

Edinburgh Research Explorer

Learning in open adaptive networks

Citation for published version:
Yang, G & Danos, V 2016, Learning in open adaptive networks. in The 10th IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (SASO’16). IEEE, Augsburg, Germany, pp. 50-59, 10th IEEE
International Conference on Self-Adaptive and Self-Organizing Systems, Augsburg, Germany, 12/09/16.
DOI: 10.1109/SASO.2016.11

Digital Object Identifier (DOI):
10.1109/SASO.2016.11

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The 10th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO’16)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1109/SASO.2016.11
https://www.research.ed.ac.uk/portal/en/publications/learning-in-open-adaptive-networks(4b341721-ff7e-47ec-a64a-80acf195e0d2).html

Learning in Open Adaptive Networks

Guoli Yang
LFCS, School of Informatics
University of Edinburgh

Vincent Danos
LFCS, School of Informatics
University of Edinburgh

September 13, 2016

Abstract

We propose a learn-and-adapt model for building efficient and resilient networks of cooper-
ative agents. Agents are involved into three interconnected types of activities. Firstly, agents
bid for handling random structured tasks. Secondly, agents learn the (exogenous) features of
the random task source, by aggregating local information (such as success rates, average load,
etc). And, thirdly, agents adapt the composition of their neighbourhoods following the (endoge-
nous) targets set by their learning process. Neighbourhood readjustment proceeds by judicious
rewiring steps which stay entirely local. Thus an agent continuously works, adjusts its neigh-
bourhood, and based on his local metrics, learns how to inflect its own adaptation targets.
Because of this tight coupling of all three activities, the network as a whole can reconfigure in
a fully decentralized way to cope with changes in: the network composition (node failures, new
incoming nodes, etc), and the parameters of the task source (changes in the size, structure,
and frequency), while attaining robustly a near-optimal performance level (compared to the
centralised solution).

Keywords: Adaptive networks; Distributed learning; Agents coordination

1 Introduction

A large body of research explores local adaptive dynamics on networks (????). Of particular in-
terest are self-improving organisational models relying only on local adaptive dynamics ?. Indeed,
centralised solutions may incur high communication costs to ensure coherence, synchronization,
dependability, and systemic resilience. Decentralised solutions, on the other hand, may attain com-
paratively good performance levels at a fraction of these costs (????).

Another, and perhaps less conspicuous advantage of local systems is that they are easier to
evolve. In this paper, we propose a simple learn-and-adapt model designed to illustrate the benefits
of this higher evolvability. In our model, agents continuously work to solve tasks fed to them by
a random task source, while at the same time they adjust their neighbourhood, and learn how to
inflect their own adaptation targets based on simple local metrics. Because of this tight coupling
of all three activities, the network can reconfigure itself in a decentralized way and cope with
unexpected changes in: the network composition (node failures, new incoming nodes, etc), and
the parameters of the task source (changes in the size, structure, and frequency), while attaining
robustly a near-optimal performance level compared to the centralised solution.

1

1.1 Blocking

Theoretical and experimental studies on task allocation abound in the field of multi-agent systems.
In particular, agent-organised networks (AONs) (?) are organisations resulting from interacting
agents, where team formation is essential to performance. In this context, a team consists of a
number of related cooperative agents, equipped with skills and which work together toward a
common complex task that none of the team members can complete independently. AON studies
have established that simple local strategies to adjust structures dynamically may lead to remarkable
and resilient performance with potential applications to: business alliances (?), dynamic supply
chains (?), robotic teams (?), sensor networks (?), and distributed resource allocation (??).

Methods from operational research have been used to optimise task allocation in static net-
works (?????). Most strategies, however, experience intermittent blocking problems caused by
insufficient or unreachable skills. This is especially so in networks with unfavourable structures. To
see this, let us consider an example. Suppose that tasks T1 and T2 need to be completed by two
teams (red and blue) with the required skills to do so. Fig. 1(a) shows a first type of blocking caused
by insufficient skill supply. Both teams are in contention for skill S2, but neither can successfully
grab it. This is traditional blocking by contention for resources. Fig. 1(b) shows another, more
subtle, form of ‘spatial’ blocking caused by skills being unreachable. That is to say, in this example
all required skills are present, but some are separated from one team by the growth of the other
one.

To work around both forms of blocking we will keep on the broad principles of AON to which
we will add division of labour. Some agents will be (dynamically) distinguished as leaders. This
slight modification will completely avoid contention for resources by accumulating resources around
leaders. Spatial contentions will be avoided by organising the neighbourhoods of leaders into non-
overlapping hubs.

As the task flow usually follows some distributions in open environments, and may change over
time, a static network is manifestly disadvantageous to effective team formation. There are other
reasons to favour designs that will be self-organising, such as resilience and the lack of a need to
register new participants globally. Recently, various adaptation strategies to reshape connectivity
and achieve better organisation performance were proposed (????). The effects of network struc-
ture on team formation was in particular investigated by Gaston et al. in Refs. (??), and many
extensions (???) were provided to handle various issues regarding organisation performance and
network adaptation.

In the following, changes of connectivity are based on learning processes which update the
parameters driving the (stochastic) adaptation process. We start by describing the static aspects of
the model in the next Section. Then we move on to the detailed description of the learn-and-adapt
dynamics.

