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Wavelet Adaptation Based on Signal Processing Outcome

Abstract. The problem of wavelet synthesis is a crucial part of wavelet theory. In this paper an overview of wavelet synthesis methods used in the  
literature up till now is given. It is demonstrated that these well known approaches suffer from some major drawbacks. A new approach to adaptive  
wavelet synthesis that overcomes these drawbacks and has not been exploited before is proposed. This approach is based on adapting wavelet to  
one particular signal and specific signal processing algorithm.
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Introduction
Discrete Wavelet Transform (DWT) became one of the 

most important tools in the field of signal processing during 
the  last  two  decades.  Unlike  the  well  known  Discrete 
Fourier  Transform  (DFT)  and  the  Discrete  Cosine 
Transform (DCT), DWT doesn't have one strictly defined set 
of basis functions. Instead a number of general conditions is 
imposed  on  the  basis  functions.  Unbounded  degrees  of 
freedom are used to adapt wavelet properties to a desired 
signal processing application. 

In this paper a brief history of the wavelet theory as well 
as an overview of  methods used for wavelet  synthesis  is 
presented.  Drawbacks  of  currently  used  approaches  are 
pointed  out.  A  new  concept  of  wavelet  synthesis  is 
proposed to overcome these problems.

Wavelet synthesis methods
Beginnings of the modern wavelet theory date back to 

the  middle  eighties  of  the  20th  century.  In  that  time the 
signal processing researchers were extensively developing 
the  concept  of  Quadrature  Mirror  Filter  (QMF)  banks 
proposed around 1976-77 [1, 2]. A QMF bank consists of a 
pair1 of  filters  ensuring  Perfect  Reconstruction  (PR)  of  a 
signal [9, 10]. Frequency responses of such a pair of filters 
were designed to split the input signal into two signals with 
non-overlapping  spectra.  A  notable  influence  on  the 
development of QMF theory was by Vaidyanathan. In [7] he 
introduced  a  concept  of  a  lattice  structure2 for 
implementation of Finite Impulse Response (FIR) filters. He 
also  demonstrated  that  lattice  structures  (LS)  are  an 
efficient  method of  parametrization and implementation of 
QMF banks. In [11] Vaidyanathan and Hoang demonstrated 
that  lattice  structures  possess  PR property  regardless  of 
parameters quantization, which makes it a good choice for 
optimization  purposes.  As an example Vaidyanathan and 
Hoang constructed objective function that led to synthesis 
of  filters  attenuating  selected  frequency  ranges.  This 
allowed to construct a filter bank consisting of low-pass and 
high-pass filters. DFP was used as an optimization method. 
An  additional  algorithm  for  accurate  estimation  of  initial 
solution was employed to ensure convergence.

At the time when the QMF theory was being developed, 
first  works  considered to  be  the beginnings of  a  modern 
wavelet theory have been published [12, 13, 14], however it 
were  the  works  of  Ingrid  Daubechies  [15,16,17,18]  and 

1Discussion on filter banks consisting of more than two filters may 
be found in [3, 4, 5, 6, 7, 8].
2Terms „lattice filter” and „lattice structure” are commonly accepted 
and  widespread  in  the  signal  processing  terminology.  The term 
„lattice” comes from the shape of filter connection graph.

Stéphane  Mallat  [19,20,21]  that  constituted  a  real 
breakthrough and provided a solid foundation to the theory. 
The  relations  between  wavelets  and  QMF  banks  were 
quickly  discovered:  every  scaling  function  and  its 
corresponding  wavelet  constitutes  a  QMF bank,  however 
the converse is not always true [22, 23, 24, 25]. The created 
theory described a linear transform that differed significantly 
from  the  widespread  and  well  known  DFT  and  DCT 
transforms. In opposition to these transforms, which basis 
functions are sine and cosine having an infinite support, the 
DWT used  functions  with  finite  support.  This  allowed  to 
precisely  localize  signal  singularities  not  only  in  the 
frequency domain but also in the time domain. Moreover, 
the theory did not provide just one set of basis functions. 
Instead,  the  conditions  regarding  basis  functions' 
orthogonality (or biorthogonality), their norm and frequency 
responses were given. Imposing such conditions left some 
degrees  of  freedom  unbounded,  which  implies  that  the 
number  of  possible  DWT  basis  functions  is  infinite. 
Daubechies' approach to wavelet  synthesis was bounding 
the remaining degrees of freedom by introducing additional 
constraints.  Thus  the  Daubechies  wavelet  family  with 
maximal  number  of  vanishing  moments  and  the  Coiflet 
wavelet  family  with  maximal  symmetry3 were  created. 
These families became the basis for wavelet adaptation to 
some of the researchers.

