concern. For the latter, e.g., the induced expressions are often
one-off means for debugging and thus optimized for simplicity. In
fact, most of these tools provide expressions close to the canonical
path (see Section 2), at most exploiting unique id attributes if
present. These expressions are typically not robust per se, as noted
in [8, 9]. Furthermore, all of these tools assume a perfect input and
only return expressions that cover all and only the given examples
with no noise. Some of the more advanced systems, such as [1],
can infer a wrapper for a list of template items from only a few
examples of that list and thus deal with a limited form of negative
noise, but even in these cases positive noise is not considered.

That lack of robustness of earlier supervised approaches has been
noted in [8, 9, 6] and let to two methods that partially address that
issue: (1) The first [8, 9] aims to find a more robust wrapper the se-
lects the exact same data items as the given one. However, the ap-
proach is limited by the choice of wrapper language, a fairly narrow
subset of XPATH. Most importantly, it does not address attributes
and attribute values at all, yet the choice of attributes and values
is among the most crucial choices for robust wrappers (see Sec-
tion 6). (2) The second is focused on learning probabilistic models
of the evolution of web pages over time to rank XPATH expres-
sions by their robustness [6]. This allows to tailor robustness to the
specific change behavior of a web site. However, the used XPATH

2

fragment is strictly weaker than the one used here (only child and
descendant axis, at most one predicate per step, only equality pred-
icates). Furthermore, our results demonstrate that expensive, site-
specific training of change models is not required to achieve long
term robustness. This work is extended to the notion of an opti-
mal wrapper [21] with respect to a probabilistic and a adversarial
(worst-case) change model.

Automatic Induction. Supervised wrapper induction requires
significant supervision and human effort. Thus lately a number of
automated approaches to wrapper induction have been suggested.
Generally, these approaches are focused on inducing wrappers for
a list of search results or single-entity (e.g., product) pages fol-
lowing the same template structure. They fall into three categories
depending on the primary means to identify the elements of such a
list: (1) Pure template discovery: The earliest approaches attempt
to discover the template structure purely from the visual and struc-
tural similarity of the items of the template. As for wrapper in-
duction, there is a notion of robustness for template discovery (see,
e.g., [20]). However, robustness here measures how well a certain
method is able to deal with a wide variety of sites and application
domains. (2) Entity extraction-based: These approaches [23, 5, 7,
13] use domain-specific entity extractors to annotate the relevant
items on the page. They employ fairly standard XPATH wrapper
induction approaches that can not deal with positive noise and only
with limited negative noise if any. Thus, their main contribution
and difference lies in how they are reconciling the annotations in
a pre-processing step before the XPATH induction: ODE [23] uses
annotations only for post-processing to filter and label the item lists
identified through template discovery, [5] considers multiple sub-
sets of the annotations, [13] combines the annotation with, among
others, a novel template discovery component that filters the given
annotations to maximize regularity of the detected template items.
In both cases, annotation noise is eliminated in elaborate and costly
post-processing steps, which may be not be necessary at all or
could be simplified if combined with the induction method sug-
gested here. (3) Redundancy-based: Finally, methods such as [4,
3, 15, 2] exploit overlapping sources in the same domain. They
consider many candidate item lists and select ones that maximize
cross-domain instance-level redundancy. In many ways, the tech-
niques for inducing a robust wrapper discussed in this paper are
orthogonal to these approaches, as also pointed out in [5]. Most of
these approaches [5, 7, 13] use XPATH induction once the relevant
list items are identified, a few use regular expression-like patterns
[23], or queries against some form of visual representation of a
page [20]. For none of the automatic induction approaches robust-
ness of the induced wrapper is a primary concern, though [5] em-
ploys, among others, the induction method from [6]. In most cases,
our induction method could be integrated with these systems, thus
yielding more robust wrappers, as shown in Section 6.

2. PRELIMINARIES
We assume the reader to be familiar with the basics of XPATH 1.0

and use HTML and XML syntax freely. An (HTML or XML) doc-
ument D is a text containing markup and attribute definitions. The
latter two give rise to a tree structure, containing element nodes,
attribute nodes, and text nodes. An example of a document’s tree
structure is shown in Figure 1. Element nodes are depicted as el-
lipses. The attributes of an element give rise to attribute nodes.
These attribute nodes are depicted as boxes, which are connected
by dotted lines to their element nodes. The dotted line is labeled
by the name of the attribute (prepended by the @-symbol), while the
box contains the attribute’s value. For instance, the document frag-

ment <h4 @class="inline">Director:</h4> gives rise to the circled
h4-node in the lower left of the figure, and to the inline-labeled
attribute box connected to it.

Wrappers. Let D be a document. XPATH queries are evaluated
relative to a given node u of D. We denote by qD(u) the set of target
nodes of q when evaluated relative to u in D, and simply write q(u)
if D is clear from the context. A wrapper is an XPATH expression
q. These expression will be evaluated relative to the root of D, thus,
qD(r) is the result set of the wrapper expression on D, where r is the
root node of D. We denote qD(r) also by q(D). Wrapper induction
is an algorithm I that given a document D and a set of nodes V of
D, returns a wrapper q = I(D,V). We say a wrapper q “matches” a
target node n from a context u if n ∈ qD(u), omitting u if u = r.

Canonical Path. Let D be a document and let u be an element or
text node of D. The canonical path of u, denoted canon(u), is an
XPATH query defined recursively as follows. If u is the root node
then canon(u) = /. Otherwise, let p = canon(v) where v is the
(element) parent node of u, k ≥ 1 such that u is the k-th child of v,
and t is a node test for u (i.e., text() if u is a text node, or name if
u is a name-labeled element node). Then, canon(u) = p/t[k].

For Figure 1, the canonical path of the director node on an IMDB
director page (the red span element) is:

/html[1]/body[1]/ ... /div[4]/a[1]/span[1]

The dashed line in Figure 1 and the dots in the expression above
refer to a part of the path that is not shown (consisting of eleven
XPATH steps, seven of which are divs).

Let D= 〈D1, . . . ,Dn〉 be a sequence of documents all containing
a given node v (typically a sequence of versions of a single page,
e.g., snapshots of an IMDB director page). Then, we say that there
are k c-changes in D w.r.t. v, if k = |{Di+1 : {v} 6= canon(v)(Di)}|.
The number of c-changes is a measure for changes in D that affect
the path from v to the document root. Such changes are far more
likely to affect any query selecting v than changes in regions of the
document far from v.

Robustness. Let q be a wrapper and let D and D′ be docu-
ments. The query q is robust (for D and D′), if there exists a bi-
jection π between q(D) and q(D′) so that for all nodes v in q(D):
D/v = D′/π(v). Here, D/v denotes the (abstract, nodeId-free) sub-
tree of D rooted at node v. Note that since q(D) is a set (and not a
sequence), our robustness definition is order independent.

Noise Resistance. Let D be a document and V,V ′ be sets of nodes
of D such that V ′ is obtained from V by adding and deleting nodes.
A wrapper induction is noise resistant (for V,V ′ and D), if given
D and V ′ it returns the same query q as for input D and V . A
wrapper induction I is k%-robust, if for k% of all pairs (D,D′) and
sets of nodes V from D, the wrapper I(D,V) is robust. A wrapper
induction I is k%-noise resistant, if for k% of all documents D and
sets of nodes V,V ′ of D, the wrapper I(D,V) is noise resistant.

Precision, Recall, and F-Score. Imagine a set B approximating
another set A. The elements in B∩A are called true positives and t+

denotes their number |B∩A|. The elements in B−A are called false
positives and we define f+ = |B−A|. The elements in A−B are
called false negatives and we define f− = |A−B|. The precision
of B with respect to A is calculated as prec(A,B) = t+/(t++ f+).
The recall of B with respect to A is rec(A,B) = t+/(t++ f−). The
F-score Fβ (A,B) measures the accuracy biased toward precision

(β < 1) or recall (β > 1): Fβ (A,B) =
(1+β 2)prec(A,B)rec(A,B)

β 2prec(A,B)+rec(A,B) .

