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Abstract

Neural machine translation has recently
achieved impressive results, while using
little in the way of external linguistic in-
formation. In this paper we show that
the strong learning capability of neural
MT models does not make linguistic fea-
tures redundant; they can be easily incor-
porated to provide further improvements
in performance. We generalize the em-
bedding layer of the encoder in the at-
tentional encoder–decoder architecture to
support the inclusion of arbitrary features,
in addition to the baseline word feature.
We add morphological features, part-of-
speech tags, and syntactic dependency la-
bels as input features to English↔German
and English→Romanian neural machine
translation systems. In experiments on
WMT16 training and test sets, we find that
linguistic input features improve model
quality according to three metrics: per-
plexity, BLEU and CHRF3. An open-
source implementation of our neural MT
system is available1, as are sample files
and configurations2.

1 Introduction

Neural machine translation has recently achieved
impressive results (Bahdanau et al., 2015; Jean
et al., 2015), while learning from raw, sentence-
aligned parallel text and using little in the way
of external linguistic information.3 However, we
hypothesize that various levels of linguistic anno-
tation can be valuable for neural machine trans-
lation. Lemmatisation can reduce data sparse-

1https://github.com/rsennrich/nematus
2https://github.com/rsennrich/

wmt16-scripts
3Linguistic tools are most commonly used in preprocess-

ing, e.g. for Turkish segmentation (Gülçehre et al., 2015).

ness, and allow inflectional variants of the same
word to explicitly share a representation in the
model. Other types of annotation, such as parts-
of-speech (POS) or syntactic dependency labels,
can help in disambiguation. In this paper we in-
vestigate whether linguistic information is benefi-
cial to neural translation models, or whether their
strong learning capability makes explicit linguistic
features redundant.

Let us motivate the use of linguistic features us-
ing examples of actual translation errors by neu-
ral MT systems. In translation out of English,
one problem is that the same surface word form
may be shared between several word types, due to
homonymy or word formation processes such as
conversion. For instance, close can be a verb, ad-
jective, or noun, and these different meanings of-
ten have distinct translations into other languages.
Consider the following English→German exam-
ple:

1. We thought a win like this might be close.

2. Wir dachten, dass ein solcher Sieg nah sein
könnte.

3. *Wir dachten, ein Sieg wie dieser könnte
schließen.

For the English source sentence in Example 1
(our translation in Example 2), a neural MT sys-
tem (our baseline system from Section 4) mis-
translates close as a verb, and produces the Ger-
man verb schließen (Example 3), even though
close is an adjective in this sentence, which has
the German translation nah. Intuitively, part-
of-speech annotation of the English input could
disambiguate between verb, noun, and adjective
meanings of close.

As a second example, consider the following
German→English example:

4. Gefährlich ist die Route aber dennoch .
dangerous is the route but still .
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5. However the route is dangerous .

6. *Dangerous is the route , however .

German main clauses have a verb-second (V2)
word order, whereas English word order is gener-
ally SVO. The German sentence (Example 4; En-
glish reference in Example 5) topicalizes the pred-
icate gefährlich ’dangerous’, putting the subject
die Route ’the route’ after the verb. Our baseline
system (Example 6) retains the original word or-
der, which is highly unusual in English, especially
for prose in the news domain. A syntactic annota-
tion of the source sentence could support the atten-
tional encoder-decoder in learning which words in
the German source to attend (and translate) first.

We will investigate the usefulness of linguistic
features for the language pair German↔English,
considering the following linguistic features:

• lemmas

• subword tags (see Section 3.2)

• morphological features

• POS tags

• dependency labels

The inclusion of lemmas is motivated by the
hope for a better generalization over inflectional
variants of the same word form. The other lin-
guistic features are motivated by disambiguation,
as discussed in our introductory examples.

2 Neural Machine Translation

We follow the neural machine translation archi-
tecture by Bahdanau et al. (2015), which we will
briefly summarize here.

The neural machine translation system is imple-
mented as an attentional encoder-decoder network
with recurrent neural networks.