2 The static model

Our model of team formation and task allocation follows closely that of AON (??).
We consider a finite set of agents N , and a finite set of skills S, together with a skill map

s : N → S which assigns a skill to each agent.
A state of the model is: 1) a set of undirected edges E on N , and 2) a role map r : N → {0, 1}.
We say an agent x is a leader if r(x) = 1, a follower if r(x) = 0. We write: L (F) for the current

set of leaders (followers); N (x), for the current set of neighbours of an agent x; and d1(x) for the

2

S3
S1

S2

S3 S2

S1

“Blocking”

S3
S1

S2

S3 S2

S1

“Non-Blocking(2)”

T1
T2

S3
S1

S3
S2

S1

“Non-Blocking(1)”

S2
Task

S1,S2,S2
S1,S2,S2

(a) Example 1: Blocking by insufficient skills. If both of the two incomplete teams: both the red team and the blue
team are trying to complete their tasks, but neither can succeed because of insufficient skills. Would one give up, the
other team could implement its task successfully.

S3
S1

S2

S3 S2

S1

“Blocking(1)”

S3
S1

S2

S3 S2

S1

“Non-Blocking”

T1
T2

S3
S1

S2

S3
S2

S1

“Blocking(2)”

Task

S1,S2,S3
S1,S2,S3

(b) Example 2: Blocking by unreachable skills. Even if the available skills are enough to form two complete teams, it
is still possible that some skills required by the blue (or red) team are blocked by the red (or blue) team, and then
become unreachable because of unfavourable team structures.

Figure 1: Blockings and non-blockings in agents team formation.

number of neighbours of x which are leaders. That is to say d1(x) = |N (x) ∩ L| ≤ |N (x)|.
We say that y is a follower of x, if y is a follower, x a leader, and y is in N (x)
We say the state is fully centralised if there is just one leading agent connected to all other

followers.
Later on, leaders will have access to additional information. Specifically, every x in L will have

attached 3) a load λ(x) ≥ 0, and 4) an S-vector target θx.
A task is simply represented as a multiset of skills (equivalently, a vector with integer coordinates

in the free vector space generated by S). The idea is that for a team of agents to successfully complete
a task during a round, the team needs to provide the skill set required by the task. The state of
the system constrains the way in which teams can be assembled. Specifically, an agent x can only
recruit another agent y if y is a follower of x.

Thus, the role function divides nodes between active recruiters or leaders (role 1), and passive

3

followers (role 0), and the edge structure limits the formation of teams within the immediate
neighbourhood of a leader.

As we will see, both r and E can change over time: roles and connectivity adjust to demand.
Even if one starts from a fully centralised state, the system will gradually adopt a more resilient, yet
efficient, configuration. We will always assume that the initial graph structure N , E is connected
and simple (at most one edge between two agents). Changes in connectivity will preserve this
constraint.

2.1 Task allocation and completion

At the beginning of each round, γ new tasks are generated randomly (recall a task is a multiset of
skills in S) and are dispatched evenly at random to leader nodes (randomized round robins are run
until no task remains). Then, leaders recruit teams according to the constraints above. It is possible
that many tasks are allocated to one leader. The process is illustrated in Fig. 2.

To avoid overloading the network, we will only consider situations where the average task size
|T | is such that γ|T | < N . This is a regime where, on average, the demand on skills placed by tasks
in a given round is lower than the global work supply, i.e. the total number of nodes.

T1 ...
Ti ={S

1
, S

2
, S

3
, S

4
, S

5
}

... Tγ

S1

S4
S3

S2

S4
S5

S5 S4

Mi

T1 ...
...Ti

... Tγ

S5

S3

Task
flow

t

team

S2

............

S5

S3

team

team

S3

S1

S1

t-1

T1 ...
...Ti

... Tγ

t+1

Mk
Mj

S2

S1

S2

Leader

Follower

Figure 2: Team formation: each round γ new tasks are allocated evenly at random to leaders (square
nodes). A task T allocated to a leader x will be completed if x recruits among her followers a team
which provides the skills required by T .

2.2 Global performance metrics

We now introduce two global indicators of performance. These indicators are solely for the purpose
of evaluating performance from outside the system. Agents will use other indicators to adapt the

4

r, E structure.
First, we define task success rate, i.e. the long-time average ratio between the number of com-

pleted tasks (CT) and the number of tasks offered (Fig. ??):

TSR =
1

t
limt→∞

∑
u≤t

CT(u)

γ

Second, we would like to define a metrics that captures the idea that the skill supply of a leader,
i.e. the total number of skills available to her, should not be too large on average. More specifically,
the skill pool of a leader should not exceed too much the actual demand placed on her. Indeed, if
it does, the surplus work supply should be better allocated to other parts of the network.

This is what we call the team waste rate, i.e. the long-time average ratio between the surplus
team size and the actual task size. To that effect, given r and E, we first define M(x) as the size of
the skill pool (the total number of skills) available to a leader x:

M(x) = 1 +
∑
y∈N (x)∩F 1/d1(y)

Note that the formula above is always well-defined, by definition y has at least one neighbouring
leader, namely x, so that d1(y) > 0.

We can also remark that followers that belong to the neighbourhoods of multiple leaders are
shared evenly thanks to the discount factor 1/d1(y) (one can imagine that they work part-time).
The reason we add 1 is because x itself provides a skill.

Set M =
∑
x∈LM(x). It is easy to see that:

M = N − |{y ∈ F | d1(y) = 0}|

Hence M counts the complement of the number of ‘lonely’ followers - ie followers who follow no
leader. One can think of it, by analogy with ‘free energy’, as the ‘free work force’ - that which is
actually recruitable in the current state of the system.

With this definition of skill supply in place, we can define our second metrics (also illustrated
Fig. ??):

TWR = limt→∞
1

t

∑
u≤t

M(u)

γ|T |
− 1

Note that γ|T | is the average skill demand, hence M/γ|T | is the ratio of total skill supply to
mean total skill demand. The further away this ratio is from 1, the more leaders are wasteful in
skill resources. In this sense, TWR is the long term value of wastefulness. For a fully centralised
organisation, |L| = 1, M = N , hence TWR = N/γ|T | − 1; again a measure of the excess of agents
(skill supply) compared to the average skill demand.

