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Synchronous balanced analysis (short paper)

Andreea Beica and Vincent Danos

École Normale Supérieure, Rue d’Ulm 45, 75005 Paris, France,
beica@di.ens.fr

Abstract. When modeling Chemical Reaction Networks, a commonly
used mathematical formalism is that of Petri Nets, with the usual inter-
leaving execution semantics. We aim to substitute to a Chemical Reac-
tion Network, especially a “growth” one (i.e., for which an exponential
stationary phase exists), a piecewise synchronous approximation of the
dynamics: a resource-allocation-centered Petri Net with maximal-step
execution semantics. In the case of unimolecular chemical reactions, we
prove the correctness of our method and show that it can be used either
as an approximation of the dynamics, or as a method of constraining the
reaction rate constants (an alternative to flux balance analysis, using
an emergent formally defined notion of “growth rate” as the objective
function), or a technique of refuting models.

Keywords: chemical reaction networks, approximation, resource allo-
cation, max-parallel execution of Petri Nets, flux balance analysis

1 Introduction

When studying certain cellular processes, the assumption is that the remainder
of the cell can either be ignored or considered constant. Despite this assump-
tion, intracellular processes rarely work in isolation, but rather in continuous
interaction with the rest of the cell. Furthermore, the cell has finite resources,
so committing resources to one task reduces the amount of resources available
to others. All cells experience these trade-offs, which potentially modify all cel-
lular processes, but are often overlooked. In this paper, we propose a piecewise
synchronous approximation of the dynamics of Chemical Reaction Networks
(CRN) based on finite resource allocation between reactions, that puts these
trade-offs front stage. One goal is to rephrase the mass action run of the sys-
tem as a problem of optimization: the inter-phase between synchronous runs
defines an unknown, the resource split, and we can ask for the best split (e.g.,
the one which minimizes parallel completion time, or maximizes growth rate).
Our method allows us to define a formal notion of growth rate for our type of
Petri Net execution, that can serve as an improved “biomass objective func-
tion”[11] for a constraint method similar to flux balance analysis (FBA)[11] :
“Synchronous Balanced Analysis”.

Related work. While most intracellular growth processes are well character-
ized, the manner in which they are coordinated under the control of a scheduling



policy is not well understood. When fast replication is sought, a schedule that
minimizes the completion time is naturally desirable. But when resources are
scarce, in the worst case it is computationally hard to find such a schedule
[1],[2]. The scheduling problem of a self-replicating bacterial cell is studied in
[3]. A mathematical cell model that respects the resource trade-offs experienced
by cells is built in [4]. The concept of maximally parallel execution already ap-
pears in the literature on P-systems [5], and in Levy’s family reductions [6],
while in [7], the authors use it to develop a Petri Net execution semantics that
resembles biology. The scheduling policy of cells is also tackled in [8], where the
notion of bounded asynchrony is introduced. In [9], the author introduces a con-
straint method that generalizes FBA to the stochastic case, allowing models to
be discriminated using second order moments.

This paper is organised as follows. The next section contains an overview of
how CRNs can be modeled using Petri Nets (PNs), as well as our definition of
max-parallel execution of a PN. Next we introduce our piecewise synchronous
execution semantics and show it encompasses max-parallel execution. We then
demonstrate that, at least in the case of unimolecular reactions, it recreates the
usual ODE system dynamics, and that it can be used either as an approximation
of the dynamics, or as an alternative to flux balance analysis. The final section
concludes with a summary and outlook regarding further work on the subject.

2 Modeling Chemical Reaction Networks

Definition 1. A chemical reaction network (CRN) is a tuple < S,∇−,∇+,R, κ >
, where S = {S1, . . . , Ss} is a finite set of species, ∇− and ∇+ are r × s con-
sumption, respectively production stoichiometry matrices, R = {r1, . . . , rr} is a
finite set of reactions, and κ : R → R>0 associates a (positive) rate constant to
each reaction.

Each reaction ri ∈ R is of the form
∑s
j=1∇

−
ijSj

ki−→
∑s
j=1∇

+
ijSj , and the

reaction network can be written compactly in matrix-vector form as ∇−S k−→
∇+S, with S the species column vector, and k the rates column vector.

