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IR singularities at three-loops Einan Gardi

1. Introduction

Long-distance singularities are a central feature of gauge-theory scattering amplitudes, and a
detailed understanding of their structure is key to precision collider physics [2–42]. Owing to their
factorization properties, the singularities are largely independent of the hard scattering process.
Furthermore, they exponentiate and can therefore be compactly summarised by the so called soft
anomalous dimension.

Until recently, the soft anomalous dimension for the scattering of any number of massless
coloured particles was known to two loops. To this order it admits a remarkably simple structure
consisting of a sum over colour dipoles formed by any pair of external legs [8, 13, 15–17]. In
this talk we report on the recent computation of the three-loop corrections to the soft anomalous
dimension [1]. The calculation we performed confirmed the expectation [15–21] that three-loop
corrections depart from the above dipole structure, and correlate between the kinematic and colour
degrees of freedom of up to four partons. We find that a non-vanishing correction appears already
for three coloured partons, but it is a constant, involving no kinematic dependence. The new three-
loop result also contributes to understanding factorization properties of scattering amplitudes in the
collinear and high-energy limits.

2. Factorization at fixed-angles and the soft anomalous dimension

We are interested in the infrared (IR) structure of a scattering amplitude for n massless partons.
Given external legs with momenta pi, for i = 1..n, where p2

i = 0, we consider the kinematic limit
of fixed-angle scattering, where all Lorentz invariants pi · p j are taken large. Infrared singularities
(both soft and collinear) can then be factorized as follows

Mn ({pi} ,αs) = Zn ({pi} ,µ,αs)Hn ({pi} ,µ,αs) , (2.1)

where µ is a factorization scale, αs ≡ αs(µ
2) is the renormalised D-dimensional running coupling,

Hn is a finite hard scattering function, and Zn is an operator in colour space collecting all IR sin-
gularities as poles in the dimensional regularization parameter ε = (4−D)/2. These singularities
originate in loop momenta becoming either soft or collinear to any of the scattered partons (see e.g.
Ref. [6]). Collinear singularities depend on the spin and momentum of that particle, and decouple
from the rest of the process; their contribution is known to three-loops [24, 45], and will not be
discussed here in detail. In contrast, soft singularities are independent of the spin, but they depend
on the relative directions of motion and the colour degrees of freedom of all scattered particles.
Hence, soft singularities are sensitive to the colour flow in the entire process. Nevertheless, they
are significantly simpler than finite contributions to the amplitude, opening a unique possibility to
explore multi-leg gauge-theory amplitudes at the multi-loop level.

The simplification of the soft limit is apparent already at the level of the Feymann rules: emis-
sion of a soft gluon with momentum k off an energetic particle with momentum pi� k, taken at
leading order in the soft gluon momentum, amounts to a factor of gsTa

i
pµ

i
pi·k+i0 = gsTa

i
β

µ

i
βi·k+i0 , where

we replaced the momentum of the emitting particle by its four-velocity, emphasising the rescaling
symmetry of this Feynman rule. This symmetry is responsible for the main features of soft singu-
larities. The soft approximation can be equivalently formulated in configuration space, as emission

1
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from a Wilson line following the classical trajectory of the particle with momentum pi and carrying
the same colour charge:

Φβi ≡ P exp
[

igs

∫
∞

0
dtβi ·Aa(tβi)Ta

i

]
, (2.2)

where P orders the colour matrices along the path. To avoid collinear singularities we perform our
calculation with non-lightlike velocities β 2

i 6= 0. Considering fixed-angle scattering of n legs, soft
singularities are fully captured by the following Wilson-line correlator, the so-called soft function,

S
({

γi j
}

; µ
)
≡
〈
T
(
Φβ1⊗Φβ2 . . .⊗Φβi⊗ . . .Φβn

)〉
(2.3)

where the kinematic dependence appears through cusp angles, γi j ≡ 2βi · β j/
√

β 2
i β 2

j , which are
invariant under velocity rescaling.