3. XPATH FRAGMENT DSXPATH

3

html

head body

div

h4 a

director

…/Person

inline

name

Martin
Scorcese

span

@class

@ite
mprop

@itemtype

@class @hr
ef

name/…

@itemprop url

@class

@itemprop

itemprop

canonical path

div

anchor node

siblingchild

target node

span

txt-black

Director:

Figure 1: Tree structure of an IMDB movie page

In this section we define our XPath fragment, called directed
XPath with sideways checks (for short, dsXPath). The idea of
dsXPath is to be (1) general enough to cover all samples with
100% precision and recall and (2) restricted enough as to enforce
noise resistant queries. In Section 4, we show how the careful
choice of the language fragment together with a straightforward,
but flexible scoring of expressions yields a noise resistant, yet ac-
curate and robust wrapper induction.

Query Syntax. The syntax of dsXPath queries is presented in
Figure 2. A query consists of one or more steps. Each step con-

〈Query〉 ::= 〈Step〉 (‘/’ 〈Step〉)*

〈Step〉 ::= 〈Axis〉 ‘::’ 〈Nodetest〉 (‘[’ 〈Predicate〉 ‘]’)*

〈Axis〉 ::= child | attribute | descendant | following-sibling
| parent | ancestor | preceding-sibling

〈Nodetest〉 ::= ‘*’ | ‘node()’ | ‘text()’ | 〈TagName〉
〈Predicate〉 ::= 〈Int〉 | ‘last()’ ‘-’ 〈Int〉

| attribute ‘::’ 〈AttrName〉
| 〈Function〉 ‘(’ 〈Content〉 ‘,’ 〈String〉 ‘)’

〈Function〉 ::= equals | contains | starts-with | ends-with

〈Content〉 ::= attribute ‘::’ 〈AttrName〉 | normalize-space(.)

Figure 2: Syntax of our XPATH Fragment

sists of an axis, a nodetest, and an arbitrary number of predicates.
The axis is any of XPATH’s navigational axes (including the at-
tribute axis), except the following and preceding axes. The node-
test is any of XPATH’s nodetests. The nonterminals 〈TagName〉 and
〈AttrName〉 in Figure 2 refer to the strings allowed as element and
attribute names. A predicate is either positional (i.e., consisting of
a number or of last() minus a number), the test for the existence of
an attribute, or one of four possible Boolean functions on strings.
The second argument to a Boolean string-function is an arbitrary
string of characters (indicated by the nonterminal 〈String〉). The

first argument to a Boolean string-function is either an attribute
selection (given by the attribute axis followed by a name) or a
text access. The only text access that we consider is the fixed ex-
pression normalize-space(.). This expression selects and normal-
izes (i.e., removes extra whitespace) the text-value of the current
node. E.g., applied to the div-node in Figure 1 we obtain “Direc-
tor: Martin Scorsese”. For brevity, we write only . instead of
normalize-space(.) and abbreviate attribute with @ as in XPATH.

We explain the semantics of XPATH using examples, see [14] for
details. We implicitly assume a given document D. A query q is
evaluated starting at a given node u of D. The result q(u) is a set of
nodes of D. Consider the following query q.

descendant::div[starts-with(.,"Director:")]/
descendant::span[(@class="itemprop")]

The evaluation of q on the root of a document D goes step-wise
through the XPath query: first all div-labeled descendants of the
root node are selected, and of those, the ones with text-value start-
ing with “Director:”. Finally, we select from these nodes the span-
labeled descendants with class-attribute equal to “itemprop” and
return them as result.

The above query uses two anchor nodes to characterize the target
span. An anchor node of q is a node of D that is selected during the
evaluation of q(r) on D. We do not give a formal definition but note
that red-marked nodes in Figure 1 are the anchors of this query.

dsXPath Queries. We now define directed XPATH queries
with sideways checks (dsXPath Queries) as a restriction of the
syntactical fragment given in Figure 2. We choose this frag-
ment for two reasons, namely, to obtain a feasible search space
and to foster generalization during induction to avoid overfitting
of noisy query samples. Such queries are either one- or two-
directional. Intuitively, a one-directional query does not change
its up/down direction, i.e., it strictly traverses the tree either top-
down or bottom-up (but not mixtures thereof). However, in a
one-directional query we do additionally allow “sideways checks”.
A sideways check is a subquery consisting of the following- and
preceding-sibling axes. A two-directional query is the concate-
nation of two one-directional queries. Given a query q = a1 ::
t1P1/a2 :: t2P2/. . ./an :: tnPn with axes ai, node tests ti, and pred-
icates Pi, we define axes(p) = a1 . . .an−1 if an = attribute and
axes(p) = a1 . . .an otherwise. The query q is one-directional, if
axes(q) matches one of the following regular expressions with
following-sibling∗ | preceding-sibling∗ = 〈sideways〉:
(1) ((parent | ancestor) 〈sideways〉)∗ or
(2) ((child | descendant) 〈sideways〉)∗.

Finally, for a given sequence of documents D = (D1, . . . ,Dn),
and a given dsXPath query q, we say that q is plausible, if all
constants appearing in the predicates of q also appear in the con-
sidered document. Recall that the text-value of a document is the
concatenation of all texts in the document. The query q is plausi-
ble, if it is generated by the EBNF in Figure 2 in such a way that
(1) each string is either a substring of the text-value of a document
in D, or is a substring of an attribute value of a document in D,
and (2) each integer produced by the nonterminal 〈Int〉 is not larger
than the number of nodes of any document in D. From now on, we
only consider plausible dsXPath queries.

4. WRAPPER INDUCTION
We first introduce the query model and types of induced queries.

Then our ranking is defined and the query induction problem is
shown to be infeasible (NP-hard).

4

Query Model. Given a document D, a query sample is a pair
〈u,V 〉, where u is a node of D and V is a non-empty set of
nodes of D. Our query induction induce takes a sequence of
query samples S = (〈u1,V1〉 , . . . ,〈un,Vn〉) over the documents D =
(D1, . . . ,Dn) (possibly containing duplicates) as input and returns
a ranked set of query instances Q = induce(S). A query instance
q =

〈
p, t+, f+, f−

〉
consists of an XPATH expression p = query(q)

and the corresponding numbers of true positives, false positives,
and false negatives, i.e., the numbers t+ = Σn

i=1|p(ui)∩Vi|, f+ =
Σn

i=1|p(ui)−Vi|, and f− = Σn
i=1|Vi − p(ui)|. Given q, we write

t+(q), f+(q), and f−(q) for the individual values of q. We also
write q(u) in lieu of p(u) with p = query(q). Ideally, each XPATH
expression p = query(q) for q ∈ induce(S) should lead from ui to
Vi, i.e., p(ui) =Vi (evaluated in Di) for all 1≤ i≤ n. Note however
that a fully accurate expression p is not always possible or – in case
of noisy input – not even desired.

Ranking. In order to deal with noisy additional annotations, we
choose β = 0.5 for the F-score. We rank the query instances q
by maximizing the F-score F0.5(q) and minimizing the robustness
score score(q). More precisely, we define the order < with q < q′

iff (1) F0.5(q) > F0.5(q′) or (2) F0.5(q) = F0.5(q′) and score(q) <
score(q′). The robustness score score(q) is a positive number
computed recursively from the structure of the query expression
query(q). The smaller the score, the more favorable the query.
The robustness score of an XPATH expression is computed as the
sum of the scores of its steps, because we favor shorter queries
over longer ones; we call this plus-composability. The scores of
steps are multiplied by a power of a decay-factor δ . This allows
to favor cheaper steps towards the end (beginning), i.e., closer to
(further from) the target node, by choosing δ ≤ 1 (δ ≥ 1). We de-
fine score(a1 :: t1P1/ · · ·/an :: tnPn) = ∑

n
i=1 score(ai :: tiPi) · δ i−1 .

where for i ∈ {1, . . . ,n}, ai is an axis, ti is a node test, and Pi is a
sequence of predicates.

