-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Negative Knowledge for Certain Query Answers

Citation for published version:

Libkin, L 2016, Negative Knowledge for Certain Query Answers. in Web Reasoning and Rule Systems: 10th
International Conference, RR 2016, Aberdeen, UK, September 9-11, 2016, Proceedings. Lecture Notes in
Computer Science, vol. 9898, Springer International Publishing, pp. 111-127, Web Reasoning and Rule
Systems - 10th International Conference, Aberdeen, United Kingdom, 9/09/16. DOI: 10.1007/978-3-319-
45276-0_9

Digital Object Identifier (DOI):
10.1007/978-3-319-45276-0_9

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Web Reasoning and Rule Systems

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/77047488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-45276-0_9
https://www.research.ed.ac.uk/portal/en/publications/negative-knowledge-for-certain-query-answers(754562b5-dc7d-4241-9efa-65e17b33c049).html

Negative Knowledge for Certain Query Answers

Leonid Libkin!

School of Informatics, University of Edinburgh

Abstract. Querying incomplete data usually amounts to finding answerare
certain about. Standard approaches concentrate on gosifiermation about
query answers, and miss negative knowledge, which can bel dieetwo rea-
sons. First, sometimes it is the only type of knowledge oneioter with cer-
tainty, and second, it may help one find good and efficient @pprations of
positive certain answers. Our goal is to consider a framkeviar defining both
positive and negative certain knowledge about query arsased to show two
applications of it. First, we demonstrate that it naturddigds to a way of repre-
senting certain information that has hitherto not been usgderying incomplete
databases. Second, we show that approximations of sucircerfiormation can
be computed efficiently for all first-order queries over tielaal databases.

1 Introduction

If uncertainty occurs in a dataset, answering queries agaitypically involves com-
putingcertain answersi.e., answers one can be sure about. This happens in drzaliti
database query answering [2,22] and in numerous appliatach as data integra-
tion [26], data exchange [4], inconsistent databases], @atology-based data ac-
cess [11,25]. The most common approach is to look at all cetamataset®’ that
can potentially represent an incomplete datd3et i.e., itssemantic§ D] — and an-
swers that are true in all such’. When a quenyQ returns sets of objects (for ex-
ample, sets of tuples for relational database queriesgingr is typically defined by
certain(Q, D) = ({Q(D') | D’ € [D]}, see [30]. This definition has been so dom-
inant in the literature that even in models where queriesataeturn sets, languages
have been adjusted to make this definition applicable f@gXML and graph data [3,
5, 6)).

Certain answers defined this way can be viewed as a variahedbgical validity
problem. This, not surprisingly, leads to high complexityuhds; in fact, query an-
swering tends to be tractable for conjunctive queries @atikads, but computationally
infeasible beyond [1, 4,5, 7, 8, 10, 26, 35]. A very commouaibn is that adding fea-
tures to conjunctive queries or their unions makes findintpeeanswer£oNP-hard
or even undecidable. It is thus well understood that theiiityalof the standard the-
oretical solutions to handle the problem of querying inctetgpdata outside a limited
class of queries needs to be addressed. Recently, two fimesloin this direction have
been pursued. The first revisits the very notion of certaimtyuery answering, and the
second attempts to approximate certain answers efficiently

The first line of works in fact dates back to the 1980s, whenl&rrative (and,
as several papers [24, 28] have argued, better) definitiaretéin answers appeared

[31]. More recently, a general and data model-independgmoach to defining query
answers over incomplete databases was proposed in [28sltrased on combining
classical data management techniques with viewing dagalzeslogical theories, as ad-
vocated by [33, 34], as well as using the idea of orderingnmgiete databases in terms
of their informativeness [9]. Certain answers can be repres] by logical formulae
true about answers in all possible worlds, and the notionedfamty is closely con-
nected to logical entailment, rather than an arbitrary obof intersection in the defini-
tion of certain. Using informativeness ordering, one can state when a caresyering
algorithm behaves rationally: this happens if it producesearinformative answers on
more informative inputs. For relational databases, thésas led to new large classes
of queries for which certain answers can be computed efflgi¢t7], and to a new
account of many-valued query answers [13], as employedlisyaaidard DBMSs [14].

The second line of work, based on approximations, was aksa recently to show
that an efficient approximation of certain answers can bepeaed for all first-order
queries [29], not just unions of conjunctive queries, as pr@viously known [22]. A
crucial element of that approach is that one needs to ceggtive certainnformation
while computing the answer, although at the end such negiatiermation is dismissed
and only the positive answer is given to the user.

However, dismissing negative information is not always adypath to follow,
as it may in fact provide us with useful information about guanswers. For ex-
ample, consider a databagewith two unary relations? and .S, so thatR contains
an unknown value (aull in the database terminologyy, = {1}, and the query
Q(z) = R(z) A—S(x) computes their difference. Then the certain answer is empty
der every reasonable semantics. But we can be certaih ihaot in the answer; hence,
we are certain about the fastA(1) (with A for “answer”), which says that while we do
not know what may occur in the output, we do know thdbes not occur. Even though
in this exampleA(1) is the certain answer for the negation@f in general certain
negative answers tQ are not the same as what is known with certainty ab@pt In-
deed, consider relatiod® = {(1, L)} andS’ = {(1, L")}, whereL, 1’ indicate nulls
(not necessarily denoting the same value). The negatigh(@f) = R'(z) A —5'(Z) is
S’(Z)Vv-R/(z), and thus, with certainty, the answert@’ will have a tuple whose first
componentid, i.e., we knowdy A(1,y) about the answer tQ’. However, we cannot
tell which tuples with certainty dootbelong to the answer tQ’.

