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The Minimum Cost Design of Transparent Optical
Networks Combining Grooming, Routing,

and Wavelength Assignment
Agostinho Agra, Amaro de Sousa, and Mahdi Doostmohammadi

Abstract— As client demands grow, optical network operators
are required to introduce lightpaths of higher line rates in order
to groom more demand into their network capacity. For a given
fiber network and a given set of client demands, the minimum
cost network design is the task of assigning routing paths and
wavelengths for a minimum cost set of lightpaths able to groom
all client demands. The variant of the optical network design
problem addressed in this paper considers a transparent optical
network, single hop grooming, client demands of a single interface
type, and lightpaths of two line rates. We discuss two slightly
different mixed integer linear programming models that define
the network design problem combining grooming, routing, and
wavelength assignment. Then, we propose a parameters increase
rule and three types of additional constraints that, when applied
to the previous models, make their linear relaxation solutions
closer to the integer solutions. Finally, we use the resulting models
to derive a hybrid heuristic method, which combines a relax-and-
fix approach with an integer linear programming-based local
search approach. We present the computational results showing
that the proposed heuristic method is able to find solutions with
cost values very close to the optimal ones for a real nation-
wide network and considering a realistic fiber link capacity of
80 wavelengths. Moreover, when compared with other approaches
used in the problem variants close to the one addressed here, our
heuristic is shown to compute solutions, on average, with better
cost values and/or in shorter runtimes.

Index Terms— Optical transport networks, grooming, routing
and wavelength assignment, mixed integer linear programming,
valid inequalities, hybrid heuristics.

I. INTRODUCTION

CONSIDER a transparent optical network composed by
a set of optical switching nodes and a set of fibers,

each one connecting a pair of nodes. In modern fixed grid
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networks, the spectrum of each fiber is organized in a set T
of |T | different wavelengths of 50 GHz spectrum width where,
typically, |T | = 80. Data is transmitted from its source node
to its destination node by lightpaths which are optical paths
crossing a set of fibers and using one wavelength on each fiber.
In a transparent optical network, a lightpath must be assigned
with the same wavelength on all fibers of its path. For a given
set of lightpaths to be established on a given fiber network, the
classical Routing and Wavelength Assignment (RWA) problem
consists in assigning a routing path and a wavelength for each
lightpath, aiming to optimize a given target objective.

Since data is in the electrical domain and lightpaths are
in the optical domain, a pair of electrical-optical converters,
named transponders, is placed on the end nodes of each
lightpath. Moreover, the optical signal propagation is affected
by different factors like attenuation, dispersion, crosstalk and
other non-linear factors, commonly named physical impair-
ments, which limit the maximum length the signal can be
propagated from transmitter to receiver. To work properly,
a lightpath has an associated maximum length, commonly
named transparent reach. If a lightpath is required on a path
whose length is higher than its transparent reach, regenerators
must be placed at one or more intermediated nodes of the
lightpath (a regenerator is a back-to-back pair of transponders
that recovers the optical signal into the electrical domain and
resends it back to the optical domain). Nevertheless, the use of
regenerators is expensive and puts an additional burden on the
network management and, therefore, they are avoided when
possible (when regenerators are used, the network is referred
to as a translucent network).

Modern optical networks allow the client demands to be
groomed on lightpaths, i.e., multiple client demands grouped
to be transmitted over a single lightpath. This has two benefits:
it reduces the required number of lightpaths and it enlarges
the total transmission capacity of the network. In this case,
the transponders at the end nodes of a lightpath have one
multiplexer coupled to each of them (a transponder coupled
with a multiplexer is named a muxponder). The Optical Trans-
port Network (OTN) ITU-T G.709 recommendation defines
the grooming alternatives and resulting line rates for different
types of client demand interfaces. In this recommendation,
grooming is implemented in an electrical layer, named Optical
Transport Unit (OTU), and there are different OTU types to
support different client interface types. For example, for client
interfaces of 10 Gbps Ethernet type: (i) one such interface can
be transmitted in a lightpath of type OTU-2 with a line rate of

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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approximately 10 Gbps (in this case, there is no grooming),
(ii) four such interfaces can be groomed into a lightpath of
type OTU-3 with a line rate of approximately 40 Gbps or
(iii) ten such interfaces can be groomed into a lightpath
of type OTU-4 with a line rate of approximately 100 Gbps.