The encoder is a bidirectional neural network
with gated recurrent units (Cho et al., 2014)
that reads an input sequence x = (x1, ..., xm)
and calculates a forward sequence of hidden
states (

−→
h 1, ...,

−→
h m), and a backward sequence

(
←−
h 1, ...,

←−
h m). The hidden states

−→
h j and

←−
h j are

concatenated to obtain the annotation vector hj .
The decoder is a recurrent neural network that

predicts a target sequence y = (y1, ..., yn). Each
word yi is predicted based on a recurrent hidden
state si, the previously predicted word yi−1, and

a context vector ci. ci is computed as a weighted
sum of the annotations hj . The weight of each
annotation hj is computed through an alignment
model αij , which models the probability that yi is
aligned to xj . The alignment model is a single-
layer feedforward neural network that is learned
jointly with the rest of the network through back-
propagation.

A detailed description can be found in (Bah-
danau et al., 2015), although our implementation
is based on a slightly modified form of this archi-
tecture, released for the dl4mt tutorial4. Training
is performed on a parallel corpus with stochastic
gradient descent. For translation, a beam search
with small beam size is employed.

2.1 Adding Input Features

Our main innovation over the standard encoder-
decoder architecture is that we represent the en-
coder input as a combination of features (Alexan-
drescu and Kirchhoff, 2006).

We here show the equation for the forward
states of the encoder (for the simple RNN case;
consider (Bahdanau et al., 2015) for GRU):

−→
h j = tanh(

−→
WExj +

−→
U
−→
h j−1) (1)

where E ∈ Rm×Kx is a word embedding ma-
trix,
−→
W ∈ Rn×m,

−→
U ∈ Rn×n are weight matrices,

with m and n being the word embedding size and
number of hidden units, respectively, and Kx be-
ing the vocabulary size of the source language.

We generalize this to an arbitrary number of fea-
tures |F |:

−→
h j = tanh(

−→
W (

|F |n

k=1

Ekxjk) +
−→
U
−→
h j−1) (2)

where ‖ is the vector concatenation, Ek ∈
Rmk×Kk are the feature embedding matrices, with∑|F |

k=1mk = m, and Kk is the vocabulary size of
the kth feature. In other words, we look up sepa-
rate embedding vectors for each feature, which are
then concatenated. The length of the concatenated
vector matches the total embedding size, and all
other parts of the model remain unchanged.

4https://github.com/nyu-dl/
dl4mt-tutorial
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3 Linguistic Input Features

Our generalized model of the previous section
supports an arbitrary number of input features. In
this paper, we will focus on a number of well-
known linguistic features. Our main empirical
question is if providing linguistic features to the
encoder improves the translation quality of neu-
ral machine translation systems, or if the informa-
tion emerges from training encoder-decoder mod-
els on raw text, making its inclusion via explicit
features redundant. All linguistic features are pre-
dicted automatically; we use Stanford CoreNLP
(Toutanova et al., 2003; Minnen et al., 2001; Chen
and Manning, 2014) to annotate the English in-
put for English→German, and ParZu (Sennrich
et al., 2013) to annotate the German input for
German→English. We here discuss the individual
features in more detail.

3.1 Lemma
Using lemmas as input features guarantees shar-
ing of information between word forms that share
the same base form. In principle, neural mod-
els can learn that inflectional variants are semanti-
cally related, and represent them as similar points
in the continuous vector space (Mikolov et al.,
2013). However, while this has been demonstrated
for high-frequency words, we expect that a lem-
matized representation increases data efficiency;
low-frequency variants may even be unknown to
word-level models. With character- or subword-
level models, it is unclear to what extent they can
learn the similarity between low-frequency word
forms that share a lemma, especially if the word
forms are superficially dissimilar. Consider the
following two German word forms, which share
the lemma liegen ‘lie’:

• liegt ‘lies’ (3.p.sg. present)

• läge ‘lay’ (3.p.sg. subjunctive II)

The lemmatisers we use are based on finite-state
methods, which ensures a large coverage, even for
infrequent word forms. We use the Zmorge ana-
lyzer for German (Schmid et al., 2004; Sennrich
and Kunz, 2014), and the lemmatiser in the Stan-
ford CoreNLP toolkit for English (Minnen et al.,
2001).