The factor Zn containing all soft and collinear singularities in Eq. (2.1) can be written as a
solution of a renormalization-group equation as

Zn = P exp

{
− 1

2

∫
µ2

0

dλ 2

λ 2 Γn
(
{pi} ,λ ,αs(λ

2)
)}

, (2.4)

where Γn is the so-called soft anomalous dimension matrix for multi-leg scattering, and P stands
for path-ordering of the matrices according to the order of scales λ . Γn itself is finite, and IR sin-
gularities are generated in Eq. (2.4) through the dependence of Γn on the D-dimensional coupling,
which is integrated over the scale down to zero momentum. Factorization and the rescaling sym-
metry of the Wilson line velocities [15–17] put stringent constraints on the functional form of Γn,
which through three loops, must take the form

Γn ({pi} ,λ ) = Γ
dip.
n ({pi} ,λ )+∆n

({
ρi jkl

})
, (2.5)

with

Γ
dip.
n ({pi} ,λ ) = −

1
2

γ̂K (αs)∑
i< j

log
(
−si j

λ 2

)
Ti ·T j +

n

∑
i=1

γJi (αs) , (2.6)

where −si j = 2
∣∣pi · p j

∣∣e−iπλi j , with λi j = 1 if partons i and j both belong to either the initial or
the final state and λi j = 0 otherwise; Ti is the colour generator in the representation of parton i,
acting on the colour indices of the amplitude as described in Ref. [7]; γ̂K(αs) is the universal cusp
anomalous dimension [2,43,44], with the quadratic Casimir of the appropriate representation scaled
out1; γJi are the anomalous dimensions of the fields associated with external particles, which govern
hard collinear singularities, currently known to three loops [24,45]. Equation (2.6) is known as the
dipole formula, and captures the entirety of the soft anomalous dimension up to two loops. Finally,
∆n
({

ρi jkl
})

represents the correction going beyond the dipole formula, which starts at three loops,

∆n
({

ρi jkl
})

=
∞

∑
`=3

(
αs

4π

)`
∆
(`)
n
({

ρi jkl
})

. (2.7)

1Casimir scaling of the cusp anomalous dimension holds through three loops [43]; it may be broken by quartic
Casimirs starting at four loops.

2
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Figure 1: All connected 3-loop webs connecting four Wilson lines.
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Figure 2: Representative non-connected 3-loop diagrams of webs connecting four Wilson lines.

and depends on the kinematics via conformally-invariant cross ratios (CICRs),

ρi jkl ≡
(−si j)(−skl)

(−sik)(−s jl)
=

γi j γkl

γik γ jl
, (2.8)

which are invariant under a rescaling of any of the momenta. In the following we report on the
calculation of the three-loop function ∆

(3)
n
({

ρi jkl
})

.

With the exception of hard collinear singularities (γJi(αs) in Eq. (2.6)), one may compute
the soft anomalous dimension Γn ({pi} ,λ ) to any order through the renormalization of the soft
function in Eq. (2.3): in dimensional regularization, loop corrections to the soft function are scale-
less integrals, which vanish in the absence of a cutoff. Hence, one may directly infer the infrared
poles in ε from the ultraviolet ones. This calculation strategy has marked advantages over the
alternative of extracting the infrared poles from an amplitude, since one never needs to evaluate
finite corrections, and one may make direct use of the known iterative structure of renormalization
along with the exponentiation properties of Wilson line correlators [35–42].

We note that ∆
(3)
n is independent of the details of the underlying theory and completely de-

termined by soft gluon interactions. In particular, this implies that ∆
(3)
n is the same in QCD and

in N = 4 Super Yang-Mills, and it is therefore expected to be a pure polylogarithmic function of
weight five. Its functional form has been constrained by considering collinear limits and the Regge
limit [14–22], but despite progress in understanding these limits it remained unclear whether three-
loop corrections to the dipole formula are in fact present. The situation changed with the comple-
tion of the direct computation of ∆

(3)
n [1] on which we report in the present talk.

