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Abstract
We investigate a recent network model [13] which

combines social and cognitive features. Each node in
the social network holds a (possibly different) cogni-
tive network that represent its beliefs. In this internal
cognitive network a node denotes a concept and a link
indicates whether the two linked concepts are taken to
be of a similar or opposite nature. We show how these
networks naturally organise into communities and use
this to develop a method that detects communities in so-
cial networks. How they organise depends on the social
structure and the ratio between the cognitive and social
forces driving the propagation of beliefs.

1. Introduction

Understanding the mechanisms by which networks
self-organise is a major challenge in all information net-
works: digital, social, and biological. Here we explore
a simple (variant of a) model of belief propagation in
social networks, originally introduced in Ref. [13], and
investigate how the additional cognitive structure can
help dissect the social network into emergent commu-
nities.

The model incorporates a social network formed
by individuals (nodes) and social connections through
which an exchange of beliefs is possible. In addition,
each individual holds its own cognitive network. Cogni-
tive networks consist of a fixed set of concepts (nodes)
and relations between them (links), which we call be-
liefs. Beliefs can be either positive or negative depend-
ing on whether the two concepts are taken to be of a
similar or opposite nature. Such a two-layered socio-
cognitive network of networks is illustrated in Fig. 1.

Whenever there is a cycle in our cognitive network
we have an opportunity to check the consistency of our

Figure 1. A 2-layer model: on the left a social
network is shown. Each node in the social net-
work contains a cognitive network. Here the
cognitive network of one node is shown on the
right: nodes are concepts and links are beliefs.
Beliefs can be either positive (blue) or negative
(red).

beliefs: if by going around the cycle we end up realis-
ing that we believe a concept is of an opposite nature to
itself, we have found a contradiction. These contradic-
tions and how humans deal with them is explained by
the theory of cognitive dissonance [7]. In particular, it
has been observed that individuals reduce cognitive dis-
sonance and avoid new information that would increase
it. In the model, nodes try to minimise such contradic-
tions while maximising consensus.

Our main idea is the following. The socio-cognitive
structure of the network favours the emergence of an
endogenous and natural notion of trust which can be
used to decompose the graph into communities. Indi-
viduals distrust others that have a wildly different take
on the world. The more different the two world views
of two individuals are, the more they will doubt each
others’ conclusions. Trust in this context is determined
by how similar people’s beliefs are. We base our com-
munity analysis on the idea that communities materi-



alise by how often people find each other agreeing. Your
friends are the people you end up sharing beliefs with
the most, so to speak.

Concretely, this means that we run repeated ran-
domised belief propagation experiments on top of our
static graph and measure how often nodes end up in the
same belief group. As we average over initial conditions
and look at long term behaviour, per necessity, what we
observe is a property of the underpinning network. Re-
sults will depend on the “temperature” of the algorithms
(how effectively ergodic the underlying Markov chain
is), and the relative strength of the social and cognitive
forces. The stronger the social field the coarser-grained
the community decomposition. Here we will fix tem-
perature (based on empirical convergence times) and
study communities as a one-parameter family of aver-
age agreement matrices over the population of nodes.
This parameterised analysis is reminiscent of persistent
homology techniques in data-analysis [3], and should
be resilient to noisy data were we to apply it to real ac-
quaintance networks. We apply our method to the leg-
endary karate club example [14] and find a very con-
vincing decomposition of the club in increasingly fine-
grained factions.

1.1. Related work

Many different algorithms for community detec-
tion have been created in the past [8]. They are based
on markedly different techniques and notions of com-
munities. The majority of them look only at the con-
nectivity of the graph whereas ours takes into account
additional structure. Our method is in that sense similar
to those based on spin models [12] or coupled oscilla-
tors [1]. Here we compare our results in §3.1 to those
obtained by the method of Girvan and Newman [11]
which produces a similar type of community decompo-
sition. This method uses the betweenness centrality of
edges, a measure of how many times an edge is used in
a minimal path between two nodes, to find a nested de-
composition of communities within communities. The
results are relatively similar while showing interesting
differences.