Each lightpath alternative has its own associated cost and
transparent reach and, in practice, lightpaths of higher line
rates can groom more client demands at the cost of being
more expensive and having shorter transparent reach. The
Grooming, Routing and Wavelength Assignment (GRWA)
network design problem is the combination of the grooming
problem with the classical RWA problem and consists in
assigning routing paths and wavelengths for a minimum cost
set of lightpaths able to groom all client demands.

In general, we can distinguish two grooming types: single
hop and multi hop grooming. In single hop grooming, light-
paths groom only client demands between their end nodes.
In multi hop grooming, a client demand can be groomed with
some other demands into a lightpath from its source node to
an intermediate node and groomed again with other demands
from the intermediate node to its destination node (this is the
two hop grooming case but the idea can be generalized to
multiple hops). Although some gains can be achieved with
lightly loaded networks, these gains become marginal for
reasonably loaded networks (most lightpaths become fully
occupied with direct demands) and, since it makes network
management more complex, network operators usually resort
to single hop grooming only.

We address the GRWA network design problem in the
context of a network operator with a highly loaded network
based on lightpaths of a given OTU type who aims to upgrade
it by introducing lightpaths of the next higher line rate OTU
type. Such lightpaths enable it to support more client demands
preventing the network to become fully occupied. So, the
operator aims to compute the lowest cost set of lightpaths
able to groom all its client demands allowing lightpaths of the
two OTU types to coexist on its network. The GRWA network
design problem addressed in this paper considers a transparent
optical network, single hop grooming, client demands of a
single interface type and lightpaths of two line rates.

Since GRWA (and, also, RWA) is NP-hard, most previous
works addressing these problems either propose pure heuris-
tic approaches or decompose the problem into subproblems
(grooming problem + routing problem + wavelength assign-
ment problem) and solve them sequentially. Although the
decomposition approach can be exact when the network is
lightly loaded (in this case, the grooming optimal solution can
be computed separately since there is always a RWA solution
for any grooming configuration), this is not our case of interest.
Some works (reviewed in the next section) have proposed
integer linear programming formulations for the classical RWA
problem and, more recently, for the harder GRWA problem
but the reported results have shown so far that they can
deal with problem instances significantly smaller than the real
cases. Nevertheless, using advanced integer linear program-
ming modeling techniques, together with the huge increase of
computer CPU processing capacity (multiple core CPUs and
multi-thread solver packages) and RAM memory capacity, we

can now aim to use integer linear programming to deal with
real sized problem instances.

In this paper, we first discuss two slightly different mixed
integer linear programming models that define the GRWA net-
work design problem. Then, we improve them with strength-
ening techniques (one based on increasing some problem
parameters and the others based on three types of additional
constraints) that, when applied to the previous models, make
their linear relaxation solutions closer to the integer solutions.
Finally, we use the resulting models to derive a hybrid heuris-
tic method which combines a relax-and-fix approach with
an integer linear programming based local search approach.
We present computational results showing that this heuristic
is able to find solutions with a cost value very close to the opti-
mal one. Moreover, when compared with previous approaches
(used in problem variants close to the one addressed here), the
proposed heuristic is shown to compute solutions, on average,
with better cost values and/or in shorter runtimes.

This paper is organized as follows. Section II presents
the previously published related work. Section III discusses
the two formulations defining our GRWA problem variant,
together with a method to compute valid lower bounds and
a decomposition that is used by other works. Section IV
describes the different techniques used to strengthen the pre-
vious formulations. Section V presents the hybrid heuristic.
The computational results are described and discussed in
Section VI. Finally, Section VII presents the main conclusions.

II. RELATED WORK

The classical RWA problem is known to be NP-hard [1].
It has been extensively studied in the literature although
only some of the works have dealt with efficient integer
linear programming formulations for it. In [2], Integer Linear
Programming (ILP) models are proposed for the RWA problem
assuming that wavelength conversion is available on network
nodes (a problem variant that makes the problem tractability
much easier) and the aim is to minimize the average number
of demand routing hops. In [3], different ILP models for the
RWA network design problem are compared (a flow based
formulation and a source based formulation) addressing both
cases with or without wavelength conversion. Nevertheless,
the computational results reported in both works ([2], [3])
show that only problem instances with a fiber capacity up
to 10 wavelengths can be solved to optimality. Finally, in [4],
different path-based formulations are compared to solve the
RWA problem aiming to maximize the total number of estab-
lished lightpaths. They show that branch-and-price methods
can solve the problem more efficiently than using compact
models (i.e., models with a polynomial number of variables)
and the computational results show that near optimal solutions
can be obtained for relevant sized networks with fiber capacity
of up to 34 wavelengths. A similar approach was also proposed
in [5] with more modest computational results, also due to the
computational resources available by then.