3
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Figure 3: Representative 3-loop diagrams of webs connecting a subset of three out of the four Wilson lines.
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Figure 4: Representative 3-loop diagrams of webs connecting a subset of two out of the four Wilson lines.

3. Computing connected graphs

We set up the calculation of the soft anomalous dimension through the renormalization of a
product of semi-infinite Wilson lines with four-velocities βk, with β 2

k 6= 0. By considering non-
lighlike lines we avoid collinear singularities, and obtain kinematic dependence via cusp angles
γi j ≡ 2βi ·β j/

√
β 2

i β 2
j . We eventually extract ∆

(3)
n for massless scattering by considering the asymp-

totic lightlike limit β 2
k → 0, where the kinematic dependence reduces to CICRs as in Eq. (2.8).

Considering the set of contributing diagrams at three loops, it is clear at the outset that the
diagrams that connect the maximal number of Wilson lines, that is four lines, shown in Fig. 1,
have a special status: these are the only diagrams that depend on all six cusp angles γi j with
1≤ i < j ≤ 4. Hence these four diagrams are expected to involve non-trivial dependence on CICRs
(defined in Eq. (2.8)). Importantly, this kinematic dependence remains in place upon taking the
simultaneous lightlike limit, γi j →−∞. In contrast, all other webs reduce in this limit to a sum of
products of logarithms of γi j. This applies in particular to the webs of Fig. 2: these webs connect
all of the four lines, but they never involve any set of four angles that may form a cross ratio as in
Eq. (2.8). It is clear that webs connecting three or two lines out of the four, as in Figs. 3 and 4,

4
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cannot give rise to cross ratios, and so they reduce to polynomials in logarithms of γi j for near
lightlike kinematics. Of course, cross ratios may be formed upon summing the webs of Figs. 2, 3
and 4, but these contributions are necessarily polynomial in logarithms of the CICRs.

It follows that the primary ingredient in deriving ∆
(3)
4

({
ρi jkl

})
is the computation of the four-

line connected diagrams in Fig. 1. Below we briefly describe the strategy of the calculation and
the result we obtain for these diagrams, before presenting the complete result for the anomalous
dimension. The computation of all diagrams will be discussed in dedicated publication [46].

We set up the calculation in configuration space, with four non-lightlike Wilson lines with four-
velocities βk. The position of the three- and four-gluon vertices off the Wilson lines are integrated
over in D = 4−2ε dimensions. Following Ref. [35, 41], we introduce an infrared regulator which
exponentially suppresses contributions far along the Wilson lines. This is necessary to capture
the ultraviolet singularity associated with the renormalization of the vertex where the Wilson lines
meet. Upon performing the integral over the overall scale, we observe that each of the diagrams
in Fig. 1 has a single 1/ε ultraviolet pole, without any subdivergences. The contribution of each
diagram to the soft anomalous dimension is the coefficient of that pole, which is finite in D = 4
dimensions.

Next, considering the leftmost diagram in Fig. 1, we observe that for fixed gluon-emission
vertices along the Wilson lines, the integral over the position of the four-gluon vertex gives rise to a
four-mass one-loop box integral in 4 dimensions; Similarly, in each of the remaining three diagrams
in Fig. 1, the integrals over the positions of the two three-gluon vertices yield a four-mass diagonal-
box two-loop integral2. We proceed by deriving multifold Mellin-Barnes (MB) representations for
each of these off-shell four-point functions.

Next we integrate over the position of the gluon emission vertices along the Wilson lines,
obtaining a MB representation of each of the connected graphs for the general non-lightlike case,
depending on all of the six cusp angles

{
γi j
}

. We proceed by applying standard techniques [48] to
perform a simultaneous asymptotic expansion near the lightlike limit γi j→−∞, where we neglect
any term suppressed by powers of 1/γi j, obtaining a sum of lower-dimensional MB integrals. These
are converted into parametric integrals using the methods of Ref. [49], which we then performed
by means of modern analytic integration techniques [50]. The result for the leftmost diagram in
Fig. 1 reads:

w4g =
1
ε

(
αs

4π

)3
Ta

1Tb
2Tc

3Td
4

[
f abe f cde zz̄− z− z̄

z− z̄
+ f ade f bce 1− zz̄

z− z̄
+ f ace f bde 1− z− z̄

z− z̄

]
g1(z, z̄,

{
γi j
}
)