2. Socio-cognitive systems

A socio-cognitive network g consists of finite sets
of individuals and concepts, N and M, a symmetric link
relation λ on N, and a map γ : N → {−1,0,1}M×M as-
signing a matrix to each individual. This matrix can be
seen as a signed graph where edges can be either pos-
itive or negative and represents the cognitive network
of an individual (as in Fig. 1). Given a node n ∈ N and

concepts i, j ∈ M we simply write ni j for γ(n)i j, the be-
lief between i and j in n. The set of all socio-cognitive
networks is denoted by G and those with the same indi-
viduals, concepts and link structure by GN,M,λ .

For the dynamics, we only allow transitions that
change a belief. No transitions can add or remove so-
cial connections or individuals. We change one belief
at a time and any change of belief is possible. This is
a modification from the original model in which only
those beliefs that were in disagreement with a neigh-
bour’s belief could be changed. This is similar to the
voter model [5], and, indeed the model studied here can
be thought of as a smoother version of the voter model
(where unstructured beliefs battle out for supremacy on
the network). This slight change makes the dynamics of
our model ergodic on GN,M,λ , even though in practice
the kinetics might be very “glassy”.

We define an energy function to drive the sys-
tem’s evolution. (As usual lower energies represent
more favourable states.) This energy function will be
composed of a social and a cognitive part.

The cognitive energy Ec : G →R describes the cog-
nitive consonance force that is trying to minimise ev-
eryone’s internal contradictions. Here we only consider
contradictions in cycles of length 3, i.e. triangles.

We use balance theory [10] to define the cognitive
consonance of a node as

C(n) = ∑
i, j,k∈M

ni jn jknki

Whenever there is an odd number of negative beliefs
in a triangle, the term ni jn jknki will be −1. If there is
an even number it will be 1. If the three concepts are
not forming a triangle because they are not connected,
it will be 0.

The total cognitive energy is then

Ec(g) =−J ∑
n∈N

C(n)

where J is the strength of the cognitive consonance
force acting on the network.

The social energy Es : G → R, on the other hand,
is determined by trust. We define the trust T (n,m) be-
tween two individuals n,m ∈ N as the similarity of their
cognitive networks.

T (n,m) = ∑
i, j∈M

ni jmi j

The term ni jmi j will be 1 if the two socially-connected
individuals hold the same belief, −1 if they hold the
opposite belief, and 0 if any of them do not have a belief
between these two concepts. Then the social energy is



defined as

Es(g) =−I ∑
⟨n,m⟩∈λ

T (n,m)

with I the strength of the social force. The total energy
of the system is then

E(g) = Ec(g)+Es(g)

It is easy to see that the minimum energy E0 that a
system can ever reach is obtained when everyone holds
the same optimal cognitive network:

−E0 =

(
|M|
3

)
|N|J+

(
|M|
2

)
|λ | I (1)

Hence a key driver of the dynamics will be the ‘soc-cog’
ratio I/J, or rather once put in scale invariant form:

|M| · I
J
· |λ ||N|

where |λ |
|N| is the average degree (which is preserved by

the dynamics).
Clearly, M controls the absolute diversity of opin-

ions in minimum energy states. Specifically, there are
2|M|−1 such perfectly ordered states. This is one key
difference with plain propagation or voter models (on
static graphs) where perfect states are far less numerous.
The other key difference is less easy to describe and has
to do with the ruggedness of the cognitive energy land-
scape. This is a marked difference to the Axelrod type
of belief propagation [2].

2.1. Simulation code

Our socio-cognitive systems can be readily simu-
lated using a Metropolis-Hastings algorithm [9]. The
code used to run the simulations reported in this pa-
per can be found at https://github.com/rhz/
soccog/tree/gh-pages. We have also built a
web application which runs simulations directly in
a browser: https://rhz.github.io/soccog/.
(It can be advantageous to use a browser which imple-
ments javascript efficiently.)