A more recent variant of the RWA problem, known as
impairment aware RWA (IA-RWA), considers the interference
between lightpaths due to non-linear impairments: we can get



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AGRA et al.: MINIMUM COST DESIGN OF TRANSPARENT OPTICAL NETWORKS 3

longer transparent reach values for each lightpath if wave-
lengths are assigned on each fiber minimizing the interference
between them. In [6], this problem is addressed showing that
efficient ILP models to define such problem are quite hard.
In [7], the authors propose ILP models, for small and medium
sized transparent networks and, since the models are hard
to solve larger networks, a three-phase heuristic is proposed.
In [8], the authors propose a heuristic where the RWA problem
is decomposed into its routing and wavelength assignment
subproblems which are solved separately. Nevertheless, the
transparent reach gains, while considering the impairment
aware variant, are only possible with lightly loaded networks
where only a few wavelengths are required on each fiber. When
total demand is significant, most of the wavelengths have to
be used in all fibers and the transparent reach of each lightpath
becomes a conservative value independent of the wavelengths
assigned to the other lightpaths.

The GRWA problem, which is much harder than the clas-
sical RWA problem, has been also addressed in recent works.
In [9], an additional constraint is considered on the maximum
number of transceivers on each node and the objective is
the throughput maximization (it is assumed that the network
cannot accommodate the total required demand). The authors
propose a path-based formulation and, since computational
results show that only small network sizes can be dealt
with, they propose a heuristic based on column generation
techniques. In [10], the GRWA network design problem is
addressed considering the minimization of the number of
lightpaths. They solve to optimality a test instance with 6
nodes with a fiber capacity of up to 30 wavelengths (still
significantly lower than the capacity of current optical net-
works). For bigger instances, they propose the decomposition
of the problem in two subproblems (Grooming problem +
RWA problem) that are solved sequentially. For heavily loaded
networks, though, this decomposition might fail since the
solution of the grooming problem might be unfeasible to
the RWA problem. Some works ([11], [12]) use path based
formulations and branch-and-price as a solution technique but
also do not consider the wavelength continuity constraints.
Other works use a reduced set of candidate paths ([11], [13]) to
make the methods scalable for larger problem instances. This
approach will be compared with our approach in Section VI.

All these previous works dealing with the GRWA prob-
lem consider that all lightpaths are of the same line rate.
In [14], though, the authors deal with the mixed line rates
case. They propose the decomposition of the problem in the
Grooming and Routing (GR) subproblem and the Wavelength
Assignment (WA) subproblem that are solved sequentially.
They start by solving the two subproblems considering a fiber
capacity of T wavelengths. If the solution of GR makes the
WA unfeasible, they decrement T and repeat the process. This
approach will be compared with our approach in Section VI.

As a final remark, note that network design problems fall
in the category of static (G)RWA problems. On the other
hand, dynamic problems consider that demand requests arrive
randomly, one at a time, and last in the network a finite random
time. In this case, the aim is to optimize some performance
metric like blocking probability (see [15]–[17]).

III. MIXED INTEGER LINEAR PROGRAMMING MODELS

Consider a fiber network defined by the graph G = (N, E)
such that the spectrum of each fiber e ∈ E is organized
in a set T of |T | wavelengths. Consider a set of demand
pairs D such that each demand pair d ∈ D is a node pair
that has at least one client demand between them. So, a
demand pair d ∈ D is defined by a pair of end nodes in G
and an integer demand value vd with the aggregated number
of client demand interfaces that must be supported between
its end nodes. To support the demands of each d ∈ D,
consider two types of lightpaths (type 1 and 2) that can be
set on the fiber network, defined by their capacities δ1 and δ2

(in number of client demand interfaces), respectively, such that
δ1 < δ2. Since we consider single hop grooming, the end
nodes of each lightpath are the end nodes of the demand pair
supported by it (note that different lightpaths supporting the
client demand interfaces between the same end nodes can be
routed differently).

Each lightpath can be set in the underlying fiber network
through a routing path whose length cannot be higher than its
transparent reach and lightpaths with higher line rates have
lower transparent reach values. So, the transparent reach l1 of
a lightpath of type 1 is higher than the transparent reach l2 of a
lightpath of type 2. Consider Pd as the set of all routing paths
for lightpaths of type 1 between the end nodes of demand
pair d ∈ D whose total length is not higher than l1. For each
routing path p ∈ Pd, the binary parameter αp is one if the
total length of p is also not higher than l2. A lightpath of type
i ∈ {1, 2} routed in path p ∈ Pd between the end nodes of
d ∈ D has an associated cost of cpi, such that cp1 < cp2.
Additionally, consider the set P =

⋃
d∈D Pd of all routing

paths and, from this set, the subsets Pe as the sets of all routing
paths that include fiber e ∈ E.