Soon the problem of wavelet synthesis became one of 
the key problems in  practical  applications  of  the  wavelet 
theory.  Most  researchers  concentrated  their  efforts  on 
constructing  wavelets  ensuring  optimal  representation  of 
signals,  mostly  images.  The  problem  of  optimal  signal 
representation  was  considered  by  Tewfik  et  al.  [6].  They 
demonstrated methods for constructing wavelets minimizing 
approximation  error  for  a  given  scale  (number  of  signal 
decomposition levels). The problem was also approached 
by Gopinath et al. [4]. They tackled two problems: what is 
the optimal wavelet  multiresolution of  a signal  at  a given 
scale and what is the optimal multiresolution of a class of 
signals.  The  first  problem  is  the  same  as  the  one 
investigated by Tewfik et al., however Gopinath et al. point 
out that Tewfik's approach generates suboptimal solutions. 
Gopinath et al. consider a general case of M-channel filter 
bank.  They  notice  that  the  problem  of  minimizing  the 
approximation error for a given signal depends only on the 
coefficients  of  a  filter.  In  order  to  perform  numerical 
optimization authors use Householder parametrization [26] 
and BFGS optimization method. 

Desarte  et  al.  [22]  considered  a  problem  of  wavelet 
optimization for an optimal image coding. They used lattice 

3Perfect symmetry is impossible for orthogonal wavelets.



structure as a parametrization method and minimization of 
low-pass  filter's  output  variance  was  proposed  as  an 
optimization criterion. This led to synthesis of a filter bank 
composed of low-pass and high-pass filters. The problem of 
choosing optimal wavelet for image representation was also 
researched by Unser [24]. He remarks that minimizing the 
approximation error is equivalent to maximizing the energy 
of the low-pass filter output. Unser points out that such an 
approach  makes  sense  only  when  global  quantization 
strategy is applied prior to coding.

Antonini et al. [27] analysed the influence of wavelet's 
frequency  response  on  its  performance  in  image 
compression and coding4. They conclude that the number 
of vanishing moments and its regularity (smoothness) are of 
crucial importance to the quality of the compressed image, 
however Veterelli and Herley [31] consider the influence of 
wavelet  smoothness  on  its  performance  in  image 
compression to be an open question. The problem was also 
considered  by  Villasenor  et  al.  [25].  They  constructed  a 
general framework for evaluation of filter performance in the 
task of image compression and used it to compare different 
wavelets  proposed  in  the  literature.  The  wavelet 
analysis/synthesis  bank  was  considered  to  be  a  linear 
system.  The  high-pass  wavelet  coefficients  were  zeroed 
before  the  image  reconstruction.  Authors  studied  the 
impulse and step responses of such a system and based on 
them they were able to draw general  conclusions on the 
wavelet's efficiency in image compression. They notice that 
the Hölder exponent reflecting the smoothness of a wavelet 
is not sufficient to ensure the wavelet's good performance in 
image compression. They also point out that the synthesis 
filter has greater influence on the quality of reconstructed 
image than the analysis filter and that filters with impulse 
response of even length handle point singularities better5. 
Another important remark they make is that performance of 
a  filter  in  1D  signal  processing  cannot  be  used  to  fully 
characterize the performance of to 2D image compression 
because of the interactions between vertical and horizontal 
filter responses.