3.2 Subword Tags
In our experiments, we operate on the level of sub-
words to achieve open-vocabulary translation with

a fixed symbol vocabulary, using a segmentation
based on byte-pair encoding (BPE) (Sennrich et
al., 2016c). We note that in BPE segmentation,
some symbols are potentially ambiguous, and can
either be a separate word, or a subword segment
of a larger word. Also, text is represented as a
sequence of subword units with no explicit word
boundaries, but word boundaries are potentially
helpful to learn which symbols to attend to, and
when to forget information in the recurrent lay-
ers. We propose an annotation of subword struc-
ture similar to popular IOB format for chunking
and named entity recognition, marking if a sym-
bol in the text forms the beginning (B), inside (I),
or end (E) of a word. A separate tag (O) is used if
a symbol corresponds to the full word.

3.3 Morphological Features
For German→English, the parser annotates the
German input with morphological features. Dif-
ferent word types have different sets of features –
for instance, nouns have case, number and gender,
while verbs have person, number, tense and aspect
– and features may be underspecified. We treat
the concatenation of all morphological features of
a word, using a special symbol for underspecified
features, as a string, and treat each such string as a
separate feature value.

3.4 POS Tags and Dependency Labels
In our introductory examples, we motivated POS
tags and dependency labels as possible disam-
biguators. Each word is associated with one POS
tag, and one dependency label. The latter is the
label of the edge connecting a word to its syntac-
tic head, or ’ROOT’ if the word has no syntactic
head.

3.5 On Using Word-level Features in a
Subword Model

We segment rare words into subword units using
BPE. The subword tags encode the segmentation
of words into subword units, and need no fur-
ther modification. All other features are originally
word-level features. To annotate the segmented
source text with features, we copy the word’s fea-
ture value to all its subword units. An example is
shown in Figure 1.

4 Evaluation

We evaluate our systems on the WMT16 shared
translation task English↔German. The parallel
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Leonidas begged in the arena .
NNP VBD IN DT NN .

root root

nsubj prep det
pobj

root

words Le: oni: das beg: ged in the arena .
lemmas Leonidas Leonidas Leonidas beg beg in the arena .
subword tags B I E B E O O O O
POS NNP NNP NNP VBD VBD IN DT NN .
dep nsubj nsubj nsubj root root prep det pobj root

Figure 1: Original dependency tree for sentence Leonidas begged in the arena ., and our feature repre-
sentation after BPE segmentation.

training data consists of about 4.2 million sentence
pairs.

To enable open-vocabulary translation, we en-
code words via joint BPE5 (Sennrich et al.,
2016c), learning 89 500 merge operations on the
concatenation of the source and target side of the
parallel training data. We use minibatches of size
80, a maximum sentence length of 50, word em-
beddings of size 500, and hidden layers of size
1024. We clip the gradient norm to 1.0 (Pascanu
et al., 2013). We train the models with Adadelta
(Zeiler, 2012), reshuffling the training corpus be-
tween epochs. We validate the model every 10 000
minibatches via BLEU and perplexity on a valida-
tion set (newstest2013).

For neural MT, perplexity is a useful measure
of how well the model can predict a reference
translation given the source sentence. Perplex-
ity is thus a good indicator of whether input fea-
tures provide any benefit to the models, and we re-
port the best validation set perplexity of each ex-
periment. To evaluate whether the features also
increase translation performance, we report case-
sensitive BLEU scores with mteval-13b.perl on
two test sets, newstest2015 and newstest2016. We
also report CHRF3 (Popović, 2015), a character n-
gram F3 score which was found to correlate well
with human judgments, especially for translations
out of English (Stanojević et al., 2015).6 The two
metrics may occasionally disagree, partly because
they are highly sensitive to the length of the out-
put. BLEU is precision-based, whereas CHRF3
considers both precision and recall, with a bias for
recall. For BLEU, we also report whether differ-
ences between systems are statistically significant

5https://github.com/rsennrich/
subword-nmt

6We use the re-implementation included with the subword
code

input vocabulary embedding
feature EN DE model all single
subword tags 4 4 4 5 5
POS tags 46 54 54 10 10
morph. features - 1400 1400 10 10
dependency labels 46 33 46 10 10
lemmas 800000 1500000 85000 115 167
words 78500 85000 85000 * *

Table 1: Vocabulary size, and size of embedding
layer of linguistic features, in system that includes
all features, and contrastive experiments that add
a single feature over the baseline. The embedding
layer size of the word feature is set to bring the
total size to 500.

according to a bootstrap resampling significance
test (Riezler and Maxwell, 2005).