Consider the following variables. Variable xpti indicates
the amount of demand routed through path p ∈ P with the
assigned wavelength t ∈ T and using a lightpath of type
i ∈ {1, 2}. Binary variable ypti takes the value 1 if path p ∈ P
is in the solution with the assigned wavelength t ∈ T as a
lightpath of type i ∈ {1, 2} (it takes value 0, otherwise). The
GRWA network design problem can be formulated as:

min
∑

p∈P

∑

t∈T

2∑

i=1

cpiypti, (III.1)

s.t.
∑

p∈Pd

∑

t∈T

2∑

i=1

xpti = vd, d ∈ D, (III.2)

xpt1 ≤ δ1ypt1, p ∈ P, t ∈ T, (III.3)
xpt2 ≤ αpδ2ypt2, p ∈ P, t ∈ T, (III.4)
∑

p∈Pe

2∑

i=1

ypti ≤ 1, e ∈ E, t ∈ T, (III.5)

xpti ≥ 0, p ∈ P, t ∈ T, i ∈ {1, 2}, (III.6)
ypti ∈ {0, 1}, p ∈ P, t ∈ T, i ∈ {1, 2}. (III.7)

The objective function (III.1) is to minimize the solution
cost, which is the sum of the lightpath costs. Constraints (III.2)
guarantee that all client demands are routed through lightpaths.
Constraints (III.3) and (III.4) guarantee that the selected
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lightpaths have enough capacity to groom their supported
client demands. Constraints (III.5) ensure that, on each fiber e,
each wavelength t is assigned to at most one lightpath.
Constraints (III.6) and (III.7) are the variable domain
constraints.

Alternatively, consider variables xpt representing the
demand that is routed through path p ∈ P in the solution
with the assigned wavelength t ∈ T , i.e.:

xpt =
2∑

i=1

xpti, (III.8)

With these new variables, the GRWA network design prob-
lem can be formulated as:

min
∑

p∈P

∑

t∈T

2∑

i=1

cpiypti, (III.9)

s.t.
∑

p∈Pd

∑

t∈T

xpt = vd, d ∈ D, (III.10)

xpt ≤ δ1ypt1 + αpδ2ypt2, p ∈ P, t ∈ T, (III.11)

∑

p∈Pe

2∑

i=1

ypti ≤ 1, e ∈ E, t ∈ T, (III.12)

xpt ≥ 0, p ∈ P, t ∈ T, (III.13)

ypti ∈ {0, 1}, p ∈ P, t ∈ T, i ∈ {1, 2}. (III.14)

Henceforward we consider the following two mixed integer
linear programming models: Model 1 defined by (III.1)–(III.7)
and Model 2 defined by (III.9)–(III.14). In terms of complex-
ity, the number of constraints is O(max{|D|, |P | · |T |}) and
the number of variables is O(|P | · |T |) in both models. In the
general case, |P | increases exponentially with the graph size
but in our case the transparent reach of the lightpaths keeps
this number within reasonable values for relevant sized graphs.
Next, we provide two important remarks.

Remark 1: Constraints (III.11) are obtained by summing
up constraints (III.3) and (III.4), and applying (III.8). Thus,
relating the two models by summing up variables xpti,
i ∈ {1, 2}, and adding constraints (III.8) to the second
model, one can easily check that the aggregated Model 2
is weaker than Model 1, in the sense that the projection
of its linear relaxation set contains the linear relaxation of
constraints (III.2)–(III.7). However, since the x variables do
not appear in the objective function one can also check that
the linear relaxation of both models provides the same lower
bound.

Remark 2: One can check that the matrix of coefficients of
x variables is totally unimodular in both models, that is, each
square submatrix of the matrix of coefficients has determinant
0,−1, or +1. Therefore, for each binary set of values for the
y variables the linear relaxation of the resulting feasible set
will always provide integer values for x variables, see [18]
for details. Hence, we can drop the integrality requirements
on x variables in both models, as defined in constraints (III.6)
and (III.13).