For each axis a (such as descendant of child) we fix a constant
score sa. Similarly, for each node test t we fix a constant st . Note,
that different tags can thus be scored differently, e.g., div’s differ-
ently from script tags, though in most cases a default value cdefault
is used. The score for a single step a :: tP is now computed as the
sum of the scores for axis, node test, and predicates P = p1 . . . pm:
score(a :: t p1 · · · pm) = sa + st +∑

m
j=1 score(p j).

The score for a predicate p is computed as follows. If p is a
positional predicate, i.e., of the form p = [n] or p = [last()− n]
where n is a positive integer, then the score for p is score(p) =
cpos ·n, where cpos is a fixed constant.

If p is of the form [f (attribute::a, w)] or [attribute::a] (in
the latter case we set length(w) and s f to zero) where a is an at-
tribute name, f is a function (such as “equals” or “contains”), and
w is a string, then the score for p is the sum of a fixed score s f , a
no-function-penalty constant y, a fixed score sa, and the product of
the fixed length factor c f and the length of the string w: score(p) =
s f + y+ sa + c f · length(w), where y has a non-zero value only if
p =[attribute::a]. For a predicate with text access of the form
p =[f (.,w)] where f is a function (such as “equals” or “contains”)
and w is a string, we define score(p) = s f + stext + c f · length(w),
where stext is a fixed score. If q contains no predicate, we add
to score(q) a no-predicate-penalty. The two penalty scores no-
function-penalty and no-predicate-penalty bias the scoring towards
queries with predicates that are likely more selective.

Query Induction Problem. We define the query induction
problem and prove that it is infeasible. The query induction prob-
lem is the optimization problem of finding a selection of the best

ranked query instances among the plausible directed expressions
in dsXPath, where optimality is in terms of the ranking given in
the previous section. For a natural number K, a top-K set is a set
of ranked query instances with the highest achievable scores; there
might be several such top-K sets achieving the same scores.

DEFINITION 1 (QUERY INDUCTION PROBLEM). Given a
sequence S = (〈u1,V1〉 , . . . ,〈un,Vn〉) of query samples over implicit
documents D = (Di, . . . ,Dn) and a constant K, the query induction
problem is to find a top-K set of plausible query instances.

THEOREM 1. The query induction problem is NP-hard, even
with query samples of the form 〈u,{v}〉, requiring an optimal query
instance leading from u to v.

The theorem can be proved by a reduction to Minimum Set
Cover. Note that NP-hardness holds already for simpler XPATH
expressions consisting only of the child axis, and with a very
simple and natural scoring function (namely, one that is plus-
compositional and has all scores set to 1).

5. DSXPATH INDUCTION ALGORITHM
In this section our query induction algorithms are explained,

first for single-target query samples, and then for multiple-target
query samples. We always work in the context of a given num-
ber K, and compute sequences of “K-best” query instances (or-
dered according to our ranking). The resulting algorithm has poly-
nomial runtime since it executes a polynomial number of XPATH
queries of polynomial size over the analyzed document. We define
the set B of base axes as B := {child, parent, following-sibling,
preceding-sibling }, and define child.transitive = descendant and
parent.transitive= ancestor. Further, we set α.transitive= α for
α ∈ {following-sibling, preceding-sibling}. For an axis β , we
say that node v is β -reachable from u if and only if v ∈ q(u) for the
query q = β :: ∗.

Single-Target Query Samples. Let D be a document and u
a node of D. Here we consider the restricted case of one target
node, i.e., V = {v} where v is in D. Our algorithms are constructed
in such a way that v is guaranteed to be reachable from u via the
transitive axis of one of our base axes. The most interesting case
of our induction algorithm, is for the case that v is a descendant of
u, i.e., for the child base axis. The cases for the other base axes
follow from this case in a straightforward way. Let us thus discuss
now the case that v is a descendant of u. We denote the sequence of
nodes on the path from u to v by spine(u,v), and refer to the nodes
in spine(u,v) as possible anchors. To compute the best-K query in-
stances leading from u to v, we incrementally compute the best-K
instances best(n) for each node n in spine(u,v). Initially, we set
best(v)[1] = 〈ε,1,0,0〉 and best(v)[k] = 〈⊥,0,0,0〉 for 2 ≤ k ≤ K,
The “empty query” ε occurs only as intermediate result; When ap-
plied to best(v), it selects only the node v itself. By⊥we denote the
“fail query” which always returns /0. We now recursively compute
for each node n ∈ spine(v,u)−{v}, the superset cand(n)⊇ best(n)
of candidate instances, by using the already computed best-K sets
best(t) for nodes t preceding n in the sequence spine(v,u). From
this superset, we assign the best-K instances to best(n) and pro-
ceed along the spine until we have computed best(u), which is re-
turned as result. The superset cand(n) is computed as cand(n) =⋃

t∈spine(v,n)\{n} stepPattern(n, t,axis,K)×best(t) as shown in Al-
gorithm 2. Here, axis is the unique base axis in B such that t is
axis.transitive reachable from n, i.e., axis =child for the case dis-
cussed here. The function stepPattern(n, t,axis,K) computes the

5

best-K query instances that match t from n along axis (possibly in-
volving “sideways detours” but no intermediate anchors), and ×
yields the concatenated instances of the cross-product of the two
instance sets. We next explain function stepPattern(n, t,axis,K)
performing induction along the spine.

Spine Step Induction. The function stepPattern(n, t,axis,K)
shown in Algorithm 1 generates the available spine patterns to
match spine node t while moving along axis (or its transitive clo-
sure) starting at context node u; only the case of the child-axis
is shown. Note that in the return specification of the algorithm,
axis.reverse refers to the reverse of an axis, i.e., child.reverse =
parent (and vice versa), descendant.reverse = ancestor (and vice
versa), and following-sibling.reverse = preceding-sibling (and
vice versa). This algorithm works as follows. We first compute
for axis= child recursively through inducePath (Lines 2–5). Note,
child is the unique axis for which we ever produce sideways checks
in our algorithms! This explains that in the recursive case (for
the child axis), we iterate over all siblings s of t (Line 2), com-
pute the node patterns for s (Line 3) and the best-K paths from
s to t recursively (Line 4). Note that each such path consists of
exactly one XPATH step that uses either the following-sibling or
preceding-sibling axis (depending on the position of s with respect
to t). Then we add all possible concatenations between node pat-
terns and paths (Line 5). Thus, each query in P starts with a node
test. As all recursive calls to inducePath generate a path along the
sibling axes, the subsequent calls to stepPattern will be handled
non-recursively (because of Line 1).

