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Abstract. Drosophila melanogaster has been studied to gain insight
into relationships between neural circuits and learning behaviour. To
test models of their neural circuits, a robot that mimics D. melanogaster
larvae has been designed. The robot is made from silicone by casting in
3D printed moulds with a pattern simplified from the larval muscle sys-
tem. The pattern forms air chambers that function as pneumatic muscles
to actuate the robot. A pneumatic control system has been designed to
enable control of the multiple degrees of freedom. With the flexible body
and multiple degrees of freedom, the robot has the potential to resemble
motions of D. melanogaster larvae, although it remains difficult to obtain
accurate control of deformation.

1 Introduction

We have designed a robot to mimic Drosophila melanogaster larvae (maggots),
as a platform to test and verify their learning and chemotaxis models. Drosophila
as a model system has a useful balance between relatively small number of neu-
rons yet interestingly complex behaviours [10]. Many genetic techniques, such as
GAL4/UAS systems developed by Brand and Perrimon [2], facilitate research on
the connectivity and dynamics of the circuits. As a result, a number of necessary
components of neural circuits for sensorimotor control and learning are being
found and modelled. Currently, the models are tested by comparing between
wildtype and genetic mutation lines, or using simulations of neural circuits and
comparing output with biological experimental recordings. To test models in a
wider environment, more similar to a larva, a physical agent that copies proper-
ties of the larval body is important.

Larvae have high degrees of freedom (DOFs) and flexible bodies. As a result,
they are able to do delicate and spatially continuous motion. Simplified in
mechanics, a larval body consists of body wall attached to the muscles and
body fluids inside the body wall. The 2 parts works together as a hydrosta-
tic skeleton [5]. The skin has regular repeating symmetrical folds, which are
essential for its deformation and friction, forming its segments. The muscles of
Drosophila larvae are in 3 orientations: dorso-ventral, anterioro-posterior and
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oblique. Antero-posterior muscles are located nearer the interior than dorso-
ventral muscles. The body wall muscles are segmentally repeated, and in each
abdominal half segment there are approximately 30 of them ([1]) (Fig. 1).

Fig. 1. A Drosophila larva expressing mCherry (a type of photoactivatable fluorescent
proteins [14]) in its muscles. From Balapagos (2012).

Based on the property of their bodies, Drosophila larvae are able to do sev-
eral motions, such as peristaltic crawling, body bending and rolling. Forward
peristaltic motion is best described. In the centre of the body, viscera suspended
in hemolymph is essential for limiting body wall deformation and produces pis-
ton motion. During the ‘piston phase’ of peristalsis, muscles on the tail contract
and push the viscera forward. The second ‘wave phase’ involves a wave of muscle
contraction travelling through the bodywall segments from tail to head [4]. To
mimic various and motions of a Drosophila larval, it is important to utilize this
anatomical structure and avoid oversimplifying the high DOFs.

Some soft robots have been developed as bionic robots. The main materials
are silicone, rubber, or other flexible and stretchable materials. They are usually
actuated by Shape-Memory Alloy (SMA) or pneumatically, such as Biomimetic
Miniature Robotic Crawler [7], GoQBot [6], Multigait soft robot [13], and a flu-
idic soft robot [11]. These robots only have several degrees-of-freedom (DOFs)
and usually only have one type of motion, which is not sufficient to mimic larval
motion. Although SMA is widely applied on soft robots, it has a significant short-
coming. As SMAs deform according to temperature, their response is limited by
control of temperature. Because soft robots are usually not sufficient in heat
dissipation, heat accumulates inside the robots, and response times of SMAs get
too long so that continuous actuation is infeasible. The shortcoming does not
exist on pneumatic actuation. Hence, pneumatic actuators are a feasible option
as they have a faster response and longer effective working time. However, the
main action most of soft pneumatic actuators is off-axis bending, and the axial
elongation and contraction are only side effects. For examples: Micro Pneumatic
Curling Actuator- Nematode Actuator [9], Pneu-net [13]), and Robot Air Mus-
cles made from Oogoo [8]. As axial contraction is necessary for some motion
(such as peristalsis), we designed a new type of pneumatic actuators.

2 Methods

The robot is made from soft silicone rubber, instead of rigid material, because:
(1) motions of Drosophila larva are based on continous body deformation; (2)
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soft materials have more similar properies to biological tissue than rigid material,
such as nolinear elasticity and hysteresis, which are suitable to simulate dynamic
characteristics of the muscle; and (3) defomation of Drosophila larval body wall
is one method to control friction between body and contacted surface.

Figure 2 shows a sketch of a possible structure of a maggot robot. The robot
has repeating modular body wall segments, with a water bag or air bag inside.
Here we described the construction and control of 4 body segments. At present,
the control system and pneumatic system are placed off board because of limited
space and load.

Fig. 2. Sketch of the soft maggot robot. A central bag of fluid is surrounded by muscle
segments.