We turn now to the core part of our model, namely the adaptive part of the dynamics.

3 Learn-and-adapt dynamics

To design an efficient adaptive strategy, we need first to specify what we want. Indeed, two problems
should be addressed: (1) how many leaders (or teams) are required; (2) how do leaders adjust their
teams.

5

Clearly, too many leaders lead to numerous small-size teams with an insufficient provision of
skills, and, therefore, a low success rate. Too few leaders, on the other hand, will bring about large
teams and a fragile network (Fig. ??).1

In other words, the adaptive dynamics should drive towards states where: 1) (resilience) the
typical skill pool of a leader is relatively small, i.e. M(x) � N , while 2) (performance) remaining
large enough for task completion, i.e. M(x) ≥ γ|T |/|L|.

Here we will realize the above constraints with the most decentralised state, where the task load
γ|T |/|L| on a leader is kept minimal. That is to say, the adaptive dynamics will drive towards states
where: 1) |L| = γ (meaning each leader receives on average one task per round), and 2) the skill
pool of leaders is kept (somewhat) above their task load: M(x) ≥ |T |.

To achieve this, our agents need to be equipped first with local metrics.

3.1 Learning one’s role

For each leader x, we define a load λ(x) which tracks the mean number of tasks taken by x:

λ(x)← αλ(x) + (1− α)γ(x, u) (1)

where γ(x, u) is the number of tasks taken by x at time u, and α is a discount parameter. The
weighted moving average smooths out accidental fluctuations and highlights the trends. A smaller α
discounts the older observations faster, and a bigger one discounts them slowly. The load λ obtained
through this simple update strategy is used to decide whether to expand or contract the population
of leaders.

Say a leader is overloaded if λ > 1 (more than one task per team), and say it is underloaded if
λ < 1 (less than one task per team). (Recall that we have chosen to target the most decentralised
organisation.)

3.2 Adapting one’s role

Let 0 < pr < 1 be a (small) real number. At the end of each round, overloaded leaders promote one of
their followers (chosen uniformly at random) with probability pr min(λ− 1, 1) (initialised with load
zero). Likewise, underloaded leaders demote themselves with probability pr min(1− λ, 1) (Fig. ??).
Note that the flipping behaviour is entirely distributed and based only on local information. The
idea is that at stationary state, the state will be such that λ(x) ∼ 1 for all x, and the teams will
receive one task each. The choice of α, pr allows one to balance out fluctuations. Typically α = 0.01,
and pr = 1/N which guarantees that with high probability, there will be at most one change of role
per round.

3.3 Learning one’s friends

We now need to drive leading agents to arrange their set of followers so that it has the right skill
composition. For each leader x, we define x’s composition target as an S-indexed vector θx. We think
of θx(s) as the number of team members with skill s which x is currently targeting. Recall that
each round, x is allocated a list of tasks (Fig. 2) to handle. Let T be any of the tasks received by x

1As said in the introduction, large teams also come with higher costs of communication, cognition, management,
etc. More reasons to keep away from them.

6

i ≥ 1i ≤ 1

Leader
demotion

Follower
promotion

Leader Follower

Figure 3: Changing roles: the evolution of roles is driven by the load estimate λ(x): if λ(x) ≥ 1,
too many tasks are allocated to x’s team, and more leaders are required; if λ(x) ≤ 1, x’s team is
underloaded, and fewer leaders are required.

(supposing x receives at least one). The task T is also an S-indexed vector (with integer coordinates,
aka multisets over S). Thus, one can define the current deviation at x as the difference:

εx = T − θx

The idea is to use this deviation to update x’s target. Let η−, η+ small positive real numbers
which will serve as our learning rates (analogous to α for role learning). For s in S, given T , the
s-component of θx is updated as follows:

θx(s)← θx(s) + η−[εx(s)]− + η+[εx(s)]+ (2)

where we have used the following notation: [x]+ = max(0, x), and [x]− = min(0, x).
In words: when θx(s) is above T (s) (equivalently when εx(s) ≤ 0), then x decreases its target

by η−εx(s). Conversely, when θx(s) is below T (s) (equivalently when εx(s) ≥ 0), then x increases
its target by η+εx(s).

It is important to note that there is an assymetry in the problem at hand. When T ’s demand is
below x’s supply, T is completed, and the worst that can happen is that x’s team is oversized. On
the other hand, when T ’s demand exceeds x’s supply, then T cannot be ‘somewhat’ completed, it
is a complete failure. Thus a parameterisation where η− ≤ η+ (meaning θx gets kicked harder when
below target, than when above target) seems reasonable. Indeed, it will implement a risk-averse
strategy (???). The bigger the ratio η−/η+, the larger the surplus of skill supply. The dependence of
the performance of the system on this choice is studied in the next Section under simple assumptions.

3.4 Adapting one’s friends

For connectivity adaptation, we opt for triangle rewiring (aka edge rotation) where an agent x
disconnects from one neighbour y to connect to a neighbour z of y which is not already a neighbour
of x (?). We call such a triple x, y, z a redex. Note that if x, y, z is a redex in graph G, so is z, x,
y in the transformed graph G′. The rotation is fully reversible.

7

This class of transformations has three interesting properties: (i) it preserves the number of
edges, (ii) it preserves connectedness, and (iii) it is ergodic in the sense that any two connected
graphs on the same set of vertices can be related by a series of such rewirings.

G G'

W(G → G')

W(G ← G')

Leader Follower

Figure 4: Changing friends: agents can change friends by triangle rewiring; the probability of a
rewiring is determined by the incurred change of energy (see next Subsection).