Based on these two remarks, we might expect that Model 2
is better than Model 1 since it has slightly less number of
constraints and half of the real variables although the number

of integer variables remains the same. Nevertheless, with the
improvements described in the next section, the computational
results show that the resulting methods based on Model 1
obtain solutions with lower cost values.

Note that, when removing constraints (III.5) on Model 1 and
maintaining the integrality of the ypti variables, the problem
becomes easy to solve since it can be separated in a set
of subproblems, one for each d ∈ D. This is an easy way
to determine valid lower bounds that will be used in the
computational results. Assuming that cpi = ci, for all p ∈ P
(since in a transparent network regenerators are not used), the
subproblem associated with demand pair d ∈ D becomes a
2-dimensional knapsack problem defined as:

min{c1Y1 + c2Y2 : δ1Y1 + δ2Y2 ≥ vd, Y1, Y2 ∈ Z+},
where Y1 =

∑

p∈Pd

∑

t∈T

ypt1 and Y2 =
∑

p∈Pd

∑

t∈T

αpypt2. This

subproblem can be efficiently solved by an algorithm based
on the Euclidean algorithm (see [19] for details).

The overall problem can be decomposed in different ways
and many works use different decompositions to derive solu-
tion techniques. The one used in [14] decomposes the problem
in the Grooming and Routing (GR) problem and the Wave-
length Assignment (WA) problem. Since the method of [14]
will be used in the computational results, we formally define
this decomposition. The GR problem is modeled as:

min
∑

p∈P

2∑

i=1

cpiYpi, (III.15)

s.t.
∑

p∈Pd

2∑

i=1

Xpi = vd, d ∈ D, (III.16)

Xp1 ≤ δ1Yp1, p ∈ P, (III.17)

Xp2 ≤ αpδ2Yp2, p ∈ P, (III.18)
∑

p∈Pe

2∑

i=1

Ypi ≤ K, e ∈ E, (III.19)

Xpi ≥ 0, p ∈ P, i ∈ {1, 2}, (III.20)

Ypi ∈ {0, 1}, p ∈ P, i ∈ {1, 2}, (III.21)

where K = |T |, Xpi =
∑K

t=1 xpti and Ypi =
∑K

t=1 ypti.
The new variables are aggregated versions of the original ones
and GR assigns a routing path to each lightpath ensuring that
the fiber capacities are not exceeded. The WA subproblem
determines a wavelength assignment to the lightpaths of the
GR solution. In order to define an objective function to WA,
we use the minimization of the number of used wavelengths.
Let wt be a binary variable indicating whether wavelength t
is used or not. Given a solution (X∗, Y ∗) of GR, the WA
problem is modeled as:

min
∑

t∈T

wt, (III.22)

s.t.
∑

t∈T

ypti = Y ∗
pi, d ∈ D, p ∈ Pd, i ∈ {1, 2}, (III.23)

ypti ≤ wt, p ∈ P, t ∈ T, i ∈ {1, 2}, (III.24)

wt ≤ wt−1, t ∈ T, t > 1, (III.25)

wt ∈ {0, 1}, t ∈ T, (III.26)

(III.7),
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where constraints (III.23) guarantee that a wavelength t ∈ T
is assigned to each lightpath defined in Y ∗.

IV. IMPROVEMENTS

It is well-known that the derivation of strong formulations
is of key importance to solve mixed integer linear program-
ming problems using Branch and Cut (B&C) algorithms [18].
The linear programming (LP) relaxation of a problem is
the problem considering the original formulation with the
integer variables replaced by real variables (i.e., obtained by
replacing constraints (III.7) or (III.14) by 0 ≤ ypti ≤ 1).
The performance of B&C depends on how close the fractional
solutions of the LP relaxation are from the integer solutions
of the original problem. Linear programming techniques able
to cut off fractional solutions from the LP relaxation feasible
set while maintaining all integer solutions of the original
problem make the formulations stronger in the sense that
B&C is able to find either an optimal solution in shorter
runtime or a better solution for the same runtime limit.
In this section, we describe two types of techniques to
derive stronger formulations while keeping the total number
of constraints of the model under control. The first type is
the increase of the demand values. The second type is related
with the addition of different constraints. These constraints
are based on valid inequalities derived for simple mixed
integer sets arising from relaxations of the original feasible
set. We describe these improvements in detail in the following
subsections.