It  must  be  noted  that  evaluation  of  filters  in  image 
compression  is  still  an  active  field  of  research.  A  good 
example is a linear regression model proposed in 2010 by 
Gaofeng et al. [32]. It allows to accurately predict the quality 
of  a  wavelet-compressed  image  without  performing  the 
actual quantization, coding and inverse wavelet transform. 
The only required information are average image brightness 
and standard deviation, energy concentration of a wavelet 
and wavelet coefficients entropy. Authors conclude that the 
key  to  good  performance  in  image  compression  is  the 
wavelet's  ability  to  concentrate  energy.  Therefore  the 
proposed model can be considered as an extension of the 
previously  used  approach  based  only  on  the  energy 
compaction [24].

Despite questionable effectiveness of Hölder exponent 
as a measure of wavelet effectiveness it was later used by 

4The problem of wavelet image compression is a broad subject. 
Apart from the obvious importance of wavelet filters used for image 
decomposition,  the  applied  quantization  strategy  and  coding 
scheme  are  also  very  important.  Due  to  specifics  of  wavelet 
decomposition  of  a  two  dimensional  signal,  numerous  coding 
schemes of 2D wavelet coefficients have been proposed. The most 
important  are  Shapiro's  classical  Embedded  Zero-tree  Wavelet 
(EZW [28]), Set Partitioning In Hierarchical Trees (SPIHT [29]) or 
the Embedded Block Coding with Optimal Truncation (EBCOT [30]) 
used in the JPEG2000 standard.
5In case of orthogonal wavelets synthesis and analysis filters are 
identical  and  have  even  length.  This  is  not  the  case  with 
biorthogonal wavelets, which have different analysis and synthesis 
filters and can have impulse responses of odd length.

some of  the researchers.  An example is a work by Lang 
and  Heller  [33]  who  demonstrated  that  by  sacrificing 
vanishing  moments  of  Daubechies  family  wavelets  and 
applying  numerical  optimization  one  can obtain  functions 
with better Hölder smoothness. The concept of sacrificing 
vanishing moments was also used by Odegard and Burrus 
[34]. They set the vanishing moments of low order to zero, 
while  the  remaining  degrees  of  freedom  were  used  to 
minimize  a  large  number  of  higher  order  moments.  This 
approach  led  to  creating  wavelets  allowing  better 
approximation  of  higher  order  polynomials  than  the 
Daubechies  wavelet.  In  another  paper  [35]  Odegard and 
Burrus  demonstrate  a  method  of  biorthogonal  wavelet 
synthesis for image compression based on minimizing the 
Discrete Finite Variation [36], which is a generalization of 
Hölder smoothness for discrete signals. Such generalization 
is based on remark that in practical  applications only the 
finite number of signal analysis levels is taken into account 
when considering smoothness.

Wei et al. [37, 38] presented a generalized Coiflet family 
obtained by removing the zero-centered vanishing moment 
condition.  The  obtained  degrees  of  freedom  allowed  to 
improve  the  filter's  characteristics:  symmetry  and  phase 
response.

Rieder et al. [23] demonstrated an effective orthogonal 
wavelet  implementation based on lattice structures. Using 
LS  to  perform  the  DWT  required  imposing  additional 
constraint,  which  results  directly  from  the  previously 
mentioned  dependency  that  not  every  QMF  bank  is  a 
wavelet  filter.  LS  representation  used  by  Rieder  et  al. 
ensured the implemented filter is always a wavelet. Authors 
considered  different  numerical  optimization  criteria: 
compact support,  regularity,  frequency behaviour (like the 
previous researchers they also conclude that it's necessary 
to minimize the energy of  the high-pass filter output) and 
symmetry.  Their  implementation  was  based  on  CORDIC 
algorithm  [59]  which  allowed  to  significantly  reduce  the 
number  of  arithmetic  operations  required  to  compute  the 
wavelet transform. Authors also emphasize the fact that in 
practical applications wavelet smoothness is important only 
for a finite number of analysis level.