Even these simple examples tell us that the user may berwfitiaving negative
certain information about query answers, and getting iblvs more than just finding
certain answers for the negation of the query. To underdtamdsuch negative infor-
mation can be incorporated into query answering, we needideas several questions:

(a) How do we define negative and positive knowledge aboutycareswers, and what
is the connection between the two?

(b) In what logical languages can we express such negatige/lkdge? Can such
knowledge be represented in a user-friendly way, and if sesdt correspond to
any of the known ways of defining query answers?

(c) What is the complexity of finding positive and negativeoktedge about query
answers?

(d) If exact computation is infeasible, can we effectiveppeoximate answers with
some guarantees?

To answer the first question, we follow the approach of [1TM2&ich treats in-
completeness at an abstract level applicable to many dadelmd he key elements of
the approach are the notions of complete and incomplete Isydle semanticof an
incomplete object, which is a set of complete ones it can ggramd a set of formu-
lae representingnowledgeabout objects. The semantic function makes it possible to
defineinformativeness orderingvhich says when one object is more informative than
another. The restriction of frameworks in [17, 28] was thabwledge wagositive
if a fact is known about an object, it remains true in more infative ones. Negative
knowledge is not such: we can think of it as saying that we dd&now some fact about
an object; therefore, we do not know that fact about lessinédive objects.

Positive formulae were used in [28] to define certain knogkedbout sets of ob-
jects, providing a disciplined notion of certain answeasher than an ad hoc one based
on the notion of intersection. The idea is as follows: theoryof a set of objects is
everything we know about that set with certainty. Such ampebcourse could be infi-
nite, but if we find a single formula equivalent to it, thenstformula gives us a proper
representation of certain knowledge.

To see what kinds of formulae we can use for negative knoveeag follow a sim-
ilar approach, but conditions required for good behaviaregative knowledge impose
significant computational requirements, despite a sedgngigple reversal of the or-
dering. But we turn this to our advantage and use such conditis a guide for finding
logical formalisms for negative formulae. For relationatabases, this results in a new
formalism that exhibits auality between formulae and objects, making it possible to
apply effective query evaluation to compute certain knolgk

This new formalism for defining certain answers (both pesitand negative) is
closely related to standard approaches used in the literf2@, 31] and yet is not cov-
ered by them. In essence, it allows nulls from the input degalto be present in query
answers (which is more than [22] does) but only allows réjpets of such nulls within
a single tuple (as opposed to [31], which allows repetit@er®ss different tuples in the
answer).

To demonstrate the usefulness of this approach and the mpresentation mech-
anism for relational databases, we show how to compute bosiitiye and nega-
tive knowledge about certain answers for all first-ordemu{egjently, relational alge-
bra/calculus) queries over relational databases. Giverirttnactability of certain an-
swers even for Boolean first-order queries [1], our procedjives an approximation
for those, which is efficient, and comes with correctnessantaes.

Organization Background material is presented in Section 2. Modelingatieg
knowledge is described in Section 3, and certain negatieavladge is studied in Sec-
tion 4. Section 5 explains how to represent such knowledgefational databases, and
in Section 6 we provide an efficient algorithm for computing i

2 Preliminaries

A general model We now recall the basic setting of [17, 28] that lets us talatthe
essential features of incompleteness without recourseparticular data model. The
two basic concepts ambjects andformulaethey satisfy. Objects could be incomplete
or complete; the semantics of an incomplete object is thefssEtmplete objects it may
represent.

Formally, adatabase domaiis a tripleD = (D, C, []), whereD is a set of objects
(for instance, all relational databases over the same szhéns the set of complete
objects (for instance, databases over the same schemaiiittkomplete information),
and[] : D — 2¢ is the semantic functiorfz] C C is the semantics of an object We
require that a complete object denote at least itselfdfC, thenc € [].

Theinformation orderings defined by

z2y & [y 2] (1)

That is, the more an object denotes, the less we know abandéedd, if we know noth-
ing about something, it can denote everything). We regbaiedbjects in the semantics
of z be at least as informative asif ¢ € [z], thenz < ¢. This condition holds for all
the standard semantics of incompleteness.

We also assume that we have a set of formabdat express knowledge about
objects inD and a satisfaction relatioa betweerD andF; thatis,z = ¢ if @ is true
in . For sets of objects and formulae, we wrke= ¢ if © = ¢ for eachz € X, and
z = @if x = pforeachy € &. Asusual,Th(X) = {¢ | X | ¢} is thetheoryof X,
andMod(®) = {z | = | @} is the set of models ab.

Previously, onlypositiveknowledge was considered, i.e., it was required that y
andz = ¢ imply y = .

For domaind = (D,C, []) andD’ = (D’,C’,[]'), aqueryis modeled as a map-
pingQ@ : D — D’ suchthat)(c) € ¢’ whenever € C (noincompletenessis introduced
when a query acts on a complete object). Note that the sersdiitiof queryanswers
need not be the same as the semarffiasf query inputs.