2.1 Design of the Actuator and Body Wall of the Soft Robot

Pneu-nets (Fig. 3(a) and (b)) are usually made from 2 different soft materials: (1)
flexible and stretchable material, such as Ecoflex, to form chambers to inflate and
expand; (2) flexible but less or not stretchable material, such as Polydimethyl-
siloxane (PDMS). Thus, when pneu-nets are inflated, the actuator bends to the
side made from less stretchable material. Pneu-nets are not suitable for tubu-
lar body wall because the stretchable layer limits axial bending, hence we have
modifeid the design to produce a new actuator type, which we called Extensible
Pneu-nets.

Fig. 3. Structure of Pneu-nets and Extensible Pneu-nets (a) and (b) are longitudinal
and transverse sections of Pneu-nets, respectively; (c) and (d) are longitudinal and
transverse sections of Extensible Pneu-nets, respectively.
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Extensible Pneu-nets (Fig. 3(c) and (d)) use only 1 stretchable material.
Small air chambers are connected by air tunnels to form a muscle. Different mus-
cles are isolated. When an air chamber is inflated, it expands in all directions,
and the direction with maximum expansion is the direction with the maximum
cross sectional area. To limit deformation in the unwanted direction, thickness of
the inner walls between chambers and thickness of the outer walls are carefully
selected and tested. As stretchable material allows not only bending but also
expansion along the surface, tubular body wall based on Extensible Pneu-nets
are possible to axially bend.

To make the air chambers and tunnels inside, the actuator is divided into 2
layers which are cast separately. The moulds can be manufactured in conven-
tional machining process or by 3D printing. Then the 2 layers are glued together
with the same material. Finally, tubes for injecting pressed compressed air are
inserted and glued. By including more air chambers and tunnels on a model, a
body wall with multiple pneumatic actuators can be cast.

The first attempt at a muscle pattern was designed according to real mus-
cle pattern on dissected and flattened body wall of Drosophila larva (Fig. 4).
Dorsal oblique (DO) muscles, lateral transverse (LT) muscles, oblique lateral
(LO) muscles, ventral longitudinal (VL) muscles and ventral acute (VA) muscles
are simplified and mapped on the muscle pattern of the body wall. However, the
adjacent muscles limited each others motions, especially when they have differ-
ent orientations. The cause of limitation is that inner walls between air chambers
limit transverse deformation, which is the direction that the adjacent muscles are
designed to deform. Thus adjacent muscles should either be parallel, or should
not be contiguous.

Fig. 4. Body wall of a body segment with Extensible Pneu-nets designed according to
real muscle pattern on dissected and flattened body wall of Drosophila larva.

The design of the prototype evaluated in this paper is a body wall with 4
body segments (Fig. 5, left). Each body segment has 3 transverse muscles and
3 longitudinal muscles. These 2 types of muscles are connected perpendicularly
and only connected on corners, leaving gaps between them to avoid limitation
of deformation between each other (Fig. 5, right). Body segments are connected
in series by longitudinal muscles. Figure 6 shows the mould for the body wall.
After a flat body wall was made, it was folded end to end and clamped by 2
specially cut boards. Through the window of the board, the end was carefully
aligned and glued together. By this process, the flat body wall is formed into a
hollow cylinder shape (Fig. 7).

In this 4 body segment version, because the limited resolution of the 3D
printer we use (Wanhao Duplicator with 0.4 mm nozzle) and resistance of air
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flow in tube, the dimensions of air chamber, as shown in Fig. 3(c) and (d), are:
a = 1.2 mm, b = 3.0 mm, c = 0.8 mm, d = 1.2 mm, e = 18 mm (longitudinal
muscles) or 28 mm (transverse muscles), f = 2.0 mm, g = 3.0 mm. In a curved
single body segment, the longitudinal length is 40 mm, the diameter is of the
robot is about 50 mm. The total length of the 4 body segment body wall is
about 175 mm.

Fig. 5. (left) Prototype design of a body wall with perpendicular arrangement of mus-
cles. Transverse muscles and longitudinal muscles of the first body segment are high-
lighted in red and green, respectively. (centre) A closer view of the flatten body wall
shows gaps and spaces between the muscles to allow expansion. (right) The gaps and
spaces when the body wall curved. (Color figure online)

Fig. 6. The 3D printed mould for body wall casting.

2.2 Pneumatic Actuation and Control System

The pneumatic actuation and control system controls the robot by controlling
air pressures of air chambers. Air pressure sensors measures pressure in every
muscle, pumps and valves control the air flow.
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Fig. 7. (left) The body wall is clamped and glued. (centre) Formed into a hollow
cylinder. (right) Names of muscles: body segments are numbered, longitudinal muscles
named in capital letters, transverse muscles named in lower case letters.

Pneumatic Control System. A pneumatic control system has been designed
for the robot. The system is located off board and connects to the robot with
rubber tubes. As the robot has more DOFs than previous pneumatic soft robots
mentioned above, the size of the pneumatic control system is designed to be
compact.