3. Community detection

With our model and simulator in place, we can at-
tack our question. We wish to partition a network into
communities by grouping together individuals with the
same beliefs (i.e. same cognitive network). The claim in
contention is that this extraneous socio-cognitive struc-
ture will offer a view of communities parameterised by

Figure 2. Social network in the karate club
studied by Zachary. This figure has been taken
from Ref. [6, Chap. 1].

the soc-cog ratio. Note that for each batch of numeri-
cal experiment, we record the probability that any two
individuals are in the same community at equilibrium
(practically defined as acceptance rate steadily under
0.1%). Hence our notion of being in a community is
real-valued.

3.1. Karate club

A simple example that has been used many times as
a proof of concept for community detection algorithms
is the social network studied by Zachary [14] (see Fig. 2
taken from Ref. [6, Chap. 1]). This network maps the
friendships within a karate club of 34 people. The fis-
sion into two groups that became independent karate
clubs was reported in the study and it happened along
a faultline that community detection algorithms should
be able to identify. This faultline can be intuitively per-

Figure 3. Heat map showing the probability that
two nodes end up in the same community in
the karate club network.

https://github.com/rhz/soccog/tree/gh-pages
https://github.com/rhz/soccog/tree/gh-pages
https://rhz.github.io/soccog/
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Figure 4. Dendrogram showing the probabilities at which communities merge in the karate club
network.

ceived in Fig. 2 due to the way in which the nodes have
been arranged. The two groups are

{1,2,3,4,5,6,7,8,11,12,13,14,17,18,20,22} and
{9,10,15,16,19,21,23,24,25,26,27,28,29,30,31,

32,33,34}

We compute the probability of pairs of individuals
ending up with the same cognitive network by running
10,000 simulations and waiting until the rejection rate
goes over 99.9% in a window of 100,000 steps. The re-
sults are displayed in Fig. 3.

To get a better visual representation of the com-
munity structure, we construct a dendrogram showing
at which probabilities communities merge. Let P(n,m)
be the probability that nodes n and m are in the same
community. We start by having each node in its own
community and join two communities c, d at probabil-
ity p = max{P(n,m) | n ∈ c∧m ∈ d}. The dendrogram
for the karate club network is shown in Fig. 4 and re-
capitulates nicely the visual intuition of the future split,
while identifying other possible splits, e.g. {12}, and
{5,6,7,11,17}.

Our results for the karate club network agree to a
reasonable extent with the results obtained using the
method developed by Girvan and Newman [11]. Inter-
estingly, their method also detects {5,6,7,11,17} as
a strong community. However, they see this commu-
nity join that of node 1 before that community joins
the community of node 34. Given the nature of their
method, bigger communities tend to disconnect earlier
than smaller ones because the betweenness centrality

of the edges that connect a peripheral community to
the rest of the network are proportional to its size. Our
method does not suffer from this bias.

3.2. Random networks

The strengths of the consensus and cognitive con-
sonance forces, I and J, undoubtedly play a role in the
formation of communities. To assess it, we look at the
communities that arise in random socio-cognitive net-
works under different conditions. In particular, we first
look at the distribution of community sizes. Given g a
state of the system, we can define sn(g) to be the number
of communities of size n in g. We have ∑n nsn(g) = |N|.
By running r simulations we obtain a collection G of
states at equilibrium. Summing over them we get

∑
g∈G

∑
n

nsn(g) = |N|r

Hence:
p(n) = ∑

g∈G
nsn(g)/(|N|r)

is a probability distribution on N. Intuitively, this is (an
estimate of) the probability that a random node in N
belongs to a community of size n at steady state. We
use it as a visual proxy for the state of agglomeration of
the nodes in communities.