Algorithm 1: Step Induction stepPattern(n, t,axis,K)

input : node t is axis.transitive-reachable from node n
returns : path set P such that ∀p ∈ P and all nodes x

if x is axis.reverse.transitive-reachable from t,
then {t} ⊆ p(x)

1 if axis= child then
2 for s ∈ siblings(t) do
3 P′ := nodePattern(s);
4 P′′ := inducePath(s,{t},K);
5 P := P∪{p′/p′′ | p′ ∈ P′ and p′′ ∈ P′′};

6 else P := nodePattern(t);
7 R := {axis.transitive :: p | p ∈ P};
8 if t ∈ axis(n) then R := R∪{axis :: p | p ∈ P};
9 return rescore(n,{t},R);

Let us discuss the function nodePattern. Given a node u, this
function iteratively computes a set of possible node tests followed
by at most two predicates. In a first step, a node test for the node
u is generated. This starts with the most general such test node()

followed by the test of the tag name of node u. Then one predicate
with an attribute (or text-value) equality-comparison is produced.
The resulting queries, with axis prepended are tested on node n.
If u is not uniquely matched, then an additional positional predi-
cate is concatenated. Thus, each pattern returned by nodePattern
contains at most two predicates: one attribute (or text) compari-
son (possibly) followed by a positional predicate. The selection of
attribute names and text functions follows our definition of scoring
for such query constructs (see Section 4). As an example if the node
u is labeled div, then the first few node patterns that are returned by
the call nodePattern(u) are of the form:

node() div
div[@id=’x’] div[@class=’y’]

div[contains(.,’z’)]

Note that x,y,z are constrained to be single strings that appear in the
input document as follows: either as single words (space-separated
and/or bordered) or as the full text-value of a node.

The node tests P at hand, we complete these patterns by prepend-
ing axis.transitive to all patterns in P (Line 7). If t is reachable
with a single step along axis, we prepend axis to all patterns in
P (Line 8). At last, the algorithm returns the resulting patterns R,
scored as expressions matching only t from context node u (Line 9).

As an example, consider the sample 〈u,{v}〉where u is the body-
node and v the em-node in this document:

<body>
<div class="content">
<div id="main">
<em class="highlight">The Target

</div></div></body>

This means that we have four nodes on the spine from u to v: the
body-node, the two div-nodes, and the em-node. We now generate
stepPatterns, starting at the lower div-node (with id-attribute), and
matching the em-node. E.g. these expressions are generated:

descendant::em
child::em
child::node()[class="highlight"]

Next, similar patterns are generated for expressions matching the
em-node, starting at the upper div-node, and then starting at the
body-node. In the next step we generate stepPatterns for the lower
div-node; first, starting from the div-node above it, e.g., the ex-
pressions descendant::div and descendant::div[@id="main"]. Next,
patterns are generated that match the lower div-node, starting at the
body-node, e.g., the expression descendant::div[@id="main"]. Note
however that the expression descendant::div it not generated at this
step, because it matches both div-nodes, and hence is not accurate
(strictly speaking, the expression may be generated, but receives a
very low score). To update the best patterns (from u to v), we now
also generate combined patterns such as patterns such as

descendant::div[@id="main"]/child::em

Finally, stepPatterns for the upper div-node are generated, starting
from the body-node, and are combined with the previous expres-
sions, so that for instance the expression

descendant::div[@class="content"]/child::div[@id="main"]
/child::em

is generated. The precise ranking of these expressions depends on
the parameter; see Section 6.3 for typical parameter choices.

Multiple-Target Query Samples. We now generalize to
multipe-target query samples, i.e., samples 〈u,V 〉 with |V | > 1.
Thus, inducePath takes u, V , and K as arguments, along with pre-
initialized tables best and tar, respectively for the best-K instances
and the relevant targets to be matched (explained below). The best
table is initialized as before to 〈⊥,0,0,0〉 for all relevant entries,
except for the first entry in every target node v ∈ V which is set
to 〈ε,1,0,0〉. The table tar contains for each relevant node n the
axis-reachable targets in V , where axis is the direction of the one-
directional dsXPath reaching from u to V Both tables are handed
in as arguments to enable the reuse of this algorithm in more gen-
eral settings beyond the base case. For dealing with |V | > 1, the
algorithm iterates over all targets v ∈V (Line 1) while maintaining
a single best-K table best throughout all iterations. In each iteration
v, inducePath induces the best-K instances which match v from u,

6

Algorithm 2: Axis Path Induction
inducePath(u,V,K,axis,best, tar)

input : node u and node set V 6= /0,
∀v ∈V : v is axis.transitive-reachable from u,
K > 0 best-K bound,
best initial table with best-K paths (wrt. score),
tar table of reachable target nodes

returns : query instances q with q(u)≈V , ranked by score
1 for v ∈V do
2 for t ∈ spine(v,u)−{u} do
3 for n ∈ spine(u, t)−{t} do
4 V ′ := tar(n);
5 for 1≤ k ≤ K and p ∈ stepPattern(n, t,axis) do
6 p′ := p/best(t)[k]; M := p′(n);
7 q := 〈p′, |M∩V ′|, |M−V ′|, |V ′−M|〉;
8 if q < best(n)[K] then
9 insert q into best(n);

10 return best(u);

possibly along with other targets from V . However, to produce ac-
curate results, inducePath evaluates the accuracy of the induced
instances against V (or subsets of V in for intermediate instances).
Hence, best(u) contains upon loop termination the so-far best ex-
pressions matching V and is returned as result (Line 10). The sign
≈ in the specification of the algorithm means that the query in-
stances select some nodes of the sample. Note that q < best(n)[K]
in Line 8 of means that the ranking of q is strictly smaller than the
ranking of the K-th query instance in the table best(n).

For each v, inducePath computes for all nodes n ∈ spine(u,v)−
{v} the best instances to match v and evaluates them against all
reachable targets tar(n) = V ∩ axis.transitive(n), given tar is ini-
tialized accordingly. To enable a dynamic programming approach,
we need to ensure that the entries in best are already computed
when the algorithm reads these entries. Thus, we first iterate
(Line 2) over all possible anchors t ∈ spine(v,u)−{u} and in an
inner loop (Line 3) over all nodes n for which t could serve as
anchor, i.e., n ∈ spine(u, t)−{t}. In each inner iteration, we enu-
merate all instances in stepPattern(n, t,axis,K)×best(t) (Line 5)
but only add those to best(n) which beat the K-best know instance
(Lines 8–9). This way, best(t) is not altered anymore, once the
algorithm reads best(t) to generate candidates for best(n). The re-
maining lines in Algorithm 2 deal with the accuracy evaluation of
the generated instances: we obtain the relevant targets V ′ and wrap
each generated XPATH expression p′ into an instance q with the
true positives, false positives and negatives evaluated against V ′.

Two-Directional Paths and Multiple Samples. Our gen-
eral induction algorithm is shown in Algorithm 3. It uses
inducePath from Algorithm 2 as subprocedure, and generalizes
our previous considerations to two-directional paths and multiple
samples. Two-directional paths are needed if a match node v ∈V is
not a descendant (and not an ancestor) of the context node u.

(1) Samples requiring two-directional paths (Lines 5–15). A
two-directional path from ui to Vi is required, if not all nodes in
V are reachable via the same base axis. Then induce searches for
the closest node li such that ui and Vi are both reachable via one-
directional paths from li. This node li is the least common ancestor
of either Vi or Vi ∪{ui} (Lines 5–7). Once li is fixed, induce first
computes the best-K tail instances from li to Vi. For computing the
final result, the algorithm induces instances leading from ui to li,

Algorithm 3: Path Induction Q = induce(S,K)

input : samples S = {〈u1,V1〉 , . . . ,〈un,Vn〉} such that
Vi 6= /0 for all 1≤ i≤ n, K > 0 as best-K bound

returns : query instances Q with q(ui)≈Vi
for all q ∈ Q and 1≤ i≤ n

1 for 〈ui,Vi〉 ∈ S do
2 if ∃a ∈ B ∀v ∈Vi : v is axis.transitive-reachable from ui

then
3 Qi := inducePath(ui,Vi,K,a, init(ui,Vi,K));

4 else
5 li := lca(Vi);
6 if 6 ∃a ∈ B : li is a.transitive-reachable from ui then
7 li := lca(Vi∪{ui});
8 〈best,_〉 := init(ui,{li},K);
9 a := unique axis in B so that ∀v ∈Vi:

10 v is a.transitive-reachable from li
11 best(li) := inducePath(li,Vi,K,a, init(li,Vi,K));
12 for n ∈ spine(u, li)−{li} do tar(n) :=Vi;
13 a := unique axis in B so that li
14 is a.transitive-reachable from ui
15 Qi := inducePath(ui,{li},K,a,best, tar);

16 return aggregate(
⋃n

i=1 Qi);

but with an deviating initialization: First, we take standard initial-
ization for best (Line 8) but initialize best(li) with the tail instances
from li to Vi (Line 11). Then, the overall induced expressions lead
from ui to li and continue with one of the expressions in best(li)
to match the nodes in Vi. Second, we set the targets for computing
the accuracy of the obtained instances to Vi, i.e., we set tar(n) =Vi
for all n ∈ spine(ui, li)−{li}, since we want to match Vi from each
node between ui and li.