We train models for about a week, and report
results for an ensemble of the 4 last saved models
(with models saved every 12 hours). The ensem-
ble serves to smooth the variance between single
models.

Decoding is performed with beam search with a
beam size of 12.

To ensure that performance improvements are
not simply due to an increase in the number of
model parameters, we keep the total size of the
embedding layer fixed to 500. Table 1 lists the
embedding size we use for linguistic features –
the embedding layer size of the word-level fea-
ture varies, and is set to bring the total embedding
layer size to 500. If we include the lemma feature,
we roughly split the embedding vector one-to-two
between the lemma feature and the word feature.
The table also shows the network vocabulary size;
for all features except lemmas, we can represent
all feature values in the network vocabulary – in
the case of words, this is due to BPE segmenta-
tion. For lemmas, we choose the same vocabulary
size as for words, replacing rare lemmas with a
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special UNK symbol.
Sennrich et al. (2016b) report large gains from

using monolingual in-domain training data, auto-
matically back-translated into the source language
to produce a synthetic parallel training corpus. We
use the synthetic corpora produced in these exper-
iments7 (3.6–4.2 million sentence pairs), and we
trained systems which include this data to compare
against the state of the art. We note that our exper-
iments with this data entail a syntactic annotation
of automatically translated data, which may be a
source of noise. For the systems with synthetic
data, we double the training time to two weeks.

We also evaluate linguistic features for
the lower-resourced translation direction
English→Romanian, with 0.6 million sen-
tence pairs of parallel training data, and 2.2
million sentence pairs of synthetic parallel
data. We use the same linguistic features as for
English→German. We follow Sennrich et al.
(2016a) in the configuration, and use dropout for
the English→Romanian systems. We drop out
full words (both on the source and target side)
with a probability of 0.1. For all other layers, the
dropout probability is set to 0.2.

4.1 Results

Table 2 shows our main results for
German→English, and English→German.
The baseline system is a neural MT system with
only one input feature, the (sub)words themselves.
For both translation directions, linguistic features
improve the best perplexity on the development
data (47.3→ 46.2, and 54.9→ 52.9, respectively).
For German→English, the linguistic features lead
to an increase of 1.5 BLEU (31.4→32.9) and
0.5 CHRF3 (58.0 → 58.5), on the newstest2016
test set. For English→German, we observe
improvements of 0.6 BLEU (27.8→ 28.4) and 1.2
CHRF3 (56.0→ 57.2).

To evaluate the effectiveness of different lin-
guistic features in isolation, we performed con-
trastive experiments in which only a single feature
was added to the baseline. Results are shown in
Table 3. Unsurprisingly, the combination of all
features (Table 2) gives the highest improvement,
averaged over metrics and test sets, but most fea-
tures are beneficial on their own. Subword tags
give small improvements for English→German,

7The corpora are available at http://statmt.org/
rsennrich/wmt16_backtranslations/

but not for German→English. All other features
outperform the baseline in terms of perplexity, and
yield significant improvements in BLEU on at least
one test set. The gain from different features is not
fully cumulative; we note that the information en-
coded in different features overlaps. For instance,
both the dependency labels and the morphologi-
cal features encode the distinction between Ger-
man subjects and accusative objects, the former
through different labels (subj and obja), the lat-
ter through grammatical case (nominative and ac-
cusative).

We also evaluated adding linguistic features to a
stronger baseline, which includes synthetic paral-
lel training data. In addition, we compare our neu-
ral systems against phrase-based (PBSMT) and
syntax-based (SBSMT) systems by (Williams et
al., 2016), all of which make use of linguistic an-
notation on the source and/or target side. Results
are shown in Table 4. For German→English, we
observe similar improvements in the best devel-
opment perplexity (45.2 → 44.1), test set BLEU

(37.5→38.5) and CHRF3 (62.2→ 62.8). Our test
set BLEU is on par to the best submitted system
to this year’s WMT 16 shared translation task,
which is similar to our baseline MT system, but
which also uses a right-to-left decoder for rerank-
ing (Sennrich et al., 2016a). We expect that lin-
guistic input features and bidirectional decoding
are orthogonal, and that we could obtain further
improvements by combining the two.