Although lattice structures gained notable popularity as 
a  method  of  wavelet  parametrization,  other 
parametrizations  have  been  proposed  as  well,  e.g. 
[40,41,42,43].  Shark  and  Yu  [44]  used  poliphase 
parametrization  [26]  of  a  filter  bank  and  applied  genetic 
algorithm  to  synthesize  shift-invariant  wavelets. 
Regensburger [45] introduced parametrization of compactly 
supported orthonormal wavelets by discrete moments. He 
presented  explicit  parametrizations  for  wavelets  with 
support of length 4, 6, 8 and 10. Lipiński and Yatsymirskyy 
[46]  introduced  parametrizations  of  Daubechies  4  and 
Daubechies  6  wavelets,  demonstrated  a  construction  of 
transform  with  real-valued  coefficients  and  showed  that 
their  approach allows to reduce the number of  arithmetic 
operations  necessary  to  compute  the  transform.  In  [47] 
Yatsymirskyy  introduced  a  new  approach  to  lattice 
structures. He demonstrated that it is possible to construct 
fast neural network with architecture based on the LS and 
use it  for  adaptive  wavelet  synthesis.  Another  method of 
wavelet  parametrization  and  implementation  is  the  lifting 
scheme  [48,49].  It  allows  to  implement  biorthogonal 
wavelets [50], integer-to-integer wavelet transform [51] and 
second generation wavelets [52,53].

Wavelet adaptation based on signal processing results
From the above survey it can be concluded that so far 

two wavelet analysis approaches have been used. The first 
approach  relies  on  optimizing  the  scaling  or  wavelet 



function based on some criterion defined by the expert, e.g. 
smoothness or  symmetry.  It  is  assumed that  if  the given 
wavelet function will have some arbitrarily chosen property 
then it  will  perform good in  a selected  signal  processing 
application. It must be emphasized that among researchers 
there is no agreement what kind of wavelet property would 
definitely ensure optimality in a selected application. It must 
also  be  noted  that  even  if  such  a  property  could  be 
determined, a wavelet synthesized in this way could only be 
optimal in a statistical sense for a given class of signals.

The  second  of  the  so  far  used  wavelet  synthesis 
approaches is far better: the wavelet is selected in such a 
way to provide the most accurate approximation of a signal 
or class of signals6. There are two main advantages of such 
an  approach.  Firstly,  the  wavelet  may  be  adapted  to  a 
particular signal, not to a whole class of signals, however 
such  a  possibility  was  not  recognized  and  considered 
important  in  the  literature.  Secondly,  the  arbitrary 
assumptions  about  wavelet  properties  are  discarded and 
replaced by  conditions  imposed  on  the  properties  of  the 
processed  signal.  Nevertheless,  in  practical  applications, 
concentration of energy, although important, is just one of 
the steps in a signal processing chain, e.g. in compression 
it  is  followed  by  quantization  and  coding.  Therefore  this 
approach to wavelet  synthesis does not take into account 
all the characteristics of a signal processing algorithm.

Authors of this paper claim that replacing assumptions 
about  wavelet  properties  with  conditions  imposed on  the 
processed signal and adapting wavelet to a particular signal 
instead of adapting it to a class of signals is an approach 
with  huge potential  that has not been utilized so far. It  is 
therefore proposed to synthesize the wavelet function using 
only conditions imposed on the characteristics of processed 
signal.  This  will  allow  to  adjust  the  wavelet  both  to  the 
processed signal and signal processing algorithm.

The results  obtained by Gaofeng et  al.  in  an already 
mentioned  paper  [32]  show  that  proposed  approach  is 
promising. Let us remind that Gaofeng et al. concluded that 
in case of image compression the performance depends on 
energy  concentration  of  the  DWT,  characteristics  of 
processed image and characteristics of the DWT processed 
signal (in this case it was entropy influencing quantization 
and coding of coefficients). So far this last component was 
ignored in all the wavelet synthesis methods.

Summary
In this  paper  it  was  demonstrated that  approaches to 

wavelet  synthesis  used  so  far  suffer  from  serious 
drawbacks: they either rely on some arbitrary assumptions 
about wavelet characteristics or ignore the characteristics of 
signal processing application to which the wavelet  will  be 
applied. A new approach was proposed to overcome these 
problems. It relies on adapting the wavelet to characteristics 
of  both  the  processed  signal  and  the  signal  processing 
algorithm. The only optimality criterion is the final result of 
signal  processing.  Proposed  approach  is  being  actively 
developed and has been successfully applied to improve 
digital image watermarking performance [54].