The state of a system can be represented as a multiset of the concentrations
of all the chemical species in the network, denoted by x = (xS1 , ...,xSs) ∈ Ns.
Applying the law of mass action, the dynamics of the reaction network assumed
to be in state x are given by the kinetic equations:

dx

dt
= (∇+ −∇−)T ·K · x∇

−
(1)

with K = diag(κ1, ..., κr), and xA the “vector-matrix” exponentiation: for x =
[x1 . . . xq]

T ∈ Rq and non-negative A = [Aij ] ∈ Rp×q, xA denotes the element of

Rp whose ith component is
∏q
j=1 x

Aij
j (see Appendix A for an example).

This describes the continuous, deterministic model of a chemical reaction
network, which is a limit of the stochastic model when all species are highly
abundant [10]. One way to model CRNs is by using Petri Nets, as we recall
below.



Definition 2. A Petri Net is a tuple N = < S, T,W,m0 >, where S is a finite
set of places, T is a finite set of transitions, W : ((S × T ) ∪ (T × S)) → N is
the arc weight mapping and m0 : P → N is the marking representing the initial
distribution of tokens.

A transition is enabled when all of its requirements are met (in the current
marking, every place that has an incoming arc to the transition has at least as
many tokens as the weight of its incoming arc), and it is fired by consuming all
required tokens and producing new tokens.

Representing a CRN using Petri Nets is straightforward: places represent
species (genes, proteins, complexes), and transitions represent reactions.

The most commonly used execution semantics of Petri Nets is the inter-
leaving execution semantics: in each step, select one enabled transition non-
deterministically, fire it, then repeat. This semantics describes totally asyn-
chronous behaviour, which does not capture the concurrent nature of cellular
behavior, where all reactions can happen in parallel. A better suited semantics,
proposed in [7], and which we adapt in this paper, is presented below.

2.1 Max-parallel execution semantics of Petri Nets

The max-parallel execution semantics can be informally described as “execute
greedily as many transitions as possible in one step”[7]; we formalize this de-
scription in Def.3.

The markings of a PN can be regarded as non-negative integer S-vectors. Its
transition relation can be then described as a pair of |S|×|T | incidence matrices:
∇− defined by ∀s, t : ∇−(s, t) = W (s, t) and ∇+ defined by ∀s, t : ∇+(s, t) =
W (t, s). Then their difference ∇ = ∇+−∇−, the composite change matrix, can
be used to describe the reachable markings: for each sequence of transitions,
w, o(w) will denote T-the vector that maps every transition to its number of
occurences in w. Then, we have reach(m0) = {m | ∃w : m = m0 +∇ · o(w)∧ w
is a firing sequence1 of m0}.

Definition 3. A max-parallel execution step in a PN at state m is a positive
T-vector v such that:

1. v is compatible with m (i.e., there are enough tokens to do everything, in
any order): 0 ≤ m−∇−v

2. v is exhaustive (i.e., no reaction is enabled after firing): ∀j ∈ T,m −
∇−v � rj, where rj is the jth column of ∇−.

Figure 1 depicts the Petri Net of the CRN (we ignore the products):

3A+ 2B
κ0−→ · · ·

5B + 3C
κ1−→ · · ·

C
κ2−→ · · ·

with initial marking m0 = (9, 9, 9), and its possible max-parallel strategies.

1 a sequence of transitions that can be fired consecutively starting from a marking



A B C

t0

3
2

t1

5
3

t2

1

Fig. 1. A network with exactly 2 possible maximally parallel steps: {t0×3, t2×9} and
{t0 × 2, t1, t2 × 6}

3 Piecewise synchronous execution semantics of CRNs

In order to deal with resource allocation in CRNs, we construct an execution
semantics of PNs that is piecewise synchronous (and includes the maximally
parallel strategies): among all traces of execution of a PN, we single out a subset
of semi-synchronous ones.

Execution proceeds in an alternation of resource allocation (“split”) and
depletion (“burst”) (plus a phase of collection of the products between depletion
and the next allocation). Allocation of tokens to their possible transitions is
done via a |T | × |S| matrix α, where αij denotes the fraction of resource j being
allocated to reaction i, meaning that:

∀j ∈ S,
∑
i∈T

αij ≤ 1 (2)

The “burst” phase consists of the execution of all transitions in parallel until
the available input are reduced to a small constant fraction of the initial amount
(for reasons explained below). This small constant remainder we impose on our
semantics is both the reason for the inequality sign in (2), and the reason our
executions will be in the spirit of max-parallel executions, rather than max-
parallel in the strict sense: whereas the max-parallel execution seeks to deplete
all available resources, ours consumes them up to a fixed level (noted ε in the
following).