The main object one then works with [2, 22] is

Q[z]) = {Qc) |ce]} € D ()

which gives us the answers @ in all possible worlds representing Finding cer-
tain answers t@) on x then amounts to extracting what we know with certainty about

Q([«])-

Certain knowledge Since computing certain answers amounts to extractingioert
information from a set of objects, typically of the form (2)e need to know how to
describe certain information in a s& C D. We know thafTh(X) is the set of facts
that are true in all objects ok, i.e., this is what we know about with certainty.
The whole theory is not an object we want to work with for periong computational
tasks (to start with, it is likely to be infinite). What we wanstead is a single formula
equivalent to this theory; then such a formula describethallcertain knowledge of

X. Of course formulae/theories are equivalent when they ti@seame models. Using
this, [28] proposed to define certain knowledge of a set cddaijas a formul X such
that

Mod(OX) = Mod(Th(X)) 3)

Such a formula may not exist for all seXs(by a simple cardinality argument), although
in many cases relevant for query answering, it does. It ne¢tha unique, but this is
not a problem: if bottMod(y;) andMod(y2) equalMod(Th(X)), theny; andy, are
equivalent, as formulae having the same models, and hethe® ene can be used as
0xX.

Incomplete relational databasesAs a concrete example of incomplete information,
we consider relational databases with naive, or marked [®122]. This model domi-
nates in applications such as exchange and integrationt@{2®, 4], and subsumes the
usual model of nulls implemented in commercial DBMSs. Iis tiiodel, there are two
types of valuesconstantandnulls. There are countably infinite sefsnst of constants
(e.g.,1,2,...), andNull of nulls, which will be denoted by, with sub- or superscripts.

A relationalvocabulary(or schemais a set of relation names, each with its arity. An
incomplete relational databageassociates with eadhary relation symboR from the
vocabulary &-ary relationR? C (Const U Null)*. WhenD is clear from the context,
we write R rather thanR”. Sets of constants and nulls that occufirare denoted by
Const(D) andNull(D). Theactive domairof D is adon{D) = Const(D) U Null(D).

A completedatabaseéd has no nulls, i.e., adof®) C Const.

The basic semantics of incomplete databases is given byswéapecial kinds of
homomorphisms between instances. A rhapNull — ConstUNull is ahomomorphism
between two instanced and D’ if for each relation symbaR, if £ € R, thenh(t) €
RP'. Hereh(vy,...,vx) = (h(v1),...,h(v)), and we assume thatv) = v for each
a € Const.

A homomorphism is called galuationif ~(v) € Const for eachv. By h(D) we
denote the image of a homomorphism, i.e., the databasestiogsif all the tuples(?)
fort € RP, for each relatiorR in the vocabulary.

The standard semantics of incompleteness [22] areclibeed world assumption
(cwa) and theopen world assumptiofowA) semantics:

[D] = {h(D) | his a valuation,

CWA
[D]owa = {R(D)U D’ | hisavaluation D" is complete.

The former simply replaces nulls by constants, and therlaitaddition allows us to
add any set of complete tuples.

The information orderings (1) given by these semantics arlkows: for owa,
D =owa D' iff there is a homomorphismh : D — D’, and forcwA, D <cwa D’ iff
there is a homomorphisim: D — D’ such thatD’ = h(D), see [17].

Queries A relational queryof arity k¥ maps database® over a relational schema
into a singlek-ary relation, which we denote here By(for ‘answers’). This is in line

with standard languages such as relational calculusijoridtalgebra, and SQL, whose
queries specify attributes of an output table [2, 14].

The classical definition [22] of certain answers in the &tere is the set
certain(@, D) of tuples@ over Const such thatu € Q(D’) for every D’ € [D].
Note that answers depend on the semantics of the input. Andiéfinition, which
has the advantage of keeping nulls in answers, is thaedfin answers with nulls
certain, (@, D) (it was first defined in [31] although not given a name; the namese
is from [29]). Forcwa, the sefcertain (@, D) consists of all tuples over adoniD)
— thus having both constants and nulls — such that for evdaatiani on D, we have
h(w) € Q(h(D)). It turns out that, undecwa, certain(Q, D) is precisely the set of
constant tuples inertain (Q, D).

For relational databases, as our basic language we corisitesrder logic (FO)
over the relational vocabulary (i.e., relational calcylukich also serves as the basis of
SQL [2]). More precisely, its atomic formulae are relatibatomsR(z) and equality
atomsz = y, and its formulae are closed under Boolean connectives— and quan-
tifiers 3,V. The3, A-closure of atomic formulae is referred to as the satafjunctive
queriesthose are of the formp(z) = 3z A, R:(z;) where eaclR; is a relation symbol
and variables in tuple;s come fromz andy.

3 Modeling negative knowledge

So far we assumed that the knowledge of objects is positif@maulay true in an ob-
ject continues to be true when an object is replaced by a méoemative one. While

in general we often deal with logical formalisms not closeder negation (e.g., con-
junctive queries), assume for now that we can negaté —y is true an object;, and

y =< z, then we would have = —¢. Thus, to model negative knowledge in general, we
look at formulae whose sets of models are downward closeathier words, we now
have two sets of formula&;* andF—, such that,

— forp e Ft, if x <y andz [¢, theny = ¢;
— fory e F~, if x < yandy | v, thenx = 1.