(3.1)

and the one for the second diagram takes the form

w(12)(34) =
1
ε

(
αs

4π

)3
Ta

1Tb
2Tc

3Td
4 f abe f cde

[
g0(z, z̄,

{
γi j
}
)− zz̄− z− z̄

z− z̄
g1(z, z̄,

{
γi j
}
)
]
, (3.2)

where g0 and g1 are pure polylogarithmic functions of uniform weight five in the variables z≡ zi jkl

and z̄≡ z̄i jkl which are related to the CICRs of Eq. (2.8) via

zi jkl z̄i jkl = ρi jkl and (1− zi jkl)(1− z̄i jkl) = ρilk j . (3.3)

2Some more details on this computation were presented in the previous Loops and legs conference [47].
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The remaining two diagrams in Fig. 1 can be obtained from w(12)(34) by appropriate permutations
of the lines. The sum over all four connected graphs, wcon. = w4g +w(12)(34)+w(13)(24)+w(14)(23),
displays a drastic simplification as compared to individual diagrams, namely, individual graphs are
not pure functions but the sum is. Specifically, the function g1, which appears in all of them, exactly
cancels in the sum, and one is left with three permutations of the function g0, which has no rational
prefactor. This is in agreement with the expectation that (maximally helicity-violating) amplitudes
in N = 4 Super Yang-Mills are pure and have a uniform maximal weight.

The next simplification occurs upon applying the Jacobi identity to the sum of connected 4-line
webs:

wcon. =
1
ε

(
αs

4π

)3
Ta

1Tb
2Tc

3Td
4

[
f abe f cdeG1(z, z̄,

{
γi j
}
)+ f ade f bceG2(z, z̄,

{
γi j
}
)

]
, (3.4)

where G1 = g0+ [g0]| j↔k and G2 = [g0]| j→l→k→ j+ [g0]| j↔k. Crucially, the functions G1,2(z, z̄,
{

γi j
}
)

separate as follows:

G1,2(z, z̄,
{

γi j
}
) = P1,2(z, z̄)+Q1,2

({
log(γi j)

})
, (3.5)

where P1,2(z, z̄) is a sum of harmonic polylogarithms (of weight 5) depending exclusively of on
CICRs via z and z̄, while Q1,2

({
log(γi j)

})
is a polynomial in the logarithms of γi j. This split

must have happened for the full result for ∆
(3)
n to be a function of CICRs: indeed Q1,2

({
log(γi j)

})
cancels against contributions of the remaining diagrams3 – which are also polynomial in

{
log(γi j)

}
– leaving behind pure CICR dependence.

4. Colour structure and colour conservation at three loops

Let us now turn to discuss the colour structure of the soft anomalous dimension for n coloured
lines. According to the non-Abelian exponentiation theorem [42] the colour factors in ∆n must all
correspond to connected graphs4. Thus, at three loops we expect the “quadrupole” colour structures
of Fig. 1, i.e., Ta

i Tb
jTc

kTd
l f abe f cde plus permutations, where the four lines connected (i, j,k and l)

are any subset of four out of the n lines.
The next question is then whether any other colour factor is admissible in ∆

(3)
n , namely ones

that involve fewer than four lines. One possibility could be tripole corrections correlating three
partons, with colour factors proportional to i f abcTa

i Tb
jTc

k. Such tripoles appear starting from two
loops for non-lightlike Wilson lines [25–35], but are excluded in the lightlike case at any order
because the corresponding kinematic dependence on the three momenta is bound to violate the
rescaling symmetry constraints [15–17]. While a constant correction proportional to i f abcTa

i Tb
jTc

k
is excluded by Bose symmetry, kinematic-independent corrections involving three lines of the form
f abe f cde

{
Ta

i ,Td
i
}

Tb
jTc

k as the first diagram on Fig. 3, are admissible and do indeed appear.