For English→German, improvements in devel-
opment set perplexity carry over (49.7 → 48.4),
but we see only small, non-significant differences
in BLEU and CHRF3. While we cannot clearly ac-
count for the discrepancy between perplexity and
translation metrics, factors that potentially lower
the usefulness of linguistic features in this setting
are the stronger baseline, trained on more data,
and the low robustness of linguistic tools in the
annotation of the noisy, synthetic data sets. Both
our baseline neural MT systems and the systems
with linguistic features substantially outperform
phrase-based and syntax-based systems for both
translation directions.

In the previous tables, we have reported the best
perplexity. To address the question about the ran-
domness in perplexity, and whether the best per-
plexity just happened to be lower for the systems
with linguistic features, we show perplexity on
our development set as a function of training time
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system
German→English English→German

ppl ↓ BLEU ↑ CHRF3 ↑ ppl ↓ BLEU ↑ CHRF3 ↑
dev test15 test16 test15 test16 dev test15 test16 test15 test16

baseline 47.3 27.9 31.4 54.0 58.0 54.9 23.0 27.8 52.6 56.0
all features 46.2 28.7* 32.9* 54.8 58.5 52.9 23.8* 28.4* 53.9 57.2

Table 2: German↔English translation results: best perplexity on dev (newstest2013), and BLEU and
CHRF3 on test15 (newstest2015) and test16 (newstest2016). BLEU scores that are significantly different
(p < 0.05) from respective baseline are marked with (*).

system
German→English English→German

ppl ↓ BLEU ↑ CHRF3 ↑ ppl ↓ BLEU ↑ CHRF3 ↑
dev test15 test16 test15 test16 dev test15 test16 test15 test16

baseline 47.3 27.9 31.4 54.0 58.0 54.9 23.0 27.8 52.6 56.0
lemmas 47.1 28.4 32.3* 54.6 58.7 53.4 23.8* 28.5* 53.7 56.7
subword tags 47.3 27.7 31.5 54.0 58.1 54.7 23.6* 28.1 53.2 56.4
morph. features 47.1 28.2 32.4* 54.3 58.4 - - - - -
POS tags 46.9 28.1 32.4* 54.1 57.8 53.2 24.0* 28.9* 53.3 56.8
dependency labels 46.9 28.1 31.8* 54.2 58.3 54.0 23.4* 28.0 53.1 56.5

Table 3: Contrastive experiments with individual linguistic features: best perplexity on dev (new-
stest2013), and BLEU and CHRF3 on test15 (newstest2015) and test16 (newstest2016). BLEU scores
that are significantly different (p < 0.05) from respective baseline are marked with (*).

system
German→English English→German

ppl ↓ BLEU ↑ CHRF3 ↑ ppl ↓ BLEU ↑ CHRF3 ↑
dev test15 test16 test15 test16 dev test15 test16 test15 test16

PBSMT (Williams et al., 2016) - 29.9 35.1 56.2 60.9 - 23.7 28.4 52.6 56.6
SBSMT (Williams et al., 2016) - 29.5 34.4 56.0 61.0 - 24.5 30.6 55.3 59.9
baseline 45.2 31.5 37.5 57.0 62.2 49.7 27.5 33.1 56.3 60.5
all features 44.1 32.1* 38.5* 57.5 62.8 48.4 27.1 33.2 56.5 60.6

Table 4: German↔English translation results with additional, synthetic training data: best perplexity on
dev (newstest2013), and BLEU and CHRF3 on test15 (newstest2015) and test16 (newstest2016). BLEU

scores that are significantly different (p < 0.05) from respective baseline are marked with (*).
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Figure 2: English→German (black) and
German→English (red) development set per-
plexity as a function of training time (number of
minibatches) with and without linguistic features.

system ppl ↓ BLEU ↑ CHRF3 ↑
(Peter et al., 2016) - 28.9 57.1
baseline 74.9 23.8 52.5
all features 72.7 24.8* 53.5
baseline (+synth. data) 50.9 28.2 56.1
all features (+synth. data) 50.1 29.2* 56.6

Table 5: English→Romanian translation results:
best perplexity on newsdev2016, and BLEU and
CHRF3 on newstest2016. BLEU scores that are
significantly different (p < 0.05) from respective
baseline are marked with (*).

for different systems (Figure 2). We can see that
perplexity is consistently lower for the systems
trained with linguistic features.