3.1 Resource allocation: relation to max-parallel execution

Suppose a CRN and assume α ∈ R|T |×|S|+ a resource allocation matrix defined

as above, m ∈ R|S|×1 a marking of the PN (i.e., a resource array) and v a
(potentially max-parallel) reaction vector. We note that zero-order reactions
(∅ → . . .) are not taken into account, as the question of resource allocation does
not apply to them.

We define the operation ? as:

Definition 4. (α ? m)j
def
= min

i∈S
(
αji

∇−ij
·mi)

Then Theorem 1 states that our execution semantics encompasses the max-
parallel strategy (each max-parallel strategy is associated with a resource allo-
cation matrix α, see Appendix B for proof).



Theorem 1. ∀v compatible with a resource array m (and potentially max-parallel),
∃α resource allocation matrix s.t. v = α ?m. Furthermore, if the CRN is unary,
there is unicity of α.

For bimolecular reactions, α defined as in Appendix B is no longer the unique
solution of v = α ? m; intuitively, for a bimolecular reaction rk : A + B →
. . ., a different resource allocation matrix α′ can be created by allocating to rk
whatever amount of species A is not allocated in α. The use of min in Def. 4
ensures that v = α′ ? m (see Appendix C for an example).

3.2 Unary CRNs and growth rate

Consider a CRN comprised exclusively of unimolecular reactions. Then, for m
an initial marking, ∇ the composite change matrix, and α a resource allocation
matrix, the state of the system after one execution with the α split is given by
the matrix (I + ∇ · α) ·m, with I the identity matrix. More generally, after k
iterations of the “split-burst” execution with the same split α, the state of the
system is:

Dk
α ·m, with Dα = I +∇ · α (3)

Let λ1 > λ2 > · · · , the eigenvalues ofDα, and E(λi) the eigenspace associated
to each λi. If the initial marking vector can be decomposed as m =

∑
imi, with

mi ∈ E(λi), then we can rewrite:

Dk
α ·m = λk1 · [m1 +

∑
i≥2

(
λi
λ1

)k ·mi] (4)

If λ1 < 1, given (4), the system will eventually go extinct. Also, if m1 ∈
E(λ1) is not unique, one has redundancy of growth (i.e., growth on multiple
species/sources). We thus assume that λ1 > 1, alongside uniqueness of m1 and
unidimensionality of eigenspaces.

Under these assumptions, as λi
λ1

< 1, for a big-enough k, the state of the

system will converge to λk1 ·m1, meaning that the growth rate of the system is
given by λ1, the biggest eigenvalue of Dα.

4 Depletion time of unary CRNs

Consider a unary reaction Si → . . .@k; the time evolution of the concentration
of species Si is given by the ordinary differential equation dSi

dt = −k · [Si]. Then
at time t, the concentration of species Si is: Si(t) = Si(0) · e−kt. Equivalently,
the mean time of depletion of the reaction (i.e., bringing the level of species Si
to a specified amount 0 < si ≤ Si(0)) is

τ = k−1 log(
Si(0)

si
) (5)



We note that si is a convention (the remainder of the reaction), or rather Si(0)
si

is the relative amount we consume off the input (e.g., si = 1%Si(0)); the point
being that we cannot deplete the whole amount of Si, as that would take time
τ = ∞. Herein lies the main difference between our method and max-parallel
execution, as mentioned in the beginning of Section 3.

Now suppose n unary reactions with the same input :

Si → . . .@kj ; j ∈ Ni, |Ni| = n (6)

We then allocate in parallel the Si’s between the n reactions, according to
our execution semantics: ∀j ∈ Ni, reaction j receives αji · Si(0) input, and has
a remainder of si,j . Then the depletion time of reaction j is :

τj = k−1j · log(αji ·
Si(0)

si,j
) (7)

4.1 Isochronicity and iso-remainder assumptions

In order to have a synchronous execution, we fix the same depletion time, τ for
all reactions of the unary CRN. Then, from (7):

αji = βkj · εi,j (8)

where β = eτ and εi,j =
si,j
Si(0)

. In this notation, εi,j is the remaining percentage

(relative amount) of the total amount of Si available in the beginning of the split
round (i.e., Si(0)), after reaction j is executed.