3One notes that the separation in (3.5), while highly constraining, is not unique: powers of logarithms of CICRs can
be expressed in either way. The computation of the remaining diagrams of Figs. 2, 3 and 4, uniquely fixes the answer.

4In this context a “connected graph” is one that remains connected upon removing all Wilson lines, so for example
all diagrams in Fig. 1 are connected while all those of Fig. 2 are non-connected. This does not imply that the latter do
not contribute – they do, but with the colour factors of the former. For further details see Refs. [35, 38–42].

6
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We conclude that the general form of the non-dipole correction to the soft anomalous dimen-
sion for n coloured lines is given by

∆
(3)
n
({

ρi jkl
})

= 16 fabe fcde

{
−C

n

∑
i=1

∑
1≤ j<k≤n

j,k 6=i

{
Ta

i ,T
d
i

}
Tb

jT
c
k + (4.1)

∑
1≤i< j<k<l≤n

[
Ta

i Tb
jT

c
kTd

l F (ρik jl,ρil jk)+Ta
i Tb

kTc
jT

d
l F (ρi jkl,ρilk j)+Ta

i Tb
l Tc

jT
d
k F (ρi jlk,ρikl j)

]}
,

where C is a constant and F is a function of two CICRs. Note that the contribution proportional
to the constant C is present starting from the three-line case, n = 3. Both C and F are independent
of the colour degrees of freedom. The terms in this sum are not all independent, because of the
antisymmetry of the structure constants and the Jacobi identity. We emphasise that C and F are
independent of the number of legs n. We can therefore determine these functions by considering
the simplest case of four Wilson lines, ∆

(3)
4 .

In organising the calculation we made use of non-Abelian exponentiation, and computed webs,
namely diagrams that contribute directly to the exponent. A web can be either an individual con-
nected diagram, as in Fig. 1, or a set of non-connected diagrams which are related by permuting the
order of gluon attachments to the Wilson lines [38–42]; representative diagrams from such webs
are shown in Fig. 2. In either of these cases, the contribution to ∆

(3)
4 is associated with fully con-

nected colour factors. The classification of webs connecting four and three Wilson lines was done
in Ref. [42].

Another important element in organising the calculation is colour conservation. The anoma-
lous dimension Γn is an operator in colour space that acts on the hard amplitude, which is a colour
singlet and must therefore satisfy [8] (

n

∑
i=1

Ta
i

)
Hn = 0 . (4.2)

This colour conservation constraint is implicit in Eqs. (2.6) and (4.1). When computing ∆
(3)
4 one

may form a colour basis by systematically eliminating T4 in favour of Ti, 1 ≤ i ≤ 3, thereby re-
ducing all four-line colour factors to three-line ones. This way colour conservation relates between
diagrams connecting a different number of Wilson lines: the diagrams in Figs. 3 and 4, which
connect three or two Wilson lines, contribute together with those connecting four lines. Let us
see this explicitly. The sum of all three-loop webs connecting four lines can be cast into the Bose
symmetric form

G4(1,2,3,4) = Ta
1Tb

2Tc
3Td

4

[
f abe f cdeH4[(1,2),(3,4)]+

f ace f bdeH4[(1,3),(2,4)]+ f ade f bceH4[(1,4),(2,3)]
]
,

(4.3)

where the kinematic function H4 satisfies the following permutation properties: H4[(1,2),(3,4)] =
−H4[(2,1),(3,4)] = H4[(3,4),(1,2)]; this function depends on logarithms of cusp angles as well
as on non-trivial functions of CICRs. Using colour conservation to eliminate T4 in favour of the

7
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sum of the other three generators, we convert the result to a three-line colour basis:

G4(1,2,3,4) =−
1
2

f abe f cde
∑

(i, j,k)∈(1,2,3)
j<k

{
Ta

i ,T
d
i

}
Tb

jT
c
k

(
H4[(i, j),(k,4)]+H4[(i,k),( j,4)]

)
. (4.4)