Table 5 shows results for a lower-resourced
language pair, English→Romanian. With lin-
guistic features, we observe improvements of 1.0
BLEU over the baseline, both for the systems
trained on parallel data only (23.8→24.8), and
the systems which use synthetic training data
(28.2→29.2). According to BLEU, the best sub-
mission to WMT16 was a system combination by
Peter et al. (2016). Our best system is competitive
with this submission.

Table 6 shows translation examples of our base-
line, and the system augmented with linguis-
tic features. We see that the augmented neural
MT systems, in contrast to the respective base-
lines, successfully resolve the reordering for the
German→English example, and the disambigua-
tion of close for the English→German example.

system sentence
source Gefährlich ist die Route aber dennoch.
reference However the route is dangerous.
baseline Dangerous is the route, however.
all features However, the route is dangerous.
source [We thought] a win like this might be close.
reference [...] dass ein solcher Gewinn nah sein könnte.
baseline [...] ein Sieg wie dieser könnte schließen.
all features [...] ein Sieg wie dieser könnte nah sein.

Table 6: Translation examples illustrating the ef-
fect of adding linguistic input features.

5 Related Work

Linguistic features have been used in neural lan-
guage modelling (Alexandrescu and Kirchhoff,
2006), and are also used in other tasks for which
neural models have recently been employed, such
as syntactic parsing (Chen and Manning, 2014).
This paper addresses the question whether linguis-
tic features on the source side are beneficial for
neural machine translation. On the target side, lin-
guistic features are harder to obtain for a gener-
ation task such as machine translation, since this
would require incremental parsing of the hypothe-
ses at test time, and this is possible future work.

Among others, our model incorporates infor-
mation from a dependency annotation, but is still
a sequence-to-sequence model. Eriguchi et al.
(2016) propose a tree-to-sequence model whose
encoder computes vector representations for each
phrase in the source tree. Their focus is on exploit-
ing the (unlabelled) structure of a syntactic anno-
tation, whereas we are focused on the disambigua-
tion power of the functional dependency labels.

Factored translation models are often used in
phrase-based SMT (Koehn and Hoang, 2007) as a
means to incorporate extra linguistic information.
However, neural MT can provide a much more
flexible mechanism for adding such information.
Because phrase-based models cannot easily gen-
eralize to new feature combinations, the individ-
ual models either treat each feature combination
as an atomic unit, resulting in data sparsity, or as-
sume independence between features, for instance
by having separate language models for words and
POS tags. In contrast, we exploit the strong gen-
eralization ability of neural networks, and expect
that even new feature combinations, e.g. a word
that appears in a novel syntactic function, are han-
dled gracefully.

One could consider the lemmatized representa-
tion of the input as a second source text, and per-

89



form multi-source translation (Zoph and Knight,
2016). The main technical difference is that in
our approach, the encoder and attention layers are
shared between features, which we deem appro-
priate for the types of features that we tested.

6 Conclusion

In this paper we investigate whether linguistic in-
put features are beneficial to neural machine trans-
lation, and our empirical evidence suggests that
this is the case.

We describe a generalization of the encoder
in the popular attentional encoder-decoder archi-
tecture for neural machine translation that al-
lows for the inclusion of an arbitrary number
of input features. We empirically test the in-
clusion of various linguistic features, including
lemmas, part-of-speech tags, syntactic depen-
dency labels, and morphological features, into
English↔German, and English→Romanian neu-
ral MT systems. Our experiments show that
the linguistic features yield improvements over
our baseline, resulting in improvements on new-
stest2016 of 1.5 BLEU for German→English, 0.6
BLEU for English→German, and 1.0 BLEU for
English→Romanian.

In the future, we expect several developments
that will shed more light on the usefulness of lin-
guistic (or other) input features, and whether they
will establish themselves as a core component of
neural machine translation. On the one hand, the
machine learning capability of neural architectures
is likely to increase, decreasing the benefit pro-
vided by the features we tested. On the other hand,
there is potential to explore the inclusion of novel
features for neural MT, which might prove to be
even more helpful than the ones we investigated,
and the features we investigated may prove espe-
cially helpful for some translation settings, such as
very low-resourced settings and/or translation set-
tings with a highly inflected source language.
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