There appear to be two possible approaches to extendingatinevork of [28] with
both certain positive and certain negative knowledge.

The first approach We follow the idea behind the definition (3). We can define
Tht(X) = {p € F* | X E ¢} andTh (X) = {¢ € F~ | X |= ¢} as the-
ories expressing positive and negative knowledge aBguand then, as in (3), try to
capture them with formulag* X andO~ X such that

Mod(Ot X) = Mod(Th™ (X)) 4
Mod(O0~X) = Mod(Th™ (X)) @

When they exist, these formulae represent certain positiogvledge and certain neg-
ative knowledge abouX . Note thatMod(O* X') is upward-closed antflod(0~ X)) is
downward-closed with respect te.

The second approaciNote that (3) is based on an equivalence between two theories
& ~y ¥ whenever for each objeat all formulae of® are true inz iff all formulae of
& are true inz. Then we just required that* X ~y Th™ (X).

An alternative is to look at equivalence with respect to tigganformation, essen-
tially changing true and false. We Iét~x ¥ whenever for each objeet all formulae
of @ are false inx iff all formulae of ¥ are false inz. It would make sense then to
capture all things we know to be false M using this equivalence. That is, we define

Thi(X) ={peF' | X = —p}
Th(X)={veF | X £}

as sets of formulae we know with certainty are fals&inand then try to capture them
with single formulae satisfying

OF X ~4 ThT(X) and OZ X ~¢ ThZ (X). (5)

Both of these seem to be reasonable ways of capturing negafermation about
a set of objects; fortunately, they are closely related s@aechoose either (4) or (5)
as the main definition. For formulae 3, we writea. = -3 if Mod(a) = D — Mod(3)
(soa = ~p impliesg =).

Theorem 1. Assume thaf— contains exactly the negations of formulaefih. If for-
mulaed*X and O* X exist, whenx is 4+ or —, we have the following relationships
between thema+X = -0-X andO~X = -0% X.

To illustrate the difference between two ways of represgmiegative information,
consider a database with relatioRs= {1} andS = {1,2}, and a queng that
computes their differenc®& — S, i.e., Q(z) = R(z) A =S(z). Let X = Q([R, S])
under eitheowA or cwa, and consideF ™ that consists of atomic relational formulae.
ThenThZ (X) containsA(1) and A(2), and thusJ* X is equivalent toA(1) v A(2).
That is,0F X describes what we know with certainty wilbthold in the answer to the
query. On the other hand}~ X is equivalent to-A(1) A —A(2) (again, assuming the
connection betweeR* andF~ as in the theorem) and describes negative information
that is guaranteed to be true in the query result.

Certain knowledge for query answering

Given an object and a query, answeringy onz in a way that provides both positive
and negative knowledge amounts to finding the pair of foreula

D(an) = (D+Q([[.T]]), DiQ([[x]])) (6)

whenever such formulae exist, and their computation isitf&s-or representing the
second component, we can choose eitheiQ([x])), or its negatiord* Q([z]), as
Theorem 1 suggests. The components of (6) are the most ¢§dasrallae defin-
ing positive and negative knowledge, as they imply all folaetn Th* (Q([z])) and
Th™ (Q([x])), respectively. If computing them is infeasible, we can Iéokapproxi-
mationsby means of returning a pajty, 3) of formulae such that: € Th* (Q([z]))
andg € Th™ (Q([z])). They may not be as general as (6), but they still give usinfor
mation about query answers we can be certain about.

4 Certain negative knowledge

Our next goal is to understand how to represent certain ivegatd positive informa-
tion, particularly for setsy which are possible query answers, as in (2). That is, we will
see what requirements must be imposed on logical formalismandF~ to ensure
feasible computation of certain answers.

Towards understanding these requirements, we presenteanative view of for-
mulaeO" X andO~ X. For that, consider the usual implication of formulaep
iff Mod(p) C Mod(v). It generates a preorder (reflexive transitive relation)sets
F+ andF~. Viewing implication as a preorder, we define, for a set ofrfolaed, the
formula A @ as thegreatest lower bounéh the preorder>. That is, A® D ¢ and
whenevery’ > &, we have that’ > A @ (here¢’ D @ means thay’ implies every
formulay € ®). These formulae let us capture certain knowledge proviyed, so it
seems desirable to ha& X to be the same g& Th*(X), for « being+ or —. We now
explain when this is possible.

First, we remark that formula& ¢ may not exist in general, and if they exist, they
may not be unique, although any two such formulae are Idgieguivalent since they
have the same models. While the notatj§nis standard for greatest lower bounds,
the connection with conjunction is natural: if there is anfiota ¢ equivalent to the
conjunction of all formulae if?, thenMod(¢) = Mod(®) andy = A &; in general
though we may havi®lod(A @) C Mod(®).

We now show whem*X = A Th*(X). In fact, for Th™, this was already shown
in [28], but under additional conditions that we now elinia

Lettz ={y |2 <y} and|z = {y | y < x}. By §] ands! we denote formulae (if
they exist) such thatlod(5]) = T2 andMod(s}) = | =.

Theorem 2. —If F* is closed under conjunction and contains formufaeor all z,
thenOt X = A Th™(X) for everyX.
— If F~ is closed under disjunction and contains formuaefor all z, thenO~ X =
A Th™(X) for everyX.