Let us consider next diagrams that connect fewer Wilson lines. The sum of all two-line three-
loop diagrams may be written as

G2(1,2) = dipole − f abe f cde
{

Ta
1,T

d
1

}{
Tb

2,T
c
2

}
H2(1,2) , (4.5)

where the first term represents the dipole T1 ·T2 contribution to Γ
dip.
n of Eq. (2.6). In contrast,

the second term involving an anti-commutator on each of the lines is relevant for the calculation
of ∆

(3)
n ; its kinematic dependence is contained in H2(1,2) = H2(2,1). Similarly, the sum of all

three-line diagrams takes the form

G3(1,2,3) = f abe f cde
∑

(i, j,k)∈(1,2,3)
j<k

{
Ta

i ,T
d
i

}
Tb

jT
c
k H3[i,{ j,k}] , (4.6)

with H3[i,{ j,k}] = H3[i,{k, j}]. We omitted here the tripole term, proportional to f abcTa
1Tb

2Tc
3,

which vanishes for lightlike kinematics where γi j → −∞. Note that in this limit H2 and H3 are
necessarily polynomials in log(−γi j).

Summing over all subsets of two and three lines out of four and using colour conservation, we
have

G2(1,2,3,4)+G3(1,2,3,4) = dipoles + f abe f cde
[

∑
(i, j,k)∈(1,2,3)

j<k

{
Ta

i ,T
d
i

}
Tb

jT
c
k U(i,{ j,k},4)

− 1
2 ∑

1≤i≤ j≤3

{
Ta

i ,T
d
i

}{
Tb

j ,T
c
j

}(
H3[i,{ j,4}]+H3[ j,{4, i}]+H3[4,{ j, i}]

)]
(4.7)

where

U(i,{ j,k},4)≡H3[i,{ j,k}]−H3[i,{ j,4}]−H3[i,{k,4}]−H3[4,{i, j}]−H3[4,{i,k}]+H3[4,{ j,k}]
(4.8)

with H3[i,{ j,k}]≡ H3[i,{ j,k}]+H2(i, j)+H2(i,k).
The three- and two-line contributions of Eq. (4.7) must be added to the contribution of the four-

line diagrams in Eq. (4.4) to obtain the final, gauge-invariant result for the anomalous dimension,
∆
(3)
4 = G4(1,2,3,4)+G3(1,2,3,4)+G2(1,2,3,4). This may then be contrasted with the general

form for ∆
(3)
4 in Eq. (4.1). Upon applying colour conservation to the latter, the comparison leads to

the following conclusions:

• The combination multiplying the two-line colour factor in Eq. (4.7) must be proportional to
the constant C in Eq. (4.1):

C =
1
3

(
H3[i,{ j,k}]+H3[ j,{k, i}]+H3[k,{ j, i}]

)
, (4.9)
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• The function F is obtained through the following combination of four-, three- and two-line
kinematic functions Hn:

F (ρi jkl,ρilk j) = H4[(i, j),(k, l)]− 2
3

(
H3[i,{ j,k}]−H3[i,{ j, l}]−H3[ j,{i,k}]+H3[ j,{i, l}]

+H3[k,{i, l}]−H3[k,{ j, l}]−H3[l,{i,k}]+H3[l,{ j,k}]
)
.

(4.10)

The above equations put strong constraints on the kinematic functions Hn: the function F depends
on CICRs, while the individual functions Hn on the right-hand side of Eq. (4.10) depend on log-
arithms of cusp angles. These must therefore conspire to combine into logarithms of CICRs. In
addition, C is a constant, so the kinematic dependence of the functions H3 must cancel in the sum
in Eq. (4.9). Our computation satisfies all these constraints, providing a strong check of the result.