A. Demand Values Increase

Since the cost of a solution depends only on the lightpaths
and is not influenced on how occupied each lightpath is, we
can increase the demand values provided that the required set
of lightpaths remains unchanged. By increasing the demand
values vd, d ∈ D, we force the values of some x variables to
increase, which forces the values of y variables also to increase
in the LP relaxation (due to constraints (III.3) and (III.4)
in Model 1 or (III.11) in Model 2). Note that the demand
values increasing rule is parameter dependent. For δ1 = 4
and δ2 = 10, as considered in our problem instances,
the possible values for the installed lightpaths capacity are
the positive values given by all nonnegative integer linear
combinations of 4 and 10, which are 4, 8, 10, 12, 14, 16, . . . .
Hence, the demand values increasing rule is: for each d ∈ D,
(i) we set vd = 4 if vd < 4, (ii) we set vd = 8 if
4 < vd < 8 and (iii) we set vd = vd + 1 if vd > 8
and odd.

B. Valid Inequalities

One possible approach to derive valid inequalities for
a mixed integer linear problem is, first, to identify sim-
ple mixed integer sets arising as relaxations of the origi-
nal feasible set. Consider the set of feasible solutions of
Model 1 defined by X . In this section, we discuss three
different relaxation sets of X for which valid inequalities are
known. Using such inequalities, we derive valid inequalities
for X .

Fig. 1. Facet-defining inequalities for conv({(Y1 , Y2) ∈ Z
2 | 4Y1 +

10Y2 ≥ 34}, Y1, Y2 ≥ 0).

1) Integer Knapsack Relaxation: A first relaxation is
obtained for each d ∈ D from inequalities (III.2), (III.3)
and (III.4) as follows:
∑

p∈Pd

∑

t∈T

(δ1ypt1 + δ2αpypt2)≥
∑

p∈Pd

∑

t∈T

(xpt1 + αpxpt2) = vd.

Setting Y1 =
∑

p∈Pd

∑

t∈T

ypt1 and Y2 =
∑

p∈Pd

∑

t∈T

αpypt2, the

previous inequality can be written as

δ1Y1 + δ2Y2 ≥ vd. (IV.1)

Thus, the following two integer variables knapsack set is
obtained as a relaxation of X.

XIK =
{
(Y1, Y2) ∈ Z

2 | δ1Y1 + δ2Y2 ≥ vd, Y1, Y2 ≥ 0
}
.

The strongest valid inequalities for XIK are the facet-defining
inequalities which, for such sets, can be derived in polynomial
time [19] and whose coefficients are obtained, in general, using
the euclidian algorithm. The number of facet-defining inequal-
ities is polynomial. For the particular case of coefficients
considered in the computational results (δ1 = 4 and δ2 = 10),
we have at most four non-trivial facet-defining inequalities for
each d ∈ D (Y1 ≥ 0 and Y2 ≥ 0 are called trivial), which are
of the following forms: 2Y1 + 5Y2 ≥

⌊
vd

2

⌋
+ 1, Y1 + 3Y2 ≥

⌊
vd

4

⌋
+ 1, Y1 + 2Y2 ≥

⌊
vd

5

⌋
+ 1 and Y1 + Y2 ≥

⌊
vd

10

⌋
+ 1

leading to the following valid inequalities for X :

2
∑

p∈Pd

∑

t∈T

ypt1 + 5
∑

p∈Pd

∑

t∈T

αpypt2 ≥
⌊vd

2

⌋
+ 1,

∑

p∈Pd

∑

t∈T

ypt1 + 3
∑

p∈Pd

∑

t∈T

αpypt2 ≥
⌊vd

4

⌋
+ 1,

∑

p∈Pd

∑

t∈T

ypt1 + 2
∑

p∈Pd

∑

t∈T

αpypt2 ≥
⌊vd

5

⌋
+ 1,

∑

p∈Pd

∑

t∈T

ypt1 +
∑

p∈Pd

∑

t∈T

αpypt2 ≥
⌊ vd

10

⌋
+ 1.

Example 3: Let vd = 34, for some d ∈ D. So XIK =
{(Y1, Y2) ∈ Z

2 | 4Y1 + 10Y2 ≥ 34, Y1, Y2 ≥ 0}. The segment
line 4Y1+10Y2 = 34 is drawn by dashed line in Fig. 1. As it is
shown in Fig. 1, the convex hull of XIK has three non-trivial
facet-defining inequalities: 2Y1+5Y2 ≥ 17, Y1+3Y2 ≥ 9, and
Y1 + Y2 ≥ 4. Note that, for vd = 34, one of the inequalities
described above is not facet-defining and, therefore, do not
need to be considered.
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These inequalities can be added a priori to the models or
added dynamically, that is, an inequality is added when the
fractional solution violates that inