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Chapter 10

Marangoni Flow Driven Maze Solving

Kohta Suzuno, Daishin Ueyama, Michal Branicki, Rita Tóth,

Artur Braun and István Lagzi

Abstract Algorithmic approaches to maze solving problems and finding shortest
paths are generally NP-hard (Non-deterministic Polynomial-time hard) and thus,
at best, computationally expensive. Unconventional computational methods, which
often utilize non-local information about the geometry at hand, provide an alternative
to solving such problems much more efficiently. In the past few decades several
chemical, physical and other methods have been proposed to tackle this issue. In this
chapter we discuss a novel chemical method for maze solving which relies on the
Marangoni flow induced by a surface tension gradient due to a pH gradient imposed
between the entrance and exit of the maze. The solutions of the maze problem are
revealed by paths of a passive dye which is transported on the surface of the liquid in
the direction of the acidic area, which is chosen to be the exit of the maze. The shortest
path is visualized first, as the Marangoni flow advecting the dye particles is the most
intense along the shortest path. The longer paths, which also solve the maze, emerge
subsequently as they are associated with weaker branches of the chemically-induced
Marangoni flow which is key to the proposed method.
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10.1 Introduction

Mazes and the ability to find a way through them have an intriguing and mysterious
appeal to humans. They have been enshrined in the human culture for millennia,
from ornaments and mythologies (e.g., the story of Theseus and the Minotaur in
the Greek mythology), to contemporary fairytales, books and movies (e.g., Maze
runner by James Dashner). The motif of a maze in human culture is unsurprisingly
associated with the task of solving a complex problem with potentially many viable
answers which cannot be distinguished in their entirety by a local observer. It is thus
not surprising that the geometric and topological complexity of a maze and its solu-
tions (i.e., one or more paths leading from the entrance to the exit) serves as a model
configuration in many areas of science and technology (e.g., logistics, robot control,
neuroscience, etc.). It has been shown that besides humans, animals, and computer
algorithms, some amoeboid organisms [1–3], and even nonliving, synthetic con-
structs are ‘able’ to solve mazes [1–12]. Such chemical, physical or biological sys-
tems are initially in a non-equilibrium thermodynamic state with a spatial gradient of
some thermodynamic variable, e.g., temperature, chemical potential, pressure, elec-
tric or magnetic field, which induces a flow of matter (momentum) or energy within
the system to reach its equilibrium state. Some of the most prominent approaches
are briefly mentioned next. Microfluidic networks are often solved by imposing a
pressure gradient across the corresponding maze [4] between the entrance and the
exit so that the pressure-induced flow has the largest amplitude along the shortest
path. An electric field gradient was used to induce a glow discharge in gas-filled
microchannels and to identify the shortest path in mazes or urban city maps [5, 6];
in a medium conducting electric current the shortest path is characterized by the
largest gradient of the electric field which ionizes a gas and induces a plasma glow.
Maze solving by a network of memristors is also based on the presence of an elec-
tric potential gradient [7]. Chemical and electric potential wave propagation along
a dendritic tube of a single cell organism is the most commonly employed setup for
identifying the shortest path between two food sources in a biological system [1–3].
Finally, in chemical systems a chemical potential gradient created at the beginning of
the experiment induces a flow of matter which highlights the shortest path in a maze
in a number of distinct ways [8–13]. A silver ion gradient initiates the propagation
of a chemical wave in the Belousov–Zhabotinsky solution along the paths of a maze
with the fastest wave corresponding to the shortest path [8, 9]. The concentration
gradient of sodium acetate initiates the propagation of a supersaturation front in a
complex structure of a hot ice computer [10]. A pH gradient is responsible for the
movement of a surfactant covered organic droplet in a maze filled with an alkaline
solution [11]. When a surfactant is in the system, the formation of a pH gradient has
more intricate consequences on the resulting macroscopic dynamics in the maze.
Surfactants reduce surface tension and the concentration of the fatty acid surfactant
depends on the pH of the medium. Therefore, the pH gradient creates a difference
between the surface tension of the two sides of the droplet facing the acid and base,
making it move in the direction of acid.
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10 Marangoni Flow Driven Maze Solving 239

In this chapter we show that the so called Marangoni flow induced by a pH gradient
can be used as an operator for efficient maze solving. For the practical realization
of such a chemical computer it is necessary to mention that we have to deal with a
liquid chemistry environment [12, 14].