(2) Multiple Samples. We deal with multiple samples by first
computing a best-K set Qi for each sample 〈ui,Vi〉 individually, and
second choosing from these instances the ones which perform best
on all samples (Line 16).

6. EVALUATION
Our experiments show that our wrapper induction produces ac-

curate and robust XPATH expressions even from noisy query sam-
ples. We first compare our system with two state-of-the-art XPath
wrapper induction system [6, 2]. We first evaluate the robustness of
our induction system and look at change frequencies occurring on
the involved pages (Section 6.2). Finally, we point out some char-
acteristics of the induced expressions (Section 6.3) and analyze the
noise resistance of the wrapper induction (Section 6.4).

Running time of the wrapper induction is generally in the same
order of magnitude as page retrieval and loading. For a single node
expression, it ranges from a few milliseconds to several seconds,
with a median of 1.4 seconds and more than 60% of the cases run-
ning faster than page retrieval and loading.

6.1 State-of-the-Art Comparison
For robust wrapper induction, [6] presents one of the seminal ap-

proaches and includes experiments on IMDB pages. As the system
is not available, we rather replicate their experiments as faithfully
as possible: as in [6], we take 15 snapshots of director names on
IMDB movie pages taken at 2 months intervals. If within such a 2
month interval, no new snapshot is available, we extend the interval
until one becomes available, in order to ensure that we use 15 dis-

7

Site Induced / Human XPATH queries valid days c-changes

S1 descendant::div[@id="console"]/descendant::p 400 4
descendant::div[starts-with(.,"Top")]/descendant::p 400 4

S2 descendant::h3[@class="f-quote"] 382 16
descendant::div[@id="channel0"]/child::h3 382 16

S3 descendant::img[@class="adv"][1] (rank=1) 300 2
descendant::div[@class="contentSmLeft"]/descendant::img[@class="adv"] (rank=3) 456 2
descendant::div[@class="contentSmLeft"]/descendant::img[contains(@class,"adv")] (rank=5) 1999 34
descendant::img[ancestor::div[1][@class="contentSmLeft"]] 1999 34

S1 = www.foxnews.com, S2 = espn.go.com, S3 = www.wellsfargo.com

Table 1: Matching single nodes, two typical queries and one difficult case

tinct snapshots. We use their success ratio measure as the percent-
age of snapshots at time t where the induced wrapper still works on
the immediately following snapshot at time t + 1. We tried to ap-
proximate the likely time period used in their paper by considering
the following three snapshot periods: 2004–2006, 2005–2007, and
2006–2008. Our approach achieves a success ratio of 100%, 86%,
86%, respectively. This compares to 86% reported in their paper
[6], where the precise time period is not mentioned.

We also compare with a more recent, automatic wrapper induc-
tion system [2] (WEIR). WEIR is based on the observation that
different sources for a certain type of data often have some overlap-
ping and is able to induce wrappers automatically in many cases.
The trade-off is that WEIR requires multiple pages that follow the
same template as input for each source, and each induced XPath
expression matches at most one node per page. The induced ex-
pressions are generally of two types: absolute expressions that are
similar to canonical paths, but starting from the closest anchestor
of the target node with a unique ID. The second type of expressions
are relative to a close-by “template” node, i.e., a node with a text
content that is likely fixed (such as “Director”). To tailor to the
limitations of WEIR, we select hotel pages from Tripadvisor with
the same template. We let WEIR induce expressions from 10 such
pages from 2012, and average over 5 such sets with differing pages
and/or target nodes. WEIR exploits the availability of 10 pages to
guess which nodes contain static content (such as “Country”) and
which contain variable values. WEIR’s induction returns an un-
ranked set of on average 30 expressions. We compare the robust-
ness of these expressions over the time period from 2012 to 2016
against our system. For our system, we provide only a single page
with the same target node as for WEIR. The top-10 expressions re-
turned by our system survive on average 67% of the time period,
compared with 32% on average for the 10 expressions returned by
WEIR. If we compare the most robust expression returned by each
system, ours survive for 93% of the period compared to 56% for
WEIR. If we only consider the top ranked expression for our case,
we survive 92%—our ranking very closely models robustness—of
the period. Also note, that our top-ranked and best expressions are
robust for the entire period in well over 80% of the cases, compared
with around 15% for WEIR.

6.2 Robustness
We evaluate the robustness of the generated expressions in Fig-

ures 3 and 4 respectively for single and multiple target nodes. For
both cases, we assembled a data set of 50 test tasks respectively,
each specifying a URL u together with a manually crafted XPATH
expression q leading to a single node in the first set or multiple
nodes in the second set (between 3 and 59 nodes with an average of
10). The sites in the dataset come from over 20 different verticals,
such as “Movies”, “News”, and “Travel”, and include some of the

most visited websites on the web. The data sets select nodes from
a range of different node types arising in the construction of site
wrappers: Such wrappers do not only select a single type of data
on a page but navigate to the data via forms and links to extract
multiple objects which are dispersed over multiple pages. To build
such a wrapper, one needs to induce expressions matching form el-
ements, menu entries, next links, and data attributes. Our data sets
are assembled to reflect this variety of use cases.

To check the robustness of induced expressions, we obtain from
the Internet Archive a sequence of snapshots taken from u. On
the first snapshot we induce an expression q′ to match the same
nodes as q does. The induction is restricted to expressions which
do not refer to textual data contents, i.e., texts that are not part of
the template but belong to changing data, such as article titles. Such
textual content would be too volatile and would cause the induced
expression to break quickly.

Once induced, we evaluate each such expression q′ on subse-
quent snapshots of u taken at 20 day intervals until (1) q′ does
not match the same nodes as q, (2) q breaks itself, or (3) we reach
a given end date. We check whether q is still correctly working
by evaluating a pre-specified predicate on the nodes matched of q.
For example, such a predicate might check that the matched nodes
belong to a certain class or start with certain string. When these
predicates did not match anymore, we manually verified that q did
break; if q was still valid, we improved the corresponding predi-
cates. If the Internet Archive does not contain a required snapshot,
we search for the closest existing snapshot as replacement. Our
evaluations start 01-01-2008 and end 12-31-2013.

We compare the robustness of induced wrappers with canonical
wrappers that consist of absolute XPATH from root node to target
nodes, and human wrappers carefully designed by experienced ex-
perts. Note that many human wrappers are not in dsXPath using
axes such as following, see query S3 in Table 2. When designing
human wrappers, we aimed at making them as robust as possible,
in some cases even rewriting a wrapper that broke by manually in-
specting the snapshot.

Results for matching a single node. Figure 3 shows a den-
sity distribution comparing the robustness of induced, canonical,
and human wrappers. Intuitively, the higher the curve is towards
the right, the more robust wrappers it contains. From the gener-
ated 53 expressions, 6 break within 100 days, however, most of
these expressions are not robustly wrappable, since in 5 of these
cases the corresponding manually crafted expressions fail as well.
27 expressions remain valid between 100 and 400 days, and 20 ex-
pressions remain valid for more than 400 days. Thus, discounting
the 5 expressions which have no robust wrapper, we only fail in a
single case, i.e., our wrapper induction is over 98%-robust.