Let 0 < pE < 1 be a (small) real number, and let E be an energy function from states to
the real numbers. At the end of each round, for each leader x, with probability pE , a candidate
redex x, y, z is chosen uniformly at random (if any), and the corresponding rotation is performed
with probability min(1, exp(−β∆E)) with β > 0 an “inverse temperature” parameter. The energy
difference ∆E is the difference of the energy after and before rewiring the redex.

This probabilistic rewiring is an example of Metropolis algorithm (?) on graphs. Such indirect
definitions of rewiring dynamics were investigated recently for generic graph-rewriting (?). Of course,
in our application, everything hinges on the choice of a good energy function. This is what we need
to define now.

3.5 Rewiring energy

Let φx be the S-vector describing the current skill supply available to x; that is to say, for s in S,
φx(s) is the number of x followers with skill s. Its is important not to confuse φx, x’s actual skill
supply, with θx, x’s desired skill supply. One can think of |φx − θx| as the tension perceived by
agent x. Accordingly, we will engineer an energy landscape which favours edge rotations that most
reduce this difference.

For x a leader agent, we set its local energy to be:

Ex =
∑
s∈S

exp(θx(s)− φx(s)) (3)

Then the global energy is just E =
∑
x∈L Ex.

8

A point worth noting is that the energy local to a leader is computable with only local in-
formation: θx is directly part of the agent state, and φx can be obtained from its immediate
neighbourhood. As a consequence, the energy (and thus probability) of a rotation step can be com-
puted entirely based on local information. This justifies our claim of having defined a distributed
learn-and-adapt process.

Using this non-linear form of energy, will lead by energy minimisation to balancing the dis-
tribution of skills within the network. The network energy will decrease more when the required
skills are attached to the more “needy” agents. In addition, this definition of energy also makes
it possible for skills from “rich” agents to be transferred to “needy” ones. By generic Metropolis
properties, and assuming that roles do not change any more, and neither do the target vectors θx
(ie the agents stop learning), we know that the rewiring process will converge to a probabilistic
steady state where p(G) is proportional to exp(−βE(G)) for any G reachable from the initial state
via rotations as defined in Fig. ??.

3.6 Algorithm

We can now summarise our full distributed algorithm. We start from a connected random network
with one arbitrary leader agent, and iterate ad libitum the following round. The ‘role change’ and
‘edge rotation’ probabilities are defined above and depend respectively on learned parameters λx
and θx.

Algorithm 1 learn-and-adapt

Require: initial state r, E, λ, θ
1: t← 0
2: while t < tmax do
3: t← t+ 1
4: distribute tasks to leaders evenly uniformly
5: for x in L do
6: update λx and θx
7: with probability pr(λx) try role change
8: end for
9: for x in L do

10: pick uniformly a redex x, y, z (if any)
11: with probability pE(θx) try edge rotation
12: end for
13: end while

4 Calculations

In this section, we analyse the effects of our learn-and-adapt framework on the network structure
and the global organisation performance by some mathematical calculations.

We write k for the number of skill types: k = |S|.
To make our problem amenable to (approximate) hand calculations, we suppose: 1) that the

tasks generated all have the same size n, and 2) that they are distributed according to a multinomial
distribution with parameters ps for s in S (with n trials over k categories).

9

In other words, each round, tasks are obtained by drawing (with replacement) k times from an
urn where skill s is represented in proportion to ps.

When n is large enough, by the central limit theorem, the number of occurrences of skill s in a
task follows to a very good approximation a distribution of the form:

T (s) ∼ nps +
√
nN (0, σ2

s)

where we have written σ2
s = ps(1−ps) for the variance of T (s) and N (0, σ2) for the centred normal

distribution with standard deviation σ.
For s in S, x in L, recall that we have defined the s-component of the deviation as the random

variable εs = T (s)− θ(s) (we no longer write the more correct εx, and θx to keep notations lighter).
Hence, at stationary state:

εs ∼
√
nN (0, σ2

s) + nps − θ?(s) ∼ N (nps − θ?(s), nσ2
s)

where θ?(s) is the stationary value of x’s target θ(s), and the approximate probability density
function (pdf) can be computed as:

pεs = 1√
2πnσ2

s

e
− (εs−nps+θ?(s))2

2nσ2s

Stationarity for θ?(s) means that the average kick-up and kick-down cancel out:

η+
∫ +∞
0

εspεs dεs = η−
∫ 0

−∞−εspεs dεs

Using integration by parts, we can rewrite this stationarity constraint as:

nps−θ?(s)
−σs
√
n

[
η+ − (η+ − η−)Φ(nps−θ

?(s)
−σs
√
n

)
]

= (η+ − η−) 1√
2π
e
− (nps−θ?(s))2

2nσ2s

where Φ(x) is the cumulative distribution function of the normal distribution. And with the change
of variable below to rescale θ?(s), the stationarity constraint becomes:

a = θ?(s)−nps
σs
√
n

a
[η+
η+−η− − Φ(a)

]
= 1√

2π
e−

a2

2

It is easy to see that there is a unique a which verifies this equation. We will call a? this unique
solution. Thanks to our rescaling, the solution does not depend on the initial parameters n, ps, σs.
In fact, a? only depends on the ‘kick ratio’ η−/η+. Fig. ?? plots a? for various values of the ratio
in the interval 0 ≤ η−/η+ ≤ 1.

One can also prove that a > 0 if and only if η+ > η− > 0. This has a direct intuitive interpre-
tation. It amounts to saying that the steady state value of θ(s) will be above the average number
of occurrences of s, in a task, namely nps, if and only if x kicks harder up than down.

Returning to the definition of a:

θ?(s)

n
= ps + a?

σs√
n

(4)

Hence one sees that θ?(s)
n decreases and converges monotonically to ps as 1) a? decreases, 2) n

increases, or 3) the skill variance decreases.