10.2 Experimental

First, mazes with various topological complexity and spatial extent were designed
and fabricated from polydimethylsiloxane (PDMS) using photo- and laserlithogra-
phy (with thickness and depth of 1.4 and 1 mm, respectively). In a typical experi-
ment the maze was filled with a 0.05 M alkaline solution of potassium hydroxide
(KOH, Sigma-Aldrich) containing 0.2 % of 2-Hexyldecanoic acid (Sigma Aldrich)
(2-HDA). 2-HDA is a fatty acid and by itself is not soluble in water. However, in alka-
line solution the head group is deprotonated and becomes soluble. Consequently, the
fatty acid molecules are oriented at the liquid-air interface and the deprotonated form
of 2-HDA acts as surfactant (reducing the surface tension at the liquid-air interface).
An acidic hydrogel (Agarose, Sigma-Aldrich) block (∼1 × 1 × 1 mm) was placed
at the exit of the maze. After addition of an acidic block, a small amount (∼0.3 mg)
of dry Phenol Red dye powder was placed at the liquid-air interface at the starting
point (the other entrance of the maze). With this technical set-up of the maze and
the necessary chemical reaction and diffusion partners, we can run a time resolved
experiment where we observe and track the spatial transient of the colorization of
the paths through the maze.

10.3 Results and Discussion

In the presented experimental setup the dye particles traveled passively at the liquid-
air interface towards the acidic hydrogel block, i.e., the region of low pH. The dye
particles transported by the pH-induced Marangoni flow gradually dissolved in the
water phase and the color showed their paths through the maze. Figure 10.1a shows
maze solving experiments in various mazes filled with an alkaline solution of a fatty
acid. The symmetry in the system is broken by an acidic hydrogel. In a typical
experiment, the shortest path can be found and visualized within ∼10 s (Fig. 10.1a).

The Marangoni flow facilitating the maze solving is induced by the non-uniform
distribution of the surface tension at the liquid-air interface, and it drives transport
of the top fluid layer towards the higher surface tension regions from the low surface
tension regions. The intensity of the fluid flow is propositional to the gradient of the
surface tension. Addition of an acidic block to the maze filled with an alkaline solution
of a fatty acid changes the surface tension of the solution at the liquid-air interface.
This surface tension difference (surface tension gradient) creates and maintains a
fluid flow in the liquid phase which is commonly referred to as the Marangoni flow.
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240 K. Suzuno et al.

Fig. 10.1 Maze solving and finding the shortest path in various mazes, experiments (a) and numer-
ical simulations (b). Position of the gel soaked with acid (exit) is indicated by letter E. Letter S

shows the entrances of the maze (starting point), where Phenol Red dye particles (passive tracer) are
added. Reprinted from [12] under Creative Commons Attribution 4.0 International Public License

The most intense fluid flow is established along the shortest path in a maze, where the
gradient of the surface tension at the liquid-air interface is the highest. Thus, the most
of the tracer particles are caught up in the dominant flow branch along the shortest
path which is thus characterized by the most intense color contrast of the dissolved
dye. However, it should be noted that in a relatively complex maze all possible (and
not only the shortest) solution paths can be explored by the Marangoni flow provided
that a sufficiently long time is allowed. In our setup it is ∼60 s instead of 10 s which
was sufficient for exploring just one path (the shortest path).