Furthermore, if we assume the same relative amount, si, remains after exe-
cuting all n reactions, we have:

∀j ∈ Ni, αji = εi · βkj , (9)

with εi = si
Si(0)

.

Under these assumptions, the dynamics of the system in state m, for species
Si, is given by:

∆m(τ) = ∇ · (α i − ε i) ·m, (10)

where α i denotes the ith column of the resource allocation matrix α:

∀j ∈ T, αji =

{
εi · βkj , if j ∈ Ni
0, otherwise

, and ∀j ∈ T, εji =

{
εi, if j ∈ Ni
0, otherwise

.

Then, from (2) 2 and (9), we have εi = 1∑
j∈Ni

1+βkj
and:

α̂Si(τ, k̂Si)
def
=
[
α i − ε i

]
=
[ eτ ·kj − 1∑

j 1 + eτ ·kj

]
(11)

2 the inequality of (2) is here explicitly expressed via the remainder ε :
∑

i∈T αij ≤ 1
is the same as

∑
i∈T (αij + εj) = 1



(NB:
[

eτ·kj−1∑
j 1+e

τ·kj

]
actually denotes a T-vector that has 0 in the components

representing reactions j /∈ Ni)
Then, by injecting (11) into (10), one can easily observe that when τ → 0,

∆m(τ) recreates the usual ODE system dynamics (as in formula 1):

∆m

τ
≈ ∇ · [kj ] ·m (12)

(NB: when x→ 0, ex ≈ 1 + x)

5 Applications

Based on formulae (4) and (11), our method can be interpreted either in a
concrete way, as an approximation of the real system’s dynamics (and be used
for simulation purposes), or in an abstract way, as an alternative to flux balance
analysis (“Synchronous Balanced Analysis”).

5.1 Concrete interpretation: approximation of system dynamics

As an approximation of the dynamics, under the unary/isochronous/iso-remainder
assumptions, ours is a temporised discrete execution dynamics, that, when τ →
0, recreates the usual ODE dynamics. If we fix τ the execution time-step, and
k̂ the reaction rate vector, we can determine α, the resource allocation matrix,
and ε, the remainder percentage (cf. (11)). The “iso” assumption represents a
way of decoupling production and consumption in the chemical network, in the
spirit of Karr’s modular systems [12]; intuitively, it can be interpreted as: “in a
parallel execution of a reaction set, there is no waiting for the slowest reaction
to complete”.

As a simulation method, it can be viewed as a big-step approximation of an
integrator, resembling a deterministic τ -leaping [13].

5.2 Abstract interpretation: Synchronous Balanced Analysis

Conversely, if the resource allocation matrix α is fixed, our execution semantics
can be interpreted as an alternative to Flux Balance Analysis [11], in order to
determine the limitations of a metabolic system; this is maybe the most impor-
tant application of our method. FBA is a constraint-based approach that creates
a solution space based on stoichiometric information, which impose constraints
on the flow of metabolites through the network. The (flux) solution space can
be further reduced via optimization with respect to a mathematical “objective
function” representing a biological objective that is relevant to the problem being
studied. In the case of predicting growth, the objective is biomass production,
which is mathematically represented by an “objective function” Z that indicates
how much each reaction contributes to the phenotype.

Our method uses λ, the growth rate, as the objective function. Cf. (4) max-
imizing λ means finding the resource allocation matrix α with the maximal



biggest eigenvalue. Once this α is fixed, (11) can be used in order to constrain

the reaction rates, k̂, as well as the time-step τ , and the remainder ε. Hence, our
method can be used as a technique of refuting models.

The advantages, when compared to FBA, are twofold: firstly, our method is
applicable to growth systems (the implicit assumption of FBA is that the system
has reached steady state), thus taking into account the real system kinetics;
secondly, the idea of maximizing the biomass is preserved, but the invention
of an “objective biomass function” is no longer needed, as it emerges directly
from our method: the growth rate. The downside of our “Synchronous Balanced
analysis” resides in the difficulty of maximizing the biggest eigenvalue of matrix
Dα.