10

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

η
−
/η

+

a

Figure 5: The solution a? decreases as η−/η+ goes from 0 to 1.

4.1 The uniform case

If, in addition, we suppose ps = 1/k, that is to say all skills are equally represented in the multi-
monial, we can aggregate all skills, and define θ? =

∑
s∈S θ

?(s). Then, Eq. ?? gives:

θ?

n ∼ 1 + a?
∑
s σs√
n

= 1 + a?
√
k−1√
n

Suppose further that the team skill supply of a leader, φx(s), matches x’s target θx (through network
adaptation) at stationary state. That is to say, suppose φ?x(s) ∼ θ?x(s). Again we can aggregate skills
and define φ?x =

∑
s φ

?
x(s). Assuming there are exactly γ leaders, we can approximate the team

waste rate as:
TWR =

∑
x∈L

φ?x
γn ∼

φ?

n − 1 ∼ θ?

n − 1

which gives (by plugging the equation right before):

TWR ∼ a?
√
k − 1√
n

(5)

We will see in the next Section that these approximations are quite accurate.

4.2 Larger skill set decreases the task completion

Given a task T , for a team to complete it, one must have φ?(s) ≥ T (s). Hence, still assuming
φ?x ∼ θ?x at steady state, one needs for each s in S:

nps + a?σs
√
n ≥ nps +

√
nN (0, σ2

s)

11

The probability of this event of excess supply happening is by definition of Φ:

p(φ?x(s) ≥ T (s)) = Φ0,σ2
s
(a?σs)

Hence the favourable event where the task can be completed can be approximated by:∏
s∈S p(φ

?
x(s) ≥ T (s)) =

∏k
i=1 Φ0,σ2

s
(a?σs)

When skills are picked uniformly, this leads to an approximation of the task success rate:

TSR ' Φ0,σ2(a?σ)k

'
(

1

2
+

1

2
erf(

a?√
2

)

)k
(6)

where erf(x) is the so-called error function.
It is interesting to observe that, for a given a?, the probability for task completion decreases

exponentially with k, the size of skill set, but does not depend on the task size n. Skill diversity
may damage the performance, but skill quantity does not.

5 Numerical Simulations

This section presents a series of numerical simulations to verify the above calculations. Several
important observables are captured during the process of network evolution and adaptation, such as
leader’s internal targets θ, skill supply φ, and overall performance using TSR and TWR. Simulations
use a random connected network with N = 500 agents and an average degree 〈d〉 = 4 (ultimately,
by ergodicity of edge rotation, only the initial number of nodes and edges matter). At each step,
γ tasks are introduced into the network. Role and edge changes both use the same probability
pr = pE = 0.002. Such low values reflect the fact that the adaptation module should have a slow
time scale relative to the learning one. The kick-up learning rate is η+ = 0.01 and the kick-down
rate η− ranges in {0.001, 0.002, . . . , 0.009, 0.01}. The whole simulation lasts 105 steps and follows
Algorithm 1 (empirically the simulation reaches steady state an order of magnitude faster - see for
instance Figs. ?? and ?? for the time scale of adaptation of team size).

5.1 Baseline

In this part, we have the size of the task n = |T | = 100 and the number of tasks introduced at
each step is γ = 4, so that γ|T | < N . The size of skill set is k = 2 and each skill is selected with
same probability pi = 0.5. We run the distributed learn-and-adapt framework described above and
the ratio of learning rates is η−/η+ = 0.1. At stationary state, we have the snapshot of network in
Figure ?? (left panel), where 4 evident hubs are obtained indicating the leaders. The red and blue
nodes indicate the two different skills, which are uniformly assigned to the agents at random.

The numerical and analytical values for θ?/n under varying η−/η+ are presented in Fig. ??
(right panel). As one can see, the simulation results match the analytical solutions of the preceding
Section closely.

12

 0.2 0.4 0.6 0.8 1.0
0

0.5

1

1.5

η
−
/η

+

θ*
/|T

|

Simulation
Analytical

Figure 6: For a kick ratio η−/η+ = 0.1, a snapshot of the connnectivity structure is shown. We
have set N = 500 and 〈d〉 = 4. As η−/η+ increases, the numerical and analytical values for
θ?/n at stationary state are presented in the right panel. The other parameter simulations are
γ = 4, n = |T | = 100, and k = 2 (skills are indicated in red and blue colours). The self-organized
convergence to four leaders reflect the design of the learning procedure.

5.2 The evolution of teams

With n = |T | = 100, γ = 4 and k = 2, Fig. ?? displays the evolution of the average team size when
the ratio η−/η+ varies. Ideally, the size of a team should be about equal to the size of a task n at
stationary state. Considering the uncertainty in task demand, however, some surplus skill suppliers
are necessary. In particular, we find an evident gap between team supply and task demand for
values of η−/η+ that are too low.

Fig. ?? displays the dynamics of the task success rate. Clearly, when the ratio η−/η+ is smaller,
team supply is bigger, and task success rate is higher; on the contrary, when the ratio η−/η+ is
bigger, team size is close to task size gradually and task success rate drops very low. There is a
trade-off between wastefulness (TWR) and success in completion (TSR), where higher completion
performance usually comes along with bigger resource wastefulness. Note that our system can reach
stationary state in a quite quick manner.

5.3 Increasing the number of edges

As said, too many edges might lead to higher communication cost when forming teams but this
is not visible in our model. What one can clearly see however is that too few edges fragment
the states. The task success rate (TSR) changes with the increase of the initial (and conserved)
number of edges (Fig. ??). Simulations are run on an Erdos-Renyi random network, with N = 500,
|E| =

(
N
2

)
p for various values of p the probability to connect any two nodes. The abrupt transition

in performance arises at |E| ≈ N and corresponds to the transition in connectivity in the underlying
(initial) random graph (?).