The existence of the gradient of the surface tension in a maze can be explained
by the effect of pH on the protonation rate of fatty acid molecules. Fatty acid mole-
cules can be protonated/deprotonated by different extent depending on the pH of the
medium. Therefore, pH can be used as a technical control parameter to create and
maintain a Marangoni flow in a channel network. We performed a range of numerical
simulations in mazes to verify the experimental concept and obtain the shortest paths
(Fig. 10.1b). Figure 10.2 shows the numerically simulated analogue of the determina-
tion of the shortest path between two arbitrary points in a complex maze (downtown
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10 Marangoni Flow Driven Maze Solving 241

Fig. 10.2 Finding the shortest path between two points in a channel network (made from PDMS)
based on the street map of downtown of Budapest, experiments (a) and numerical simulations
showing major streamlines (b). Position of the gel soaked with acid (end point) is indicated by
letter B. Letter A shows the starting point, where Phenol Red dye particles are added. Figure 10.2a
is reprinted from [12] under Creative Commons Attribution 4.0 International Public License

of Budapest in this case). The streamlines associated with the possible paths were
calculated from the gradient of a stationary concentration c(x, y) between two points
(marked by letter A and B in Fig. 10.2) which is calculated form the time-invariant
solutions of the diffusion equation in two-dimensions given by

∂c

∂t
= D

(

∂2c

∂x2
+

∂2c

∂y2

)

, (10.1)

with Dirichlet boundary conditions, c = 1 at A, and c = 0 at B. The solutions pro-
cedure involved the ADI (Alternating Direction Implicit) method to solve (10.1) on
a 1000 × 1000 uniform rectangular grid. Finally, the streamlines were calculated
form the gradient field of the concentration. The simulation results capture the main
features of the experiments. Importantly, the shortest and the second-shortest paths
found in the chemical computer experiments are in good agreement with the paths
detected in the numerical simulations. Several other solution paths visible in the
simulations are less pronounced in the experiments. This discrepancy could arise
from the finite viscosity of the fluid in the maze (the dynamics of the fluid is not yet
considered in the purely diffusive simulations of (10.1)) and the finite time duration
of the experiment. In experiments with channels where the surface tension gradient
is weak enough, the fluid viscosity suppresses the generation of the convective flow.
Moreover, the elapsed time in the real experiment is finite, whereas the numerical
solution represents the stationary, time-asymptotic solution. One additional aspect
pertaining to this method deserves a mention. Theoretically, the path that connects
the bottom-right branch of the site A to B (see arrow in Fig. 10.3) should be the
third-shortest path, although it is not found and observed neither experimentally or
numerically.
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Fig. 10.3 Finding the shortest path between two points in a channel network based on the street map
of downtown of Budapest, experiments (a) and numerical simulations showing all streamlines (b).
Figure 10.3a is modified from [12] under Creative Commons Attribution 4.0 International Public
License

Hence, the geometrically-third-shortest path is not detected in this system. It
would require more conceptual and experimental efforts to raise this kind of orthog-
onal solution as well. Interestingly, this property is both disadvantageous and advan-
tageous. The path-finding method presented here does not guarantee identification
of geometrically shortest paths, since it is based on the real physicochemical state
of the system. Consequently, the experimental outcome could be disturbed by the
fluid resistance, environmental perturbations and the system size, etc. On the other
hand, the system can be treated as a solver that handles the path-finding problem
with realistic constraints, which might be very inefficient to solve ‘on-the-fly’ algo-
rithmically. The presented method allows for detecting those solution paths which
are the physicochemically-permitted shortest ones, including the restriction of the
channel capacity, rather than the geometrically-optimal paths. This property would
be important when we consider an application, for example the chemically-induced
transport of chemical entities (e.g., drug delivery).

10.4 Conclusions

In this chapter we presented a novel approach to maze solving which is achieved by
generating a pH induced Marangoni flow in the considered channel network. Our
method is based on the simple fact that pH change can affect the surface tension of a
fatty acid solution, and it generates a surface tension difference at the liquid-air inter-
face. The resulting global Marangoni flow can transport passive soluble dye particles
from the starting point (high pH region) to the exit of the maze (low pH region) and
in the process highlight the possible solution paths to the maze problem. It is worth
pointing out that other non-local phenomena affecting the surface tension of liquids
or solutions can be also utilized for maze solving (e.g., temperature, irradiation).
These might represent for some communities the technically more welcome control
mechanisms in practice depending on the experimental constraints.
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