6 Conclusions and future work

In this paper, we propose a piecewise synchronous approximation of the dy-
namics of a (growth) chemical reaction network: a parallel execution semantics
of Petri Nets, based on resource allocation. Our method can be interpreted ei-
ther as an approximation of the real dynamics of the system, or as a constraint
method similar to flux balance analysis, and has the advantage of being able to
characterize the behavior of a cell using only one construction: the resource al-
location matrix α. Consequently, one can eliminate the mechanistic details that
deal with resource allocation, and replace them by an abstract vector (α). Fur-
thermore, when compared to flux balance analysis, our method is applicable to
growth systems.

Future work. Since the method presented in this paper constitutes work in
progress, we plan to extend it into several directions. Firstly, we are interested
in the extension of our method to binary reactions: the depletion time cannot
be derived in the same way as for unary reactions. A way to potentially (but not
completely) relieve this issue is by assuming that no significant change in the
concentration of one of the two reactants is being caused by any other reaction
during one execution step. We plan on looking into Michelis-Menten like reduc-
tion schemes to alleviate this problem. Once the issue of bimolecular reactions
is solved, we can construct untrivial examples based on real-life CRNs, that will
allow us to test the quality of our method.

Secondly, we plan to use our method to determine possible correlations be-
tween growth rate and different model parameters (such as reaction rate con-
stants).

Last but not least, we would compare our method to the τ -leaping simulation,
as well as the allocation method proposed by Karr [12], and further study the
quality of our method.
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Appendix A CRN mass-action kinetic equations

Consider the following chemical reaction network:

S1 + S2
κ1−→ 2S2

S2
κ2−→ S1

Then S = {S1, S2}, ∇− =

[
1 1
0 1

]
, ∇+ =

[
0 2
1 0

]
, x∇

−
=

[
x1x2
x2

]
and dx

dt =[
−1 1
1 −1

]
·
[
κ1 0
0 κ2

]
·
[
x1x2
x2

]
=

[
−κ1x1x2 + κ2x2
κ1x1x2 − κ2x2

]

Appendix B Proof of Theorem 1

Proof. Given a resource array m, consider v a (potentially max-parallel) vector
compatible at m:

∇−v ≤ m (13)



Then we can construct α ∈ R|T |×|S|+ :

αji =
∇−ij · vj
mi

(14)

s.t.

(α ? m)j = min
i∈S
{ αji
∇−ij
·mi} = min{

∇−ij · vj
mi

· mi

∇−ij
| ∇−ij 6= 0} = vj (15)

Furthermore,

∀j ∈ S,
∑
i∈T

αij =

∑
i∈T ∇

−
ji · vi

mj

(13)
==⇒ ∀j ∈ S,

∑
i∈T

αij ≤ 1 (16)

i.e. α is indeed a resource-allocation matrix.
If all reactions of the CRN are unimolecular, then :

∀j ∈ T, ∃!ij ∈ S s.t. ∇−ijj 6= 0 =⇒ ∀j ∈ T, (α ? m)j =
αjij
∇−ijj

·mij (17)

hence the uniqueness of α. ut

Appendix C Non-uniqueness of α for bimolecular
reactions

Example 1. (Based on Figure 1.) m =

9
9
9

 , ∇− =

3 0 0
2 5 0
0 3 1

 , and v =

2
1
6

, one

of the 2 possible maximally parallel steps ({t0 × 2, t1, t2 × 6}).

Then ∃α =

 6
9

4
9 0

0 5
9

3
9

0 0 6
9

, defined as in (14), s.t. α?m =

 6
9 · 9 ·

1
3 ∧

4
9 · 9 ·

1
2 ∧∞

∞∧ 5
9 · 9 ·

1
5 ∧

3
9 · 9 ·

1
3

∞∧∞∧ 6
9 · 9 ·

1
1

 =2
1
6

 = v.

By re-allocating the excess of species A to the first reaction, we get α′ =1 4
9 0

0 5
9

3
9

0 0 6
9

, a resource-allocation matrix that also verifies α′?m =

1 · 9 · 13 ∧
4
9 · 9 ·

1
2 ∧∞

∞∧ 5
9 · 9 ·

1
5 ∧

3
9 · 9 ·

1
3

∞∧∞∧ 6
9 · 9 ·

1
1

 =2
1
6

 = v ( non-uniqueness of α in the bimolecular case).