The main component of the system is a valve island with 24 pairs of miniature 2
way solenoid valves (Fig. 8). The size of solenoid valves is 10 mm× 11 mm× 23 mm.
Overall, the size of the valve island is 120 mm× 91 mm× 60 mm. The valves are
installed the 3D main structure by interference fit. The main structure of the valve
island consists of layers of 3D printed parts. The upper layer made form Acry-
lonitrile Butadiene Styrene (ABS), which offers Mechanical strength to fix valves,
and lower layer made from Thermoplastic Elastomer (TPE), which has build in air
channels with air-tightness. Every channel connects 4 ways, which are 2 valves, a
pressure sensor, and an air chamber on the robot. The other 2 ways of each pair of
valves are connected to compressed air and open to air, respectively.As the solenoid
valves speed up to 100 Hz, the air flow can be finely controlled.

Fig. 8. (left) A valve and pump in the system. (centre) Structure of the 3D printed
valve island. (right) Pneumatic valve island with 24 pairs of valves

EmbeddedControl System. An Embedded Control system has been designed
for control and actuation. The control system is a hierarchical control system con-
sisting of 1 main controller and 3 slave controllers. Their micro controllers are
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STM32F411RE by STMicroelectronics. They are based on Cortex-M4 by ARM
with digital signal processor (DSP) and floating-point unit (FPU). The main
controller receives commands from a computer, and distributes them among the
slave controllers by Universal Synchronous/Asynchronous Receiver/Transmitters
(USART). On each of the slave controllers, 16 hardware Pulse-width modulation
(PWM) channels and 8 Analog-to-digital converters (ADC) are configured to con-
trol 8 muscles. The PWMs control Darlington transistor arrays (ULx2003 by Texas
Instruments). On each slave control board, 3 of them are adopted to drive valves.
MPS20N0040D-D, which is an air pressure sensor to measure pressure in air cham-
bers, is adopted to measure the pressures.

Algorithm. At present stage, the robot is controlled by feedforward prepro-
grammed motion. According to a approximate linearization between deforma-
tion and pressure at the initial state of equilibrium, the pressure is utilized as
feedback of motion of muscle.

3 Experiments

The robot was tested for individual control of every muscle and coordination
between them. Three motions are programmed and tested on the robot (A video
of the experiments: https://youtu.be/aFE9dANHowk). The muscles are named
based on their location. As show in (Fig. 7), body segments are numbered, lon-
gitudinal muscles named in capital letters, transverse muscles named in lower
case letters.

Turn. In this motion, muscle a and B on every body segment was actuated at
the same time, then pressure released. To minimize friction and show relevance
between pressure and deformation, the robot is tested while floating on water.
Figure 9 shows the motion of the robot. The pressure of the muscles is shown
in Fig. 10.

Fig. 9. Turning left. The black lines show the initial central axis.

https://youtu.be/aFE9dANHowk
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Fig. 10. Pressure of muscles in the first body segment, muscles A and muscles B during
turning. (Color figure online)

Fig. 11. Roll.
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Roll. In this motion, muscle a and B, b and C, c and A, are inflated alternately.
As the bundle of the tubes flowing the robot impact the rolling on a surface in
water, the robot is hold on its tail vertically during test. Figure 11 shows the
motion of the robot. The pressure of muscles show in Fig. 12.

Peristalsis. In this simplified peristalsis, all the muscles on a body seg-
ment inflate at same time and muscles of different segments inflate alternately.
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Fig. 12. Pressure of muscles in the first body segment, muscles A and muscles B during
rolling. (Color figure online)

Fig. 13. Peristalsis. The parts on the blue lines were expanding. (Color figure online)
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Fig. 14. Pressure of muscles in the first body segment, muscles A and muscles B during
peristalsis. (Color figure online)

The motion is tested on water. Figure 13 shows the motion of the robot. The
pressure of muscles show in Fig. 14.

4 Discussion

In the tests above, the robot produced three different motions from muscles
actuated individually in different orders. The system was able to control the
pressures according to the control signal, although the pressures have some noise.
However, the three motions are not accurate. Deformation for the same pressure
is different between the muscles. That is because muscles are slightly different
and the relationship between deformation and pressure is not ideally linear.
When an air chamber is inflated to a given range, the pressure does not change
much even with obvious deformation. Hence, applying the same pressure to
different muscles can result in different deformations. Thus, deformation sensors
will be important to precise control of the robot.

Hence our immediate aim for future work is to develop and install sensors on
the robot for deformation feedback. As the sampling density of the deformation
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sensors is limited, different deformations may map to the same output, hence a
model or method to learn the relationship between sensor outputs and posture
is necessary. We should then be able to explore more thoroughly the movement
capabilities of the current design. Some additional redesign of the pneumatic
muscle and body wall may be necessary, for example, surface processes to mimic
denticles on Drosophila larval skin which generate asymmetric friction so that
peristalsis produces forward locomotion [12].

5 Conclusion

Our longer term aim for this robot is to use it as a platform to test neural circuit
models of Drosophila larvae. Initially this could focus on the motor circuits that
generate and control peristalsis and bending. In particular these circuits could
form the basis of an adaptative method for learning the control signals needed to
adjust to the irregularities and non-linearities in the actuators and their interac-
tions, in the same way that maggots are able to adapt to rapid change and growth
in their body while maintaining efficient locomotion. Ultimately we would like to
add sensors for environmental signals and investigate the sensorimotor control
and associative learning involved in, e.g., odour search [3].
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