Table 1 shows the induced expressions for three cases taken from
our dataset (following the same format as Table 2). For sites S1

8

0 500 1000 1500 20000.
00

00
0.

00
10

0.
00

20

Days

D
en

si
ty

Expression type

generated
manual
canonical

Figure 3: Robustness of expressions for matching a single node

0 500 1000 1500 20000.
00

00
0.

00
04

0.
00

08
0.

00
12

Days

D
en

si
ty

Expression type

generated
manual
canonical

Figure 4: Robustness of expressions for matching multiple nodes

and S2, we show the top-ranked induced expression in the first line
and the manually written expression in the second line; for S3 we
show three induced expression and the manual one. In addition to
the number of days the expression remained valid, we also show
the number of changes in the canonical path leading to the target
node during this period, as a very rough indicator for the amount
of changes occurring on the page. S1 achieves maximal robust-
ness, since the top video is replaced by list of videos and thus it
is unclear what the intended selection should be. S2 also achieves
maximal robustness, as the targeted quotation disappears from the
site. S3 is a hard case; our ranking does not work perfectly, since in
the top-ranked expression the positional predicate just outruns the
expressions involving a second step which is necessary for more
robustness. On the other hand, the 5th induced expression would
already deliver a very good result – after 1999 days, the involved
attributes obtain new names which cannot be anticipated at all.

The break reasons for the wrappers fall into five groups:
(a) The first group contains wrapper pairs (induced/human)

where both wrappers work over the full test period (2008–13), i.e.,
these are the most robust wrappers. From the 51 wrappers, four
fall into this group. For instance, the IMDB search field is selected
by this induced wrapper descendant::input[@name="q"] and, as the
reader may verify, this wrapper still works today.

(b) For 7 wrappers, both human and induced wrapper fail at the
same time, yet the target information is still present after the break

date. This is typically the case when the markup has changed con-
siderably, causing the wrappers to break. In fact, these changes
typically coincide with a site-wide visual redesign. Preeminent
for these 7 queries are changes in the values of important at-
tributes: e.g., class attributes change from "hp-content-block" to
"homepage-content-block", or from "headline20" to "headline16",
or the id-attribute changes from "searchInputArea" to "searchArea".
We believe that these cases could be dealt with by incorporating
more sophisticated text queries. We leave this issue for future work.

(c) For another 7 wrappers the induced wrapper works
longer. This may seem surprising, but coincidentally
our heuristics chose here an expression that proofed
more robust. For example, the induced wrapper (on
salesforce.com) q = descendant::input[@type="text"][last()]

works during the entire period, while the human query
descendant::*[@id="search_box_hm"]/q breaks after 1.5 years.

(d) Conversely, there are 2 cases where the induced
query breaks beforehan the human one: first, the induced
query descendant::div[(@id="cnnT1Col")]/descendant::h1

breaks after 241 days, while the human query
descendant::*[@class="cnnT1Txt"]/descendant::h1 breaks only
after 681 days. Coincidentally, in this case the class attribute
proves to be more robust than the id attribute. In the last case, the
human query /descendant::img[@id="jobs"]/ancestor::a[1]

lasts for 1201 days, while the induced query
descendant::a[@href="http://www.jobs.nih.gov/"] breaks af-
ter 1170 days, when a second node with the same href value is
added to the page.

(e) 7 wrappers break because of erroneous archive snapshots
which are either empty or structurally broken.

(f) 24 wrappers break when the relevant targets were removed
from their respective pages; thus, no wrapper could survive such
a change. Strictly speaking, these wrappers belong to Group (a),
as they did not break in the maximally possible (but not full) time
range. Here we categorize them as an independent group to illus-
trate the fact that no wrappers could still work.

Results for matching multiple nodes. The results in Fig-
ure 4 for the expressions matching multiple nodes show similar but
slightly better results. For example, only 2 out of 50 expressions are
less than 100 days valid, with an average of 815 days and a median
of 568 days. It is interesting to observe that in both datasets, after
the initial density peaks at 250 (single node) and 350 days (mul-
tiple nodes), the density falls until reaching a minimum at 1500
days. Apparently, the cases before 1500 belong to sites which do
change significantly eventually, while the cases beyond belong to
sites which are never updated significantly at all.

Table 2 shows four of our multi-target wrappers. For sites S1–S3
the top-ranked induced expression is shown in the first line, and the
manually written expression in a line below; for S3 we additionally
first show the 49th-ranked induced expression. We show the num-
ber of target nodes, the number of days the expression remained
valid, and the number of c-changes. The latter is a rough indicator
of the amount of changes to the document that directly affect the
path from the document root to the target nodes (see Section 2).

S1 matches a list of “channels” which are moved to another page
after 219 days. Both the human and generated expression achieves
perfect robustness. Note that the induced expression does not rely
on textual content but on attributes only. S2 does not break dur-
ing the full observation period. The induced expression prefers
the shorter string but is otherwise identical to the manual one.
S3 shows a good but suboptimal result: the class-attribute of our
top-ranked expression is removed at day 339; in contrast, the man-

9

ual expression (relying on textual contents) only breaks at day 622.
Interestingly, our rank-49 induced expression (using no attributes
or text) holds even for 700 days.

We checked by hand the break reasons of the wrappers.
This time, no induced wrapper ever worked longer than the hu-
man made, so we have only four groups: (a) 6 wrapper
pairs work over the full period, selecting general lists such as
“latest news” items. (b) 10 wrapper pairs break at the same
time. (c) There are no cases where the induced wrapper works
longer than the human one. (d) 3 induced wrappers break be-
fore the human one. For example, the induced top-ranked wrap-
per descendant::div[@class="widePanel"]/descendant::a breaks af-
ter 817 days, while the human wrapper is robust for the entire 5 year
period. However, the 30th ranked induced expression is fully robust
too: it first selects the text "offers:" from a header and then contin-
ues with /following-sibling::node()/descendant::a. Another ex-
ample is S3 from Table 2, where the human selects a node contain-
ing the text "Hit", while the induced query uses a class attribute.
(e) 10 wrapper pairs break due to issues with the internet archive.
(f) 21 wrapper paris break due to diminishing targets. Often, the
removal of the list information co-occurs with a complete visual
redesign of the respective site.

Both examples of induced wrappers that fail before the human
ones suggest that selection through the text-value of nodes gives
more robust wrapper than through attributes. This is confirmed by
analyzing the 10 cases where induced and human wrappers break
simultaneously: often the only possible robust approach is based
on selecting keywords within the target list. We believe that our
approach can induce robust queries for these cases; however, as we
mostly target volatile data entries, our configuration is biased to
deal with (relatively) dynamic item lists.

Change Rate. Here our discussions will be for both, single-
and multiple-target wrappers. We use a very rough change mea-
sure: only if the canonical path to the target nodes change, do
we count this as one change. Thus, if such a “c-change” oc-
curs, then we increase the change counter, induce a new path,
and continue in the same way. Recall that the canonical path
consists only of element names and position numbers. In this
way, we obtain very low change frequencies, the largest being
25 (obviously, many more things change on the pages, even con-
sidering attribute values on the canonical path gives completely
different numbers). Since the canonical path is our yardstick
for a simple wrapper, we find c-changes an appropriate measure.
For single-target wrappers, 11 wrappers survive more than 5 c-
changes; 16 wrappers survive exactly 1 c-change (that being the
largest group). The average is at 4.1 c-changes. For multiple-
target wrapper, 13 wrappers survive more than 5 c-changes, but
the highest number is only 19 (versus 25 for single). Interest-
ingly, the average is again 4.1 c-changes. We only checked two
sites (IMDB and espn) by hand to see what kind of canonical
path changes occur. The most frequent here, were positional
changes on div nodes. For instance, in a typical path (from IMDB)
html[1]/.../layer[1]/div[1]/div[3]/div[4]/form[1]/input[1] the
div[4] becomes a div[3] in a new version. Next frequent changes
are inserted or removed div nodes on the canonical path (i.e.,
changing the length of the path).