13

time(# 103)

50 100
0

50

100

150
 2

-
/2

+
=0.1

Task Size
Team Size

time(# 103)

50 100
0

50

100

150
 2

-
/2

+
=0.2

Task Size
Team Size

time(# 103)

50 100
0

50

100

150
 2

-
/2

+
=0.3

Task Size
Team Size

time(# 103)

50 100
0

50

100

150
 2

-
/2

+
=0.4

Task Size
Team Size

time(# 103)

50 100
0

50

100

150
 2

-
/2

+
=0.5

Task Size
Team Size

time(# 103)

50 100
0

50

100

150
 2

-
/2

+
=0.6

Task Size
Team Size

time(# 103)

50 100
0

50

100

150
 2

-
/2

+
=0.7

Task Size
Team Size

time(# 103)

50 100
0

50

100

150
 2

-
/2

+
=0.8

Task Size
Team Size

time(# 103)

50 100
0

50

100

150
 2

-
/2

+
=0.9

Task Size
Team Size

Figure 7: The changes of average team size depend on η−/η+. As η−/η+ increases, typical team
size becomes smaller as leader targets θ shrink. Accordingly the difference between the two curves
diminishes as η−/η+ gets closer to 1.

5.4 Node failures

In the centralised case, there is only one leader followed by everyone. This unique leader must solve
all the tasks by providing the required skills. This strategy is optimal in terms of TSR, but it
deteriorates in the presence of node failures.

Starting from an initial network, which is connected and random with N = 500 and 〈d〉 = 4,

14

time(# 103)

50 100
0

0.5

1
 2

-
/2

+
=0.1

time(# 103)

50 100
0

0.5

1
 2

-
/2

+
=0.2

time(# 103)

50 100
0

0.5

1
 2

-
/2

+
=0.3

time(# 103)

50 100
0

0.5

1
 2

-
/2

+
=0.4

time(# 103)

50 100
0

0.5

1
 2

-
/2

+
=0.5

time(# 103)

50 100
0

0.5

1
 2

-
/2

+
=0.6

time(# 103)

50 100
0

0.5

1
 2

-
/2

+
=0.7

time(# 103)

50 100
0

0.5

1
 2

-
/2

+
=0.8

time(# 103)

50 100
0

0.5

1
 2

-
/2

+
=0.9

Figure 8: Task success rate (TSR) changes with the evolution of network for different η−/η+. A
higher task completion is obtained when η−/η+ is smaller, where team supply exceeds typical task
demand. With the increase of η−/η+, the TSR drops sharply.

we implement the centralised and decentralised leader-follower model respectively. In this situation,
γ = 4 tasks are introduced at each round, each of which has size n = |T | = 100. We set node failures
to occur with a low frequency (here, a small probability pf = 0.0001). A node is selected to fail
with a probability proportional to its degree. As shown Fig. ??, and perhaps unsurprisingly, the
centralised network is very fragile because of its single point of failure. Its performance collapses

15

Number of edges
0.0N 0.4N 0.8N 1.2N 1.6N 2.0N

T
SR

0

0.2

0.4

0.6

0.8

1

Figure 9: For kick ratio η−/η+ = 0.1, we track success rate (TSR) as the number of edges increases.
In the simulations, γ = 4 tasks are created at each step, and the size of each task is n = |T | = 100.
The skill set has size k = 2, and skills are allocated to agents uniformly.

abruptly when the hub is turned in to a follower. However, in the case of a decentralised mechanism,
the overall performance is more resilient. Note that there are more visible drops in the decentralised
case (10 on average for a total of 105 steps). This reflects the fact that in the centralised case, half
of the failures concern followers and are imperceptible. Centralised drops are more rare, but much
more detrimental to the overall performance.

5.5 The influence of task source

In this part, we consider the above case as a baseline and investigate the impact of the key param-
eters: k the size of the skill set S, the task size n, and the kick ratio η−/η+.

In Fig. ??, we plot the team waste rate (TWR) and task success rate (TSR) for various cases.
The baseline case is in the upper row (γ = 4, n = |T | = 100 and k = 2); the case of a larger skill
set is in the middle row (γ = 4, n = |T | = 100 and k = 4); and, the case of increasing task sizes is

16

time(# 102)

200 400 600 800 1000 1200 1400 1600 1800 2000

T
SR

0

0.2

0.4

0.6

0.8

1

Centralised:0.62473 Decentralised:0.69746

Figure 10: The evolution of task success rate (TSR) under centralised and decentralised strategies.
Degree-proportional node failures occur in the network with a small probability each round, lead-
ing to the fall of organisation performance, especially in the case of centralised mechanism. The
simulation parameters are: γ = 4, n = |T | = 100, η− = 0.0001, η+ = 0.01 and k = 2.

in the lower row (γ = 1, n = |T | = 400 and k = 2).
At stationary state, the resource wastefulness (TWR) is higher when the skill set increases,

especially so for small η−/η+. This phenomenon can be explained by Eq. ??, where team waste rate
is associated with both task size (inversely proportional to

√
|T |) and skill set size (proportional

to
√
k − 1). The probability for task completion (TSR) is sharply reduced as the size of skill set

(namely k) increases, which is also well explained by Eq. ??. As for the case of increasing the task
size, TWR decreases, but the TSR remains the same as the baseline’s, whence one sees that task
completion indeed is independent of task size.