REFERENCES
[1] R. E. Crochiere, S. A. Webber, J. L. Flanagan. Digital coding of 

speech in subbands. Bell System Technical Journal, 55:1069–
1085, 1976.

[2] D. Esteban, C. Galand. Application of quadrature mirror filters 
to  split-band  voice  coding  schemes.  Proceedings  of  IEEE 
International  Conference  on  Acoustics,  Speech  and  Signal 
Processing, ICASSP ’77, pp. 191–195, 1977.

6Ensuring best possible approximation of a signal is equivalent to 
maximizing energy of low-pass filter output.

[3] P.  L.  Chu.  Quadrature  mirror  filter  design  for  an  arbitrary 
number  of  equal  bandwidth  channels.  IEEE Transactions on 
Acoustics, Speech and Signal Processing, 33:203–218, 1985.

[4] R. A. Gopinath, J. E. Odegard, C. S. Burrus. Optimal wavelet 
representation of signals and the wavelet sampling theorem. 
IEEE  Transaction  on  Circuits  and  Systems  II,  41:262–277, 
1994.

[5] P. Steffen, P. N. Heller, R. A. Gopinath, C. S. Burrus. Theory of 
regular  M-band wavelet bases. IEEE Transactions on Signal 
Processing, 41(12):3497–3511, 1993.

[6] A. H. Tewfik, D. Sinha, P. Jorgensen. On the optimal choice of 
a  wavelet  for  signal  representation.  IEEE  Transactions  on 
Information Theory, 38(2):747–765, 1992.

[7] P.  P.  Vaidyanathan.  Passive  cascaded-lattice  structures  for 
low-sensitivity FIR filter design, with applications to filter banks. 
IEEE Transaction on Circuits and Systems, 33(11):1045–1064, 
1986.

[8] P. P. Vaidyanathan. theory and design of M-channel maximally 
decimated quadrature mirror filters with arbitrary M, having the 
perfect  reconstruction  property.  IEEE  Transactions  on 
Acoustics, Speech and Signal Processing, 35:476–492, 1987.

[9] C.  Galand,  H.  J.  Nussbaumer.  New  quadrature  mirror  filter 
structures. IEEE Transactions on Acoustics, Speech and Signal 
Processing, 32:522–531, 1984.

[10]M. Vettreli.  Filter  bank allowing perfect reconstruction. Signal 
Processing, 10(3):219–266, 1986.

[11]P. P. Vaidyanathan, P.-Q. Hoang. Lattice structures for optimal 
design  and  robust  implementation  of  two-channel  perfect-
reconstruction  QMF banks.  IEEE Transactions on Acoustics, 
Speech and Signal Processing, 36(1):81–94, 1988.

[12]  G.  Battle.  A  block  spin  construction  of  ondelettes.  Part  I: 
Lemariè functions. Communications in Mathematical  Physics, 
110(4):601–615, 1987.

[13]P. G. Lemariè. Ondelettes à localisation exponentielle. J. Math. 
pures et appl 67(3):227–236, 1988.

[14]Y.  Meyer.  Principe  d’incertitude,  bases  hilbertiennes  et 
algèbres  d’opérateurs.  Sèminaire  Bourbaki,  662:209–223, 
1986.

[15] I.  Daubechies.  Orthonormal  bases  of  compactly  supported 
wavelets. Communications on Pure and Applied Mathematics, 
41(7):909–996, 1988.

[16] I.  Daubechies.  The  wavelet  transform,  time-frequency 
localization  and  signal  analysis.  IEEE  Transactions  on 
Information Theory, 36(5):961–1005, 1990.

[17] I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.
[18] I.  Daubechies.  Orthonormal  bases  of  compactly  supported 

wavelets,  II.  variations  on  a  theme.  SIAM  Journal  of 
Mathematical Analysis, 24(2):499–519, 1993.

[19]S.  Mallat.  Multifrequency  channel  decompositions  of  images 
and wavelet models. IEEE Transactions on Acoustics, Speech 
and Signal Processing, 37:2091–2110, 1989.