6.3 Expression Characteristics
Parameter Choices. As explained in Section 4, the typical
expression characteristics are chosen as suggested by our experi-
ence, as well as previous literature on wrapper induction, e.g., that
descendant is preferred over child. These are further discussed be-

low. The most important other parameter of our approach is the
decay factor, which favors anchors further away from the targets.
Our decay factor is δ = 2.5, as was determined as optimal through
a sequence of experience varying delta between 0.5 and 5.

For single- and for multiple-target wrapper induction we use the
same ranking parameters. We use no specific scores for different
tags, but merely cnode() = c∗ = 1 and cdefault = 10. Our positional
factor is 20, no-function-penalty is 15, and no-predicate-penalty is
1000. All other parameters are as follows:

Axes

descendant 1
attribute 1
foll.-sibling 1
child 10
parent 10
ancestor 20
prec.-sibling 25

Attributes

id 1
type 1
title 1
class 5
for 10
name 50
default 1000

Functions

equals 1
position 1
contains 5
starts-with 5
norm.-space 5
last 20
string 100

As an example, for descendant::img[@class="adv"][1] we com-
pute as score cdescendant + cdefault = 1+ 10+ 1 = 11 plus the two
predicates. The first one gives sclass = 5 plus 1 ·3, and [1] gives 21.
The final score equals 40.

Analysis. Starting with the 53 expressions generated to match a
single node, we see that 34 of these expressions have 1 step, 19 ex-
pressions have 2 steps, amounting to 72 total XPATH steps. All of
these steps follow the descendant axis. Figure 5 gives some details
on the characteristics of these expressions: On the left the figures
shows that 26 of the 72 steps check for div elements, followed by
input, and a elements. Of these 72 nodetests, 62 are refined by
at least one predicate, and 10 are refined by two predicates, yield-
ing again coincidentally 72 predicates. As shown in the right of
Figure 5, these predicates check in 26 cases for an id attribute, in
18 cases for an class attribute, and in 17 cases for a position. In
contrast, textual contents are only checked in 2 cases. This data
suggest the following pattern: If the expression contains two steps,
the first step identifies the region containing the targets by typically
matching a div, input, or a node, predicated with an id or class

attribute or position. The second step matches the target node, re-
ferring to a wide range of different tag names and often checking
for its position within the context.

The expressions to match multiple nodes have quite different
characteristics than the ones for single nodes. Fist of all, only 9
out of 50 examples use a single step, 34 employ 2 steps, and 7 need
3 steps, yielding a total of 98 steps. These steps employ a bigger va-
riety of axes, although 88 still rely the descendant axis; 7 steps use
following-sibling, 2 step use preceding-sibling, and 1 step child.
The use of the sibling axes is at first surprising, as most useful node
lists are grouped below a common ancestor. However, to identify
the correct subset of siblings belonging to our target list to avoid,
e.g., adverts at the beginning or end, robustly matching lists require
sibling anchors. For instance, query S3 in Table 2 selects the first
ul-sibling that follows the h3-node, and similarly, query S4 (at rank
49) select all list items under following siblings of a p-node. The
nodetests, shown on the left of Figure 6, also check in 33 cases
for the div tag. However, the next nodetests check for unordered
lists and table entries with ul and td as tags containing or neigh-
boring the target nodes. Finally, the 27 steps checking for list items
with the li occur mostly in the second and third step to match the
sequence of target nodes. The right of Figure 6 shows the the dis-
tribution of the 62 predicates occurring in the induced expressions.
These predicates mostly check for id and class attributes. How-
ever in contrast to the single-target cases, the expressions for mul-

10

Site Inferred / Human XPATH queries #res valid days c-changes

S1 descendant::a[contains(@class,"hpCH2")]/preceding-sibling::a[contains(@class,"hpCH")]
22

219 1
descendant::div[contains(.,"Channels")]/descendant::a[@class="hpCH"] 219 1

S2 descendant::tr[contains(.,"News")]/following-sibling::tr
7

2056 2
descendant::tr[contains(.,"News and Latest Reviews")]/following-sibling::tr 2056 2

S3 descendant::div[(@class="tvgrid")]/following-sibling::node()/descendant::li (rank=1) 339 12
descendant::p/following-sibling::node()/descendant::li (rank=49) 8 622 13
descendant::p[contains(., "Hit")]/following::ul[1]/descendant::li 700 13

S1 = www.about.com, S2 = www.mobiletechreview.com, S3 = imdb.com

Table 2: Matching multiple nodes, queries with sibling axes (top-ranked / human)

0
5

10
15

20
25

divinp
ut a

for
m im

g li td ul h1
ot

he
r id

cla
ss

po
sit

ion
al

titl
e

hr
ef

na
m

e
tex

t
typ

e

Steps

step 1
step 2

Figure 5: Nodetests/predicates of single-target queries

0
5

10
15

20
25

div ul td li a h2
inp

ut
sp

an tr
ot

he
r id

cla
ss tex

t

po
sit

ion
al

Steps

step 1
step 2
step 3

Figure 6: Nodetests/predicates of multiple-target queries

tiple targets do not check for any other attribute; aside these, only
7 expressions check in the first step for textual contents, and only 5
expressions check in their second step for positions.

6.4 Accuracy and Noise Resistance
Real-Life Noise. In this experiment, we verify that indeed our
approach is able to deal with realistic noise as produced by a real-
life entity recognizer. We use the Stanford NER [11] to annotate
10 pages randomly sampled from a set of product listing websites
(cf. [13]). We only select pages that contain at least one list of
entities supported by the Stanford NER, here one of date, person,
location, organisation, money. The size of the lists vary between
8 and 77 elements. For each of these pages, we run the Stanford
NER and map its annotations to DOM nodes that serve as target
nodes for our approach. The resulting input contains on average
32% negative and 28% positive noise, though both vary widely:
0− 67% for negative and 0− 145% for positive noise, with each

page having at least some noise.
Our approach deals surprisingly well with these noisy samples:

in 80% of the cases, our top-ranked expression identifies the correct
intended set of nodes, ranging from dates, book authors, artists,
and event locations to prices. There are two cases where it fails.
(1) For “organisations” on newyorknewyork.com, the NER returns
145% positive noise, yet misses 55% of the sought-for target nodes.
The returned expression is overgeneralized to a significantly larger
set of nodes. (2) For “persons” on waterstones.com, the NER
returns 50% positive, and 28% negative noise. The target nodes
are authors of books returned by a search. Unfortunately, most of
the positive noise is structural, annotating a list of author names in
a sidebar list used to refine the query. The generated expression
selects that list rather than the intended one. Both of these cases
could be addressed by limiting the induction to the main content
area, obtained by removing boilerplate content [17]. However, this
is out of the scope of this paper. It is worth pointing out, that even
if we eliminate the two cases where the system fails, noise remains
significant (30% negative and 11% positive on average), yet in all
of these cases our method compensate flawlessly for that noise.