The meaning of the equalities* X = A Th*(X) is that if one formula exists, then
so does the other, and the two are equivalent, i.e., havathe models.

For most common semantics of incompleteness, formijlage easy to construct,
and in fact they determine the shape of queries that can veeaed easily under those
semantics [17]. For instance, undawa, they are conjunctive queries, and fowA,
they extend positive FO formulae with a limited form of gueddhegation [12]. The
new condition forTh™ that formulaes! be definable is harder to achieve, and this
condition will let us choose the appropriate logical langgiforF—.

5 Representation of relational query answers: incompleteuples

We now use the abstract results of two previous sectionsdgesi a representation
mechanism for relational query answers, and to show how tiopfasitive and negative
answers using such a representation. For finding a repegsentnechanism, we an-
alyze computational properties of formulégands!. Restricting those to a tractable

class, gives us a representation of answers, caltsimplete tuplesThis representation
exhibits adualitybetween formulae and objects: that is, positive and negdirories of
query answers can be viewed as set of conventional tuplesgaanull values. With this
duality, we define query answers using (6). To check thatéfiaition makes sense, we
have to make sure that it preserves informativeness. Thisyn, means that we need
to define orderings on query answers, i.e., sets of incompipiles. We do so, and then
prove, in Theorem 3 that the resulting representation nrésheand query answering
by means of (6) do behave rationally, i.e., preserve infoikraaess.

We start by looking at the requirements of Theorem 2 and aivadyformulaes],
ands’. While the former are easy to obtain for standard semantizecompleteness,
the latter could become too expensive computationally,iisdtheir complexity that
will suggest the representation of positive and negativiageanswers.

We deal with relational databases, as described in Sectigvh2n we deal with
outputs of relational queries, which are sets of tuplesffices to deal with one predi-
cate for each type of answers, positive or negative (of eussial relational databases
just return one set of tuples, for positive answers). As teefae refer to that predi-
cate asA(-); later, when we look in more detail at separation of posiénd negative
answers, we shall use predicat&s(-) and A~ ().

The first observation shows that one must impose rathergtmestriction on the
types of formulaéF™ that represent query answers (note that this damesmply any
restriction on queries themselves).

Proposition 1. For the class of conjunctive queries, data complexity 0|‘nimlae5f4

for relations A is in NP; in fact there is a relation for which data complexity&ﬁ is
NP-complete.

Indeed, formulaeai}4 test the existence of a homomorphism imoi.e., they en-
code the general constraint satisfaction problem. In aer, such formulae are not
expressible in FO, nor even its extensions with least andtiafiary fixpoints.

Incomplete tuples The standard representation of query answers in relational
databases is by means of ground tuples: one simply says thatesa is in the an-
swer, or that predicatd(a) holds. Proposition 1 says that extending it to conjunctive
queries as a representation mechanism is too much from thplegity point of view.
Over the vocabularyl(-) of query answers, Boolean conjunctive queries are of ttra for
3z (A(z1,¢1) A ... NA(Zm, Cm)), Whereg;s are tuples of constants froGonst andz;s
are tuples of variables that together fomEliminating variables gives us sets of con-
stant tuples, i.e., the usual database query answers avglet® data. Another way of
simplifying the definition is to eliminate variables thatcoc in more than one,, i.e.,
looking at formulaedz, A(z1,¢1) A ... A 3T A(Zim, €y). That is, we are dealing with
conjunctions of formulagz A(z, ¢).

We can think of such formulagz A(z, ¢) as incomplete tuples. Ancomplete tuple
is simply a tuple ofConst U Null. There is a natural correspondence between formulae
37 A(z, ¢) and incomplete tuples: for instancée;, 2’ A(z, 1, x, 2, ") can be thought of
as anincomplete tupleL, 1, L, 2, 1”). Note that this duality between incomplete tuples

as formulae and as actual tuples lets us represent queneenefthe form (6) just as
database relations.

Representation of answers by means of incomplete tuplestiselen the usual
marked nulls and the Codd interpretation of nulls, which sld&iQL’s view of nulls
[2,22]. Marked nulls can be repeated, and appear in diffeughes; Codd nulls cannot
be repeated at all. In incomplete tuples, a null can be redebut only within a tuple,
and not across several tuples.

Query answering and ordering

We now consider orderings on query answers which are viewests of incomplete
tuples. Recall that we expect a rationally behaving queswaning to produce more
informative answers when more informative inputs are gitveamce orderings are nec-
essary to prove such rationality. For input databases, we $@en some standard or-
derings such asgiow, and =<cwa. According to (6), a query answer will be given as a
pair of sets(A™, A~) of incomplete tuples. Tuples i+ belong to the answer with
certainty; thus, when viewed as formulae, their conjuncigoequivalent to the formula
O0+tQ([z]). Tuples inA~ are those that certainly do not belong to the answer; hence
conjunction of their negations is equivalentio Q([«]).

First, we need to see how we can order incomplete tuplesnmstef their informa-
tiveness. There are two ways of looking at it:

— What improves informativeness of a tuple? Replacing a nith & constant does,
and replacing a null with another null might (e.g., if we @@ L’ with L in
(L, L"), we get a more informative tuplglL, L) giving extra information that
its components are the same). Thus, given two incompletesapand b over
Const U Null, b is more informative than if there is a homomorphisrh so that
h(a) = b.