5.6 Dynamical environments

Considering the dynamics of task requirements in real world, an intelligent and robust distributed
algorithm is able to detect those changes and react to them quickly. The adaptive network mech-
anism explored in this paper enables leader agents to aggregate historical information and adjust
the internal targets continuously to keep up with the task requirements. To see this in action, we
set up a simulation where we start from the baseline settings with k = 2, |T | = 100 and γ = 4.
We then change task requirements during the course of the evolution of the system, by stepping up
and down |T |. Fig. ?? shows the result of this extended adaptation experiment.

17

5.7 Selfish agents

When the agents in the system are selfish, some agents in a team are cooperators and some are
cheaters. When doing the task in a team, each member has a probability pc to be a cheater. A
cooperator provides the equipped skill to do the task with a cost of c, and the cheater is a free-rider
and pays nothing. When the task is successfully accomplished, every agent in the corresponding
team can gain a benefit of b. In short, the payoff of an agent can be computed through:

Π =

(success unsuccess

cooperator b− c −c
cheater b 0

)
With a given b = 10, Fig. ?? displays the task success rate (TSR) and average agent payoff at
stationary state.

6 Conclusion

This paper incorporates state evolution, structure adaptation and distributed learning into adaptive
networks, for high-performance and resilient agent coordination. Through continuous learning, a
series of local adjustments reshape the roles of agents and their connectivity.

Key to the overall performance, is a dynamic division of labour between leaders and followers.
This local form of order avoid locks caused by insufficient or unreachable resources. To reach an
efficient configuration, a risk-averse learning mechanism is strapped on the leaders so that they
continuously refresh the picture of the local structure they are targetting, and seek to attain by
rewiring their neighbourhoods. For radical changes in patterns of demand, leaders also track their
loads and are able to demote themselves or promote neighbours as the case may occur. The ratio
of target learning rates η−/η+, the probabilities of adaptation, together with the task size, and the
number of different skill types, have an influence on both team wastefulness (over-accumulation of
followers) and task completion rates.

Increasing the number of skill types decreases the organisation performance. A diverse demand
in skills seem to require larger assemblies to be dealt with well. A situation familiar to people living
in small groups. In contrast, increasing the typical size of a task will lead to more efficient teams
with smaller resource waste rate. Our self-organizing decentralised method, where no one exerts
global control, does not know a priori about the type of skill demand it is going to face. As a
result, it works well in a dynamical environment while incurring a relatively low loss of performance
compared to a centralised solution.

In the real world, more and more systems are open to new incoming agents and built by largely
interdependent components, who are supposed to manage and adapt their relationships with others
intelligently based on local and historical information. Elaborations of our simple distributed learn-
and-adapt model might be useful in these more complicated settings. One limitation, is that our
agents are cooperative. There are many situations in organisations where this is not the case. A
line of research we feel would be worth pursuing, would be to take self-interested agents (?) into
consideration, and integrate to the design of the learn-and-adapt model elements of game theory
and incentives to handle these more realistic situations.

18

7 Acknowledgments

GY gratefully acknowledges financial support from the University of Edinburgh and the China
Scholarship Council; GY and VD were partly funded by the ERC project RULE 320823.

References

Sherief Abdallah and Victor Lesser. Multiagent reinforcement learning and self-organization in a
network of agents. In Proceedings of the 6th international joint conference on Autonomous agents
and multiagent systems, page 39. ACM, 2007.

Julie A Adams et al. Coalition formation for task allocation: theory and algorithms. Autonomous
Agents and Multi-Agent Systems, 22(2):225–248, 2011.

Estefańıa Argente, Holger Billhardt, Carlos E Cuesta, Sergio Esparcia, Jana Görmer, Ramón Her-
moso, Kristi Kirikal, Marin Lujak, José-Santiago Pérez-Sotelo, and Kuldar Taveter. Adaptive
agent organisations. In Agreement Technologies, pages 321–353. Springer, 2013.

L. Barton and V.H. Allan. Methods for coalition formation in adaptation-based social networks.
Cooperative Information Agents XI, pages 285–297, 2007.

M. Bowling and M. Veloso. Multiagent learning using a variable learning rate. Artificial Intelligence,
136(2):215–250, 2002.

Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle, Marin
Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering self-adaptive systems through
feedback loops. In Software engineering for self-adaptive systems, pages 48–70. Springer, 2009.

B. Bulka, M. Gaston, and M. Desjardins. Local strategy learning in networked multi-agent team
formation. Autonomous Agents and Multi-Agent Systems, 15(1):29–45, 2007.

Vincent Danos, Russ Harmer, and Ricardo Honorato-Zimmer. Thermodynamic graph-rewriting.
Lecture Notes in Computer Science, 11(2):380–394, 2013.

Mathijs M de Weerdt, Yingqian Zhang, and Tomas Klos. Multiagent task allocation in social
networks. Autonomous Agents and Multi-Agent Systems, 25(1):46–86, 2012.

Daniela Scherer Dos Santos and Ana LC Bazzan. Distributed clustering for group formation and
task allocation in multiagent systems: a swarm intelligence approach. Applied Soft Computing,
2012.

Richard Durrett, James P Gleeson, Alun L Lloyd, Peter J Mucha, Feng Shi, David Sivakoff,
Joshua ES Socolar, and Chris Varghese. Graph fission in an evolving voter model. Proceed-
ings of the National Academy of Sciences, 109(10):3682–3687, 2012.

Paul Erdős and A Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci,
5:17–61, 1960.

Matthew E Gaston and Marie Desjardins. Organizational learning and network adaptation in multi-
agent systems. University of Maryland at Baltimore County, 2005.

19

M.E. Gaston and M. DesJardins. Agent-organized networks for dynamic team formation. In Pro-
ceedings of the Fourth International Conference on Autonomous Agents and Multiagent Systems,
pages 230–237. ACM, 2005.

R. Glinton, K. Sycara, and P. Scerri. Agent organized networks redux. Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence, pages 83–88, 2008.