It is important to realise that changing I and J might
have entropic implications. For instance, when doubling
the value of both, the shape of the valleys and mountains
in the energy landscape will remain constant but the val-
leys will be deeper and the mountains higher. In other



Figure 5. Heat map showing the size of the two biggest communities at equilibrium for six different
values of logM(I/J): -0.2 (top left), -0.1 (top centre), 0 (top right), 0.1 (bottom left), 0.3 (bottom centre),
and 1 (bottom right). We see a shift from a polarised configuration to one where only one opinion
predominates.

words, I and J together determine the temperature of the
system (or equivalently, a change in temperature will
produce a simultaneous change in I and J). As a proxy
to this intrinsic temperature we look at E0, the depth of
the deepest valley. To avoid unintended entropic effects,
we keep E0 constant while we vary logM(I/J). The val-
ues for I and J are then computed using equation 1.

We construct random networks of |N| = 100 indi-
viduals with |λ |= 250 social connections, and assign a
random cognitive network of |M|= 10 concepts to each
individual, and run r = 10,000 simulations as described
in the previous section. Then we plot the histogram of
p(n) versus n for different values of logM(I/J) (at con-
stant E0). A slideshow video of them can be found at
https://tardis.ed.ac.uk/˜rhz/hg.mpg.

One sees that when J is 10 times bigger than I, al-
most all communities have size 1, that is to say no-one
shares the same set of beliefs (and all the individual be-
lief systems are perfectly consonant). This is maximal
diversity. (Of course an M which is too small could pre-
vent this from happening. See the discussion below on
the difference between this model and the voter models
with few possible opinions.)

As the social field becomes stronger, bigger com-
munities start appearing, unsurprisingly. When I is 10
times bigger than J, it is most likely that a community
has a size between 90 and 100. In between, in the transi-
tion zone where I, J are of the same order, we see that a
large number of different community sizes are possible

and equally likely. This raises the question of whether
the parameters of the simulations are identifiable even
in synthetic data. Indeed the best way to think of our
analysis is in terms of a one-parameter family of com-
munity decompositions. No single value of the soc-cog
ratio perfectly summarises the decomposition.

In the previous histogram the correlations between
community sizes are lost. So we plot the size of the
two biggest communities against their probability of co-
occurrence. When it is very cognitive or very social, the
sizes of the two biggest communities are concentrated
in a small region. Instead during the transition nearly
every combination is likely. This confirms that inference
of parameters would be difficult: given the community
sizes of a series of experiments we might only be able
to tell in which of these three regimes we are, but the
exact values for I and J would be impossible to infer.
The resulting slideshow video can be found at https:
//tardis.ed.ac.uk/˜rhz/hm.mpg. A version
where the colour range has been truncated to be able
to clearly see what happens during the transition can
be found at https://tardis.ed.ac.uk/˜rhz/
hm-truncated.mpg. One can see a ‘crest line’ ap-
pearing despite the rather dispersed distributions along
which the dynamics is transitioning as we alter the soc-
cog ratio. Six of the plots taken during the transition are
shown in Fig. 5.

https://tardis.ed.ac.uk/~rhz/hg.mpg
https://tardis.ed.ac.uk/~rhz/hm.mpg
https://tardis.ed.ac.uk/~rhz/hm.mpg
https://tardis.ed.ac.uk/~rhz/hm-truncated.mpg
https://tardis.ed.ac.uk/~rhz/hm-truncated.mpg


4. Conclusions

There are multiple avenues for further investiga-
tion. One is to look for adequate scaling limits that will,
in some regimes, admit for simpler approximate formu-
lations of the dynamics and could shed some light on the
transition behaviour. Another is to look for efficiency
of the simulation. Existing techniques in the domain of
energy-based stochastic graph-rewriting [4] should ap-
ply. On the applicative side, it would be interesting to
look for data on actual social networks and ask how
one can work around the difficulty of inferring the key
parameters I, J which we have discussed. Which data
would be adequate remains to be seen. Perhaps the new
Facebook interaction structures with a graded alphabet
of likes/unlikes could be used to evaluate belief prop-
agation. One problem is that it is not easy to discrim-
inate between belief acquisition (I change my opinion
because of you) and belief confirmation (I am already
of the same opinion as you). But that distinction itself
might not be of great import.
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