— Alternatively, we view incomplete tuples as formulae anyl theatb is more infor-
mative tharw if it logically entails it, i.e.,b D a.

The homomorphism theorem for conjunctive queries tell as these two are equiva-
lent, so we can take either of them as the definitioh lo€ing more informative tham,
which will be denoted by: < b.

Next, we look at sets of incomplete tupldsand B, and define orderings; and
=< saying that one of the sets has more positive or negativenration than the other.
First,

A=tB & Vac AIBbeB: axb.

This ordering says that we can improve an answer by imprawidigidual tuples in it,
or adding new tuples that our initial attempt to approxintaiery answers may have
missed. This is the ordering on positive query answers wik s Note that it is also
consistent with observations made in [28,13] that for quargwers (as opposed to
inputs), the prefer interpretation is open-world, as agdirples improves the answer.
When it comes to negative information, if we are given twaimplete tuples and
b such that < b, then it is actually better to havein the answer, as it gives us more
information about tuples to exclude. For instance, havitgpée (1, 2) in the negative

answer simply says that, 2) is never in the answer, but having a tugle 1) is more
informative as it says that no tuple whose first componeitisin the answer. This
leads to the following ordering:

A=;B & VbeB3JacA: a<b.

Note that these are well-known orderings in the semanticsieéurrency (so called
Hoare and Smyth powerdomain orderings [20]) where they seel to compare pos-
sible outcomes of different threads of concurrent compuaratin terms of the infor-
mation they carry. In terms of computational problems, kenthe relations<ow. and
~cwa, We can test relationsF and=;; in polynomial (quadratic) time.

A set A of incomplete tuples can be viewed as a formula (which we @dé¢smteA,
using the duality between tuples and formulae), which isctirgunction of alla in A.
Likewise, we can also look at conjunction of all formulag, giving us a formulad™.
That is, positive and negative formulae associated Witre:

A= Nalacay A" = N{-alacA} 7)

Note that the first equation simply extends the duality obmglete tuples and formulae
to sets of incomplete tuples: it just tells us how to view aets a formula.

The following connection between orderings on sets andlereat of formulae is
easily obtained from the definitions and containment Getéor conjunctive queries
and their unions.

Proposition 2. A < Biff B> A,andA <; Biff A~ > B™.

Equipped with this, we can show that query answering by meéfiading posi-
tive and negative incomplete tuples, i.e., by using (6)Misgs possible and preserves
informativeness when input databases are interpreted wvde or CWA.

Theorem 3. Assume that input databases are interpreted urmes or CwA, and that
F+ consists of incomplete tuples, afid consists of their negations. Then for every
queryQ and every databasP there exist finite set®F (D) andQg (D) of incomplete
tuples that, when viewed as formulae (7), are equivalet't® ([D]) andO~ Q([D]):

Mod(QF (D)) = Mod(Th™(Q([D])))
Mod(Qg (D)™) = Mod(Th™(Q([D])))

Moreover, this way of query answering preserves inforneai@ss: ifD < D’ (under
the ordering given by thewa or theowa semantics), then

Q3 (D) 2% QE(D") and Q5 (D) =7 Qg (D).

6 Certain information via incomplete tuples

The conclusion of the previous section is that incomplgpéesiare a good representa-
tional mechanism for query answers over incomplete relatidatabases. What makes
them especially suitable for the task is tiheality of incomplete tuples: each one can

be viewed both as a formulir A(a, z), satisfied by the query answer, or as an actual
tuple(z, a), wherez is a tuple of nulls. Thus, a set of tuples can be seen both agket
formulae (7) representing our knowledge (positive and tieglgabout query answers,
and an actual database relation with nulls. This dualitylstcompute such knowledge
using well established database query evaluation techejgnd present it to the user
in a familiar format.

Ideally, following Theorem 3, we want to compute, for a quérnand a database
D, setsQ (D) and Qg (D) of incomplete tuples such th& (D) is equivalent to
O+t Q([D]) andQg (D)™ is equivalent tad~Q([D]). That s,

Mod(A{a | @ € QF(D)}) = Mod(Th™(Q([D]))) and
Mod(A{-a | a € Q5 (D)}) = Mod(Th™(Q([D])))

This is problematic even for first-order queries, howeveg@nputing such sets of
incomplete tuples is expensive. In fact, a simple exanomati proofs in [1, 18] shows
that even when) is a fixed Boolean FO query, checking whetherQ([D],,,) is true
is CONP-complete, and the same questiondorQ([D],,,) is undecidable.

But the discussion following the definition (6) showed a way of this problem:
we need to compute approximate answers with some guaratitatss, formulae from
positive and negative theories @f([D]). Using the duality of incomplete tuples, we
say that, for a querg), the pair(Q™*, Q™) of queries returning sets of incomplete tuples
provides asound answefor) under]] if, for every databas®,

Q*(D) € Th™(Q([D])) and Q(D) € ThI(Q([D])). (8)

Indeed Q" (D) andQ~ (D) represent parts of certain positive and negative knowledge
aboutQ([D]). If furthermore they can be computed with tractable dataplexity, we
say that they provide agfficient sound answéo Q on D.