5. The three-loop correction to the soft anomalous dimension

Adding up all contributing webs according to Eqs. (4.10) and (4.9), we find the following
results for the function F and the constant C of Eq. (4.1):

F (ρi jkl,ρilk j) = F(1− zi jkl)−F(zi jkl) ,

C = ζ5 +2ζ2 ζ3 ,
(5.1)

where we recall that z = zi jkl and z̄ = z̄i jkl are related to the CICRs by Eq. (3.3) and

F(z) = L10101(z)+2ζ2 [L001(z)+L100(z)] , (5.2)

where the functions Lw(z) are Brown’s single-valued harmonic polylogarithms (SVHPLs) [51]
(see also Ref. [53]), where w is a word made out of 0’s and 1’s. Note that we kept implicit the
dependence of these functions on z̄. SVHPLs can be expressed in terms of ordinary harmonic
polylogarithms (HPLs) [52] in z and z̄. The result for F in terms of HPLs is attached in computer-
readable format to Ref. [1].

Let us now briefly discuss the main features of the result. First, we note that while F(z)
is defined everywhere in the physical parameter space, it is only single-valued in the part of the
Euclidean region (the region where all invariants are spacelike, pi · p j < 0) where z and z̄ are
complex conjugate to each other. Single-valuedness ensures that ∆

(3)
n has the correct branch cut

structure of a physical scattering amplitude [53, 54]: it is possible to analytically continue the
function to the entire Euclidean region while the function remains real throughout [55]. Next
note that if one considers F(z) as a function of two independent variables z and z̄ (not a complex
conjugate pair) this function has branch points for z and z̄ at 0, 1 and ∞. Crossing momenta from
the final to the initial state is realized by taking monodromies around these points.
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Making the permutation (Bose) symmetry manifest, the final answer may be written as:

∆
(3)
n = 16 ∑

1≤i< j<k<l≤n
Ta

i Tb
jT

c
kTd

l

[
fabe fcde

(
F(1−1/zi jkl,1−1/z̄i jkl)−F(1/zi jkl,1/z̄i jkl)

)
+ face fbde

(
F(1− zi jkl,1− z̄i jkl)−F(zi jkl, z̄i jkl)

)
+ fade fbce

(
F(1/(1− zi jkl),1/(1− z̄i jkl))−F(zi jkl/(zi jkl−1), z̄i jkl/(z̄i jkl−1)

)]

−C
n

∑
i=1

∑
1≤ j<k≤n

j,k 6=i

fabe fcde

{
Ta

i ,T
b
i

}
Tb

jT
c
k

(5.3)

where, as in Eq. (4.1), colour conservation among the n lines is implicit. For any subset of four lines
(i, j,k and l) Bose symmetry is realised on the function F by the action of the group S3 which keeps
the momentum pi fixed and permutes the remaining three momenta. As is clear from Eq. (5.3),
this group acts on the space of SVHPLs by change of arguments generated by the transformations
(z, z̄) 7→ (1− z̄,1− z) and (z, z̄) 7→ (1/z̄,1/z), with z ≡ zi jkl . Geometrically this corresponds to
exchanging the three singularities at z ∈ {0,1,∞}. Moreover, the space of all HPLs, and hence also
SVHPLs, is closed under the action of this S3; this gives rise to functional relations among HPLs
with different arguments, making it possible to express all the terms in Eq. (5.3) through SVHPLs
with argument z.

An additional symmetry group Z2 arises from the definition of (z, z̄) in Eq. (3.3), which is
invariant under swapping the two, z↔ z̄. Hence F(z) must be invariant under this transformation,
i.e. F(z̄) = F(z). This symmetry is realised on the space of SVHPLs by the operation of reversal
of words, namely, if w is a word made out of 0’s and 1’s, and w̃ the reversed word, then we have
Lw(z̄) = Lw̃(z) + . . ., where the dots indicate terms proportional to multiple zeta values. Even
functions then correspond to ‘palindromic’ words (possibly up to multiple zeta values), and indeed
Eq. (5.2) is ‘palindromic’.

Finally, let us comment on the momentum conserving limit of ∆
(3)
4 , which corresponds to two-

to-two massless scattering. In this limit we have z̄ = z = s12/s13 = −s/(s+ t). It follows that
for two-to-two massless scattering F(z) can be expressed entirely in terms of HPLs with indices
0 and −1 depending on s/t, in agreement with known results for on-shell three-loop four-point
integrals [34, 56, 57].