[20]S.  Mallat.  Multiresolution  approximation  and  wavelet 
orthonormal  bases  of  L2.  Transaction  of  the  American 
Mathematical Society, 315:69–87, 1989.

[21]S. Mallat. A theory for multiresolution signal decomposition: the 
wavelet representation. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 11(7):674–693, 1989.

[22]P.  Desarte,  B.  Macq,  D.T.M.  Slock.  Signal-adapted 
multiresolution transform for image coding. IEEE Transactions 
on Information Theory, 38(2):897–904, 1992.

[23]P.  Rieder,  J.  Götze,  J.  S.  Nossek,  C.  S.  Burrus. 
Parameterization  of  orthogonal  wavelet  transforms and  their 
implementation. IEEE Transactions on Circuits and Systems II: 
Analog and Digital Signal Processing, 45(2):217–226, 1998.

[24]M.  Unser.  On  the  optimality  of  ideal  filters  for  pyramid  and 
wavelet  signal  approximation.  IEEE  Transactions  on  Signal 
Processing, 41(12):3591–3596, 1993.

[25]J. D. Villasenor, B. Belzer, J. Liao. Wavelet filter evaluation for 
image compression. IEEE Transactions on Image Processing, 
4(8):1053–1060, 1995.

[26]  C. S. Burrus, R. A. Gopinath, H. Guo. Introduction to wavelets 
and wavelet transforms. Prentice Hall, 1998.

[27]M.  Antonini,  M.  Barlaud,  P.  Mathieu,  I.  Daubechies.  Image 
coding using wavelet transform. IEEE Transactions on Image 
Processing, 1:205–220, 1992.

[28]J.M.  Shapiro.  Embedded  image  coding  using  zerotrees  of 
wavelet coefficients. IEEE Transactions on Signal Processing, 
41(12):3445–3462, 1993.



[29]A. Said, W.A. Pearlman. A new fast and e cient image codecffi  
based  on  set  partitioning  in  hierarchical  trees.  IEEE 
Transactions on Circuits and Systems for Video Technology, 
6(3):243–250, 1996.

[30]D. Taubman. High performance scalable image compression 
with  EBCOT.  IEEE  Transactions  on  Image  Processing, 
9(7):1158–1170, 2000.

[31]M. Vettreli,  C.  Herley.  Wavelets  and filter  banks:  theory  and 
design. IEEE Transactions on Signal Processing, 40(9):2207–
2232, 1992.

[32]W. Gaofeng, J. Hongxu, Y. Rui. Linear-regression model based 
wavelet  filter  evaluation  for  image  compression.  Asia-Pacific 
Conference  on  Wearable  Computing  Systems  (APWCS), 
pp. 315–318, 2010.

[33]M.  Lang,  P.  N.  Heller.  The  design  of  maximally  smooth 
wavelets.  Proceedings  of  the  International  Conference  on 
Acoustics, Speech, and Signal Processing, vol. 3, pp. 1463–
1466, 1996.

[34]J. E. Odegard, C. S. Burrus. New class of wavelets for signal 
approximation. IEEE International Symposium on Circuits and 
Systems (ISCAS), 1996.

[35]J. E. Odegard, C. S. Burrus. Smooth biorthogonal wavelets for 
applications  in  image  compression.  IEEE  Digital  Signal 
Processing Workshop Proceedings, pp. 73–76, 1996.

[36]J.  E.  Odegard,  C.  S.  Burrus.  Toward  a  new  measure  of 
smoothness for the design of wavelet bases. Proceedings of 
the International Conference on Acoustics, Speech, and Signal 
Processing, vol. 3, pp. 1467–1470, 1996.

[37]D. Wei, A.C. Bovik. Generalized coiflets with nonzero-centered 
vanishing moments. IEEE Transaction on Circuits and Systems 
II, 45(8):998–1001, 1998.

[38]D. Wei, A.C. Bovik,  B.L. Evans. Generalized Coiflets:  a new 
family  of  orthonormal  wavelets.  Record  of  the  Thirty-First 
Asilomar Conference on Signals, Systems & Computers, vol. 2, 
pp. 1259–1263, 1997.