Note that the right way to read sound answersujgle-by-tuple for instance, if
(L,1)and(L,2) are inQ™ (D), the correct interpretation is that for evey € [D],
the answelQ(D’) contains a tuple whose second component iand a tuple whose
second component i& It is not meant to say that the first components of such tuples
are the same: incomplete tuples cannot make cross-tupéerstats.

Efficient sound answers underowA and CwA

There are trivial ways of finding sound answers: for instahgeletting Q™ and @~
return the empty set. Of course this is not what we want; atstee would like to find
a good approximation of positive and negative certain imfation. To find the exact
representation of such information, or a representatidh some quality guarantees,
and to do so efficiently, is impossible due to the complexipsiderations explained
earlier (which apply even to Boolean queries).

Thus, we shall present one particular inductive definitibueriesQ* and @~
that provides efficient sound answers for the most commosédisemantics of in-
completeness, i.eQwA andCcwA semantics, for all FO queries. We also assume, as is
standard in the database context, that they are evaluatied the active domain seman-
tics, i.e., the answer to/aary queryQ(z) on D, denoted byQ (D), is the set of tuples

a € adonm{D)* so thatD = Q(a). FormulaeQ* and@Q~ will use additional atomic
formulaeconst(z) saying thatc is not a null, i.e., an element @onst. We also write
const(z1, . ..,x,) for the conjunction of altonst(x;) for 1 <i < n.

The definitions of ™ and@~ are identical foowa andcwa, except in the case of
relational atomic formulae. We now present them inducyitet the following formulae
constructorsQ(z, 4, z2) = Q1(Z,7) A Q2(Z, Z) (to account properly for the use of free
variables in conjuncts))(z,7,z) = Q1(Z,7) V Q2(Z, Z) (likewise for disjunction);
Q(Z) = ~Q1(z); andQ(z) = Q1 (,y); as well as equational atoms= y and
x = a for a constané € Const.

If Q(Z,7,2) = Q1(Z,7) N Q2(Z, Z), then

Q*(z,7,2) = Qf (7,§) A Q3 (7, Z) A const(z)
Q~(®.5.9) = Q1 (#.9) V Q; (. 2)

@l QE\
I\

If Q(Z,7,2) = Q1(Z,7) V Q=2(Z, Z), then

Q*(x,9,2) = QT (z,9) v Q3 (2, 2)

Q™ (7,9,2) = Qy (7,9) N Q3 (%, 2)
~ 1t Q(a) = ~Qi(¢), then@* () = Q1 () and @ () = Q' (x) A const(z).
— I Q(7) = @1 (7), thenQ" (z) = 3yQ{ (¥,) and @~ (7) = VyQs (7).
- If Q(z) = (z = a), thenQ ™ (z) = (zx = a) and @~ (z) = ~(x = a) A const(x).
— If Q(z,y) = (x = y), then

Q" (z,y) = (x =y) and Q@ (x,y) = ~(z = y) A const(z,y).

Note that the rules fon andV are not symmetric, due to the asymmetric rule for
negation.

Finally we define such queries for atomic formulBéz), whenR is a database
relation, as follows:

Underowa: R™(z) = R(z) R~ (z,y) = false

Undercwa: Rt (z)=R(z) R (2,y) = -3G(RG) A ag(z, 7))

Here we use an additional formula, (7, i) such thatv(a, b) iff a<1b. Itis not hard to
see that it can be defined as a quantifier-free formula thatacealities andonst(-), as

a disjunction over possible instantiations of varialateg as constants or nulls. These
give us complete definitions ¢} and@Q~ underowa andcwa.

Theorem 4. The definitions of)™ and Q— above provide efficient sound answers to
FO queries undepwa andcwa. The data complexity of such queries isN@°.

Example Consider the difference que@(z) = R(z) A —~S(Z) that is among the most
troublesome operations for relational query evaluatiahwills [22, 14, 29].

Then the quen@™ (z) is R(z) A S™(z) A const(z). Thus, undeowa, S~ and
henceQ™ is equivalent to false, which is to be expected, as udex the difference
query returns the empty set. Undewa, on the other hand)™ computes the set of
constant tuples ik which do not match any tuple ifi.

With @—, we can also infer useful negative knowledge. Applying thées,
Q(z) = R~ (Z)V(S(Z)Aconst(Z)). Thus, undeowaA it becomesS(z) Aconst(z) and
we get information that constant tuplesStwill never be in the answer, something that
traditional certain answers will miss. Undewa, we also see that tuples not mapped
into tuples ofR (i.e., R~) can never be query answers.

These are exactly the query results one would expect, aydatieeobtained by a
direct application of transformations giving us queKigs and@ .

7 Conclusion

When answering queries over incomplete data, one shouttbodrate not only on what
is guaranteed to be true, but also on what is guaranteed tmd®s f.e., negative infor-
mation. Finding such negative information however is oftgrored. We showed how to
apply the framework for dealing with incompleteness basedemantics, knowledge,
and ordering, to define negative information that can withiagety be inferred about
query answers. We showed how to use basic properties of agative information to
find a good representational mechanism for relational qaasyvering, resulting in a
natural, but hitherto not widely used mechanism of incongpleples. To prove its ap-
plicability, we demonstrated an efficient procedure for potmg positive and negative
knowledge for all FO queries over relational databases.