A further consistency check of the result is available upon specialising to the Regge limit5. By
expanding Eq. (5.2) at large s/(−t) we find no α3

s lnp (s/(−t)) for any p > 0: ∆
(3)
4 simply tends

to a constant in this limit. This is entirely consistent with the behaviour of a two-to-two scatter-
ing amplitude in the Regge limit [19, 20, 58]; indeed, the dipole formula alone is consistent with
predictions from the Regge limit through next-to-next-to-leading logarithms at three loops [58].

5Taking the Regge limit requires analytic continuation to the physical region of 2→ 2 scattering, to be discussed in
detail in [46].
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6. Two-particle collinear limits

Finally, let us comment on the behaviour of ∆
(3)
n in the limit where two final-state partons

become collinear. A well-known property of an n-parton scattering amplitude is that the limit
where any two coloured partons become collinear can be related to an (n−1)-parton amplitude:

Mn (p1, p2,{p j})
1‖2−→ Sp(p1, p2)Mn−1 (P,{p j}) , (6.1)

where one of the partons in Mn−1 (P,{p j}) replaces the collinear pair, and has a colour charge
T = T1 +T2 and momentum P = p1 + p2, while the remaining (n− 2) partons {p j} are the non-
collinear ones in the original amplitude, which we refer to as “the rest of the process” below. The
splitting amplitude Sp(p1, p2) is an operator in colour space which captures the singular terms for
P2 → 0. All elements in Eq. (6.1) have infrared singularities, and these must clearly be related.
Furthermore, Sp is expected to only depend on the quantum numbers of the collinear pair [59] to
all orders in perturbation theory. Hence also its soft anomalous dimension,

ΓSp = (Γn−Γn−1)|1‖2 = Γ
dip.
Sp +∆Sp , (6.2)

must be independent of the momenta and colour degrees of freedom of the rest of the process. This
property is automatically satisfied for the dipole formula, but it is highly non-trivial for it to persist
when quadrupole corrections are present. Indeed, the quadrupole interaction might introduce cor-
relations between the collinear pair and the rest of the process. In Refs. [16, 18] this property was
used to constrain ∆n, but this was done under the assumption that C in Eq. (4.1) vanishes. Given our
result for ∆

(3)
n , the non-dipole correction to the splitting amplitude at three loops are determined:

∆
(3)
Sp = (∆

(3)
n −∆

(3)
n−1)

∣∣∣
1‖2

=−24(ζ5 +2ζ2ζ3)

(
f abe f cde

{
Ta

1,T
c
1

}{
Tb

2,T
d
2

}
+

1
2

C2
AT1 ·T2

)
.

(6.3)

We note that ∆
(3)
Sp only depends on the colour degrees of freedom of the collinear pair, and is

entirely independent of the kinematics, and hence fully consistent with general expectations6 [59].
We emphasise that ∆

(3)
Sp is independent of the value of n that was used to compute it. In particular,

∆
(3)
Sp agrees with ∆

(3)
n for n = 3, in agreement with the fact that ∆

(3)
2 = 0. Indeed, the fact that

the difference in Eq. (6.3) is independent of n requires intricate relations between different sets of
diagrams and thus provides a highly non-trivial check of the calculation.

7. Conclusions

To conclude, we computed [1, 46] all connected graphs contributing to the soft anomalous
dimension in multi-parton scattering and determined the first correction going beyond the dipole
formula. We find that such corrections appear at three-loops already for three coloured partons, but
they only involve kinematic dependence in amplitudes with at least four coloured partons, when

6We recall that strict collinear factorization is restricted to time-like kinematics with both collinear partons in the
final state, but it is violated for space-like splitting [60].
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conformally-invariant cross rations can be formed. The final result is remarkably simple: it is ex-
pressed in terms of single-valued harmonic polylogarithms of uniform weight five. Finally, we
recover the expected behaviour of amplitudes in both the Regge limit and in two-particle collinear
limits, and make further concrete predictions in both these limits.
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