[39]J. E. Volder. The CORDIC trigonometric computing technique. 
IRE  Transactions  on  Electonic  Computers,  EC-8:330–334, 
1959.

[40]M.-J.  Lai,  D.  W.  Roach.  Parameterizations  of  univariate 
orthogonal wavelets with short support. Innovations in Applied 
Mathematics,  Approximation  Theory  X,  strony  369–384. 
Vanderbilt Univ. Press, 2002.

[41]J.-M.  Lina,  M.  Mayrand.  Parametrizations  for  Daubechies 
wavelets.  Physical Review E,  48(6):R4160–R4163, Grudzie/n 
1993.

[42]D. Pollen. SUI (2, F[z, 1/z]) for F a subfield of C. Journal of The 
American Mathematical Society, 3(3):611–624, Lipiec 1990.

[43]J.  Schneid,  S.  Pittner.  On  the  parametrization  of  the 
coe cients  of  dilation  equations  for  compactly  supportedffi  
wavelets. Computing, 51(2):165–173, 1993.

[44]L.-K.  Shark,  C.  Yu.  Design  of  optimal  shift-invariant 
orthonormal  wavelet  filter  banks  via  genetic  algorithm.  IEEE 
Transaction on Signal Processing, 83:2579–2591, 2003.

[45]G.  Regensburger.  Parametrizing  compactly  supported 
orthonormal wavelets by discrete moments. Applicable Algebra 
in  Engineering,  Communication  and  Computing,  18(6):583–
601, 2007.

[46]P. Lipiński, M. Yatsymirskyy. On synthesis of 4-tap and 6-tap 
reversible wavelet filters. Przegląd Elektrotechniczny, (12):284–
286, 2008.

[47]M.  Yatsymirskyy.  Lattice  structures  for  synthesis  and 
implementation  of  wavelet  transforms.  Journal  of  Applied 
Computer Science, 17(1):133–141, 2009.

[48] I. Daubechies, W. Sweldens. Factoring wavelet transforms into 
lifting  steps.  Journal  of  Fourier  Analysis  and  Applications, 
4(3):247–269, 1998.

[49]W.  Sweldens.  The  lifting  scheme:  A  new  philosophy  in 
biorthogonal  wavelet  constructions.  Wavelet  Applications  in 
Signal and Image Processing III, pp. 68–79, 1995.

[50]W.  Sweldens.  The  lifting  scheme:  A  custom-design 
construction  of  biorthogonal  wavelets.  Applied  and 
Computational Harmonic Analysis, 3(2):186–200, 1996.

[51]A.  R.  Calderbank,  I.  Daubechies,  W. Sweldens,  B.-L.  Yeo. 
Wavelet transforms that map integers to integers. Applied and 
Computational Harmonic Analysis, 5:332–369, 1998.

[52]M.  Jansen,  P.  Oonincx.  Second  Generation  Wavelets  and 
Applications. Springer, 2005.

[53]W. Sweldens.  The lifting  scheme:  A  construction  of  second 
generation wavelets. SIAM Journal on Mathematical Analysis, 
29(2), Marzec 1998.

[54]Lipiński,  P.,  and  Stolarek,  J.:  Digital  watermarking 
enhancement using wavelet filter parametrization, Adaptive and 
Natural  Computing  Algorithms  (10th  ICANNGA,  2011),  Eds: 
Dobnikar, A., Lotrič, U., and Šter, B., 2011

Authors:  Jan Stolarek, Technical  University of  Lodz,  Institute of  
Computer Science, ul. Wolczanska 215, 90-924 Lodz, Poland, e-
mail:  jan.stolarek@p.lodz.pl;  Liliana  Byczkowska-Lipińska,  
Technical  University  of  Lodz,  Institute  of  Computer  Science,  ul.  
Wolczanska 215, 90-924 Lodz, Poland, e-mail: liliana.byczkowska-
lipinska@p.lodz.pl


	
	Jan STOLAREK1, Liliana BYCZKOWSKA-LIPIŃSKA1
	Introduction