As next steps, we would like to see how these notions behastaindard applica-
tions of incompleteness (integration, inconsistency) etelate them to other approxi-
mate query answering notions, both in databases [16, 23418nd in Al [27, 32], and
to existing approaches that explain why tuples do not appegrery answers [36, 21].
As for quality of approximations of certain answers, theselgest confirmed experi-
mentally, as was demonstrated recently [19].

Acknowledgments | am grateful to anonymous referees for their comments. Wik
was partly supported by EPSRC grants J015377 and M025268.

References

1. S. Abiteboul, P. Kanellakis, and G. Grahne. On the reptesien and querying of sets of
possible worldsTheoretical Computer Sciencg8(1):158-187, 1991.

2. S. Abiteboul, R. Hull, and V. Vianuroundations of Database#\ddison-Wesley, 1995.

3. S. Abiteboul, L. Segoufin, and V. Vianu. Representing amekgjng XML with incomplete
information. ACM TODS 31(1):208-254, 2006.

4. M. Arenas, P. Barcel6, L. Libkin, and F. Murlakoundations of Data Exchang€ambridge
University Press, 2014.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.
21.

22.
23.
24.
25.
26.
27.
28.
20.
30.

31
32.

P. Barcel0, L. Libkin, A. Poggi, and C. Sirangelo. XML tvincomplete information.J.
ACM, 58(1), 2010.

. P.Barcel6, L. Libkin, and J. Reutter. Querying regulapi patternsJ. ACM 61(1), 2014.
. L. Bertossi.Database Repairing and Consistent Query AnsweriMgrgan&Claypool Pub-

lishers, 2011.

. M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. Ontolbg@ged data access: a study

through disjunctive datalog, CSP, and MMSNKCM TODS39(4) (2014).

. P. Buneman, A. Jung, A. Ohori, Using powerdomains to gsizer relational databases.

Theoretical Computer Scien®d (1) (1991) 23-55.

A. Cali, D. Lembo, and R. Rosati. On the decidability anchplexity of query answering
over inconsistent and incomplete database®®DS pages 260-271, 2003.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, Rseiio Tractable reasoning and
efficient query answering in description logics: The DLe.family. J. Autom. Reasoning
39(3):385-429 (2007).

K. Compton. Some useful preservation theoredmurnal of Symbolic Logic48(2):427—
440, 1983.

M. Console, P. Guagliardo, L. Libkin. Approximationsdarefinements of certain answers
via many-valued logics. IKR 2016 pages 349-358.

C. J. Date and H. DarweA Guide to the SQL Standaréddison-Wesley, 1996.

R. Fink and D. Olteanu. On the optimal approximation cdrigs using tractable proposi-
tional languages. IfCDT, pages 174-185, 2011.

M. Garofalakis and P. Gibbons. Approximate query preiogs taming the terabytes. In
VLDB, 2001.

A. Gheerbrant, L. Libkin, and C. Sirangelo. Naive emtibn of queries over incomplete
databasesACM TODS 39(4):231, 2014.

A. Gheerbrant, L. Libkin. Certain answers over incortel¥ML documents: extending
tractability boundaryTheory Comput. Sysh7(4): 892-926 (2015).

P. Guagliardo, L. Libkin. Making SQL queries correct nodmplete databases: a feasibility
study. InPODS 2016pages 211-223.

C. GunterSemantics of Programming Languag&he MIT Press, 1992.

M. Herschel and M. Hernandez. Explaining missing amsw@ SPJUA queriesPVLDB,
3(1):185-196, 2010.

T. Imielinski and W. Lipski. Incomplete information irlational databasesJ. ACM
31(4):761-791, 1984.

Y. loannidis. Approximations in database systemdCIDT, pages 16-30, 2003.

H. Klein. On the use of marked nulls for the evaluation wéries against incomplete rela-
tional databases. FFundamentals of Information SystenisPolle, T. Ripke, and K. Schewe,
Eds. Kluwer, 81-98.

R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakfagchev. The combined ap-
proach to ontology-based data accesdJ@AI, pages 2656—2661, 2011.

M. Lenzerini. Data integration: a theoretical perspectin ACM Symposium on Principles
of Database Systems (POD8ages 233-246, 2002.

H. Levesque. A completeness result for reasoning witbrplete first-order knowledge
bases. I'KR, pages 14-23, 1998.

L. Libkin. Certain answers as objects and knowledg#f. Intell. 232 (2016), 1-19.

L. Libkin. SQL's three-valued logic and certain answe&k€M TODS41(1) (2016).

W. Lipski. On semantic issues connected with incompiefiermation databasesACM
TODS 4(3):262-296, 1979.

W. Lipski. On relational algebra with marked nulls.R®DS 1984 pages 201-203.

Y. Liu and H. Levesque. A tractability result for reasanivith incomplete first-order knowl-
edge bases. IRICAI, pages 83-88, 2003.

33. R. Reiter. Towards a logical reconstruction of relagiaatabase theory. i@n Conceptual
Modelling pages 191-233, 1982.

34. R. Reiter. A sound and sometimes complete query evafuaigorithm for relational
databases with null valued. ACM 33(2):349-370, 1986.

35. R. Rosati. On the decidability and finite controllalyilif query processing in databases with
incomplete information. IPODS pages 356—365, 2006.

36. O. Shmueli and S. Tsur. Logical diagnosis of LDL programs ICLP, pages 112-129,

1990.