Synthetic noise. Here we evaluate noise resistance by adding
or removing a precentage of the target nodes of a sample. We eval-
uate different four types of noise: (N1) negative random noise
(N2) negative mid-random noise where the first and last nodes
(in document order) of a target set are not removed, (N3) posi-
tive structured noise where we add random nodes chosen from a
node set which is structurally related (via an XPATH expression) to
the target nodes. Finally, we consider (N4) positive random noise
where we add random leaf nodes to the target set. We use two
datasets: The first one for negative noise has 100 query samples
matching between 3 and 59 nodes, with a median of 6 and an av-
erage 9.43 nodes. The second one for positive noise features 50
query samples matching between 2 and 100 nodes, with a median
of 20 and an average of 34.92.

Figure 7 summarizes our results for all noise types. We show
for the noise intensities of 10, 30, 50, and 70% the percentage of
cases where the induction with and without noise delivered iden-
tical results. Thus, we evaluate the noise resistance in the most
aggressive way. Typically, with negative noise, around 10% of the
cases deliver with noise a result which is at least within the top 50
results induced without noise. With positive noise, the fraction of
such expressions is negligible. Our system deals well with (N1)
negative random noise at 10 and 30% intensity in achieving identi-
cal results in respectively 88% and 74% of the cases, thus showing
that our approach is 88%- and 74%-noise resistant. However, at 50
and 70% intensity, 38 and 70% of the cases deliver non-identical
results. Seemingly unsatisfying, this relatively low noise resistance
is caused by removed head and tail nodes – which are critical to de-

11

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
20

40
60

80
10

0

Noise intensity

Id
en

tic
al

 R
es

ul
ts

● ●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ●
●

negative random
negative mid−random
positive structural
positive random

Figure 7: Result degradation with increased presence of noise

termine the start and end of a sequence of list entries. Therefore, we
consider (N2) negative mid-random noise where we keep the very
first and last node (in pre-order) and choose the noisily removed
nodes only from the remaining nodes in between. In this case, our
system returns identical results in 93, 83, 72, and 66% of the cases
for the analyzed intensities. Our system deals exceptionally well
with positive noise. For (N3) structural positive noise until 50%
intensity, our system achieves in at least 90% of the cases an iden-
tical expression with and without noise. At 70% intensity however,
this percentage drops to 54%. The (N4) positive random noise in
Figure has almost no effect on the results, e.g., at 70% noise inten-
sity, our system delivers the same result as without noise in 96% of
the cases. Even at a noise intensity of 300%, we obtain identical
results in 84% of the cases.

7. CONCLUSION
We present a wrapper induction algorithm that combines the

ability to deal with noisy samples with a robustness that allows
generated wrappers to often survive until the selected data is no
longer present in the page. The experiments point to a number
of further directions to improve our methods: (1) Extending the
method to deal with multi-node wrappers where not only a single
item or list of items, but multiple related items are to be extracted,
is a natural step forward. Our method is already designed to allow
the induction not only of absolute, but also of relative expressions
and thus should be a great fit for a multi-node wrapper as in [13].
(2) Learning an effective scoring for different types of node types,
textual values, and axes from a given corpus of websites. This is
particularly relevant to distinguish different text fragments used to
identify the same node and to best reflect specifics of a scenario.
(3) Entity extractors, as used in information extraction or to gen-
erate automatic annotations in, e.g., [5], can provide information
about the type of entity (e.g., “director”) of a piece of text. Using
such types in a wrapper to identify the containing node may yield
more robust wrappers. (4) No matter how sophisticated the wrap-
per language or scoring, without constraints on the shape of future
versions of a page, the robustness of a single wrapper will always
be limited. Therefore, we are investigating techniques for induc-
ing multiple wrappers that use a variety of independent means for
selecting a target node.

8. REFERENCES
[1] R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web

Information Extraction with Lixto. In VLDB, pages 119–128,
2001.

[2] M. Bronzi, V. Crescenzi, P. Merialdo, and P. Papotti.
Extraction and integration of partially overlapping web
sources. Proc. VLDB Endow., 6(10):805–816, Aug. 2013.

[3] S. L. Chuang, K. C. C. Chang, and C. Zhai. Collaborative
wrapping: A turbo framework for web data extraction. In
Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pages 1261–1262, April 2007.

[4] S.-L. Chuang, K. C.-C. Chang, and C. Zhai. Context-aware
wrapping: Synchronized data extraction. In Proceedings of
the 33rd International Conference on Very Large Data Bases,
VLDB ’07, pages 699–710. VLDB Endowment, 2007.

[5] N. Dalvi, R. Kumar, and M. Soliman. Automatic wrappers
for large scale web extraction. PVLDB, 4(4):219–230, 2011.

[6] N. N. Dalvi, P. Bohannon, and F. Sha. Robust web
extraction: an approach based on a probabilistic tree-edit
model. In SIGMOD, pages 335–348, 2009.

[7] N. Derouiche, B. Cautis, and T. Abdessalem. Automatic
extraction of structured web data with domain knowledge. In
ICDE, pages 726–737, 2012.

[8] B. Fazzinga, S. Flesca, and A. Tagarelli. Learning robust web
wrappers. In DEXA, pages 736–745, 2005.

[9] B. Fazzinga, S. Flesca, and A. Tagarelli. Schema-based web
wrapping. Knowl. Inf. Syst., 26(1):127–173, 2011.

[10] E. Ferrara, P. D. Meo, G. Fiumara, and R. Baumgartner. Web
data extraction, applications and techniques: A survey.
Knowledge-Based Systems, 70(0):301 – 323, 2014.

[11] J. R. Finkel, T. Grenager, and C. Manning. Incorporating
non-local information into information extraction systems by
gibbs sampling. In ACL, pages 363–370, New York, NY,
USA, 2005. ACM.

[12] S. Flesca, G. Manco, E. Masciari, E. Rende, and A. Tagarelli.
Web wrapper induction: A brief survey. AI Commun.,
17(2):57–61, 2004.

[13] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi,
C. Schallhart, and C. Wang. DIADEM: Thousands of
websites to a single database. PVLDB, 7(14):1845–1856,
2014.

[14] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The
complexity of XPath query evaluation and XML typing. J.
ACM, 52(2):284–335, 2005.

[15] P. Gulhane, R. Rastogi, S. H. Sengamedu, and A. Tengli.
Exploiting content redundancy for web information
extraction. In WWW, pages 1105–1106, 2010.

[16] W.-S. Han, W. Kwak, H. Yu, J.-H. Lee, and M.-S. Kim.
Leveraging spatial join for robust tuple extraction from web
pages. Inf. Sci., 261:132–148, 2014.

[17] C. Kohlschütter, P. Fankhauser, and W. Nejdl. Boilerplate
detection using shallow text features. In WSDM, pages
441–450, New York, NY, USA, 2010. ACM.

[18] N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrapper
Induction for Information Extraction. In IJCAI, pages
729–737, 1997.

[19] J. Lehmann, T. Furche, G. Grasso, A.-C. N. Ngomo,
C. Schallhart, A. Sellers, C. Unger, L. Bühmann, D. Gerber,
D. L. Konrad Höffner and, and S. Auer. DEQA: Deep Web
Extraction for Question Answering. In ISWC, pages
131–147, 2012.

[20] W. Liu, X. Meng, and W. Meng. Vide: A vision-based
approach for deep web data extraction. IEEE Transactions
on Knowledge and Data Engineering, 22(3):447–460, 2010.

[21] A. G. Parameswaran, N. N. Dalvi, H. Garcia-Molina, and

12

R. Rastogi. Optimal schemes for robust web extraction.
PVLDB, 4(11):980–991, 2011.

[22] J. Raposo, A. Pan, M. Álvarez, and J. Hidalgo.
Automatically maintaining wrappers for semi-structured web
sources. Data Knowl. Eng., 61(2):331–358, 2007.

[23] W. Su, J. Wang, and F. H. Lochovsky. ODE:
Ontology-Assisted Data Extraction. ACM Transactions on
Database Systems, 34(2), 2009.

13