Robin Glinton, Paul Scerri, and Katia Sycara. Agent-based sensor coalition formation. In Infor-
mation Fusion, 2008 11th International Conference on, pages 1–7. IEEE, 2008.

Thilo Gross and Bernd Blasius. Adaptive coevolutionary networks: a review. Journal of the Royal
Society Interface, 5(20):259–271, 2008.

Petter Holme and Mark EJ Newman. Nonequilibrium phase transition in the coevolution of net-
works and opinions. Physical Review E, 74(5):056108, 2006.

Charles A Holt and Susan K Laury. Risk aversion and incentive effects. American economic review,
92(5):1644–1655, 2002.

Teuvo Kohonen. Self-organization and associative memory. Self-Organization and Associative
Memory, 100 figs. XV, 312 pages.. Springer-Verlag Berlin Heidelberg New York. Also Springer
Series in Information Sciences, volume 8, 1, 1988.

Oliver Kosak, Gerrit Anders, Florian Siefert, and Wolfgang Reif. An approach to robust resource al-
location in large-scale systems of systems. In Self-Adaptive and Self-Organizing Systems (SASO),
2015 IEEE 9th International Conference on, pages 1–10. IEEE, 2015.

Ramachandra Kota, Nicholas Gibbins, and Nicholas R Jennings. Decentralized approaches for self-
adaptation in agent organizations. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 7(1):1, 2012.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The journal of chemical
physics, 21(6):1087–1092, 1953.

Yuki Miyashita, Masashi Hayano, and Toshiharu Sugawara. Self-organizational reciprocal agents for
conflict avoidance in allocation problems. In Self-Adaptive and Self-Organizing Systems (SASO),
2015 IEEE 9th International Conference on, pages 150–155. IEEE, 2015.

Matjaž Perc and Attila Szolnoki. Coevolutionary gamesa mini review. BioSystems, 99(2):109–125,
2010.

Christian Prehofer and Christian Bettstetter. Self-organization in communication networks: prin-
ciples and design paradigms. IEEE Communications Magazine, 43(7):78–85, 2005.

Onn Shehory and Sarit Kraus. Methods for task allocation via agent coalition formation. Artificial
Intelligence, 101(1):165–200, 1998.

Attila Szolnoki and Matjaž Perc. Emergence of multilevel selection in the prisoner’s dilemma game
on coevolving random networks. New Journal of Physics, 11(9):093033, 2009.

20

HP Thadakamaila, Usha Nandini Raghavan, Soundar Kumara, and Réka Albert. Survivability of
multiagent-based supply networks: a topological perspect. Intelligent Systems, IEEE, 19(5):24–
31, 2004.

Lovekesh Vig and Julie A Adams. Coalition formation: From software agents to robots. Journal of
Intelligent and Robotic Systems, 50(1):85–118, 2007.

D. Ye, M. Zhang, and D. Sutanto. Self-organization in an agent network: A mechanism and a
potential application. Decision Support Systems, 53:406–417, 2012.

21

2
-
/2

+

 0.2 0.4 0.6 0.8 1.0

T
W

R

0

0.05

0.1

0.15

0.2

 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1

η
−
/η

+

T
SR

2
-
/2

+

 0.2 0.4 0.6 0.8 1.0

T
W

R

0

0.05

0.1

0.15

0.2

 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1

η
−
/η

+

T
SR

2
-
/2

+

 0.2 0.4 0.6 0.8 1.0

T
W

R

0

0.05

0.1

0.15

0.2

 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1

η
−
/η

+

T
SR

Figure 11: Organisation performance (at steady state) changes as the learning ratio η−/η+ increases.
Baseline case (upper), increasing skill set (middle) and increasing task size (lower).

22

|T|=100, γ=|L|=4 |T|=400, γ=|L|=1 |T|=200, γ=|L|=2

Figure 12: Team size follows dynamic changes in skill demand. The upper row shows changes in
task size along the simulation. The middle rows shows the number of leaders. The lower row shows
the corresponding changes in actual team size. We use a ratio of learning rates η−/η+ = 0.1 and a
size of skill set k = 2. Three snapshots show the radical reorganisation of the system under changing
demand.

23

Probability to cheat
0 0.02 0.04 0.06 0.08 0.10

C
os

t

0

2

4

6

8

10
TSR (2

-
/2

+
 = 0.1)

0

0.2

0.4

0.6

0.8

1

Probability to cheat
0 0.02 0.04 0.06 0.08 0.10

C
os

t

0

2

4

6

8

10
Payoff (2

-
/2

+
 = 0.1)

-5

-3

-1

1

3

5

Probability to cheat
0 0.02 0.04 0.06 0.08 0.10

C
os

t

0

2

4

6

8

10
TSR (2

-
/2

+
 = 0.3)

0

0.2

0.4

0.6

0.8

1

Probability to cheat
0 0.02 0.04 0.06 0.08 0.10

C
os

t

0

2

4

6

8

10
Payoff (2

-
/2

+
 = 0.3)

-5

-3

-1

1

3

5

Probability to cheat
0 0.02 0.04 0.06 0.08 0.10

C
os

t

0

2

4

6

8

10
TSR (2

-
/2

+
 = 0.5)

0

0.2

0.4

0.6

0.8

1

Probability to cheat
0 0.02 0.04 0.06 0.08 0.10

C
os

t

0

2

4

6

8

10
Payoff (2

-
/2

+
 = 0.5)

-5

-3

-1

1

3

5

Figure 13: Task success rate and average agent payoff at stationary state with the change of cost c
and probability to cheat pc. A higher payoff is obtained when c and pc are smaller. As for the TSR,
it is dependent on the probability to cheat and the ratio of learning rates η−/η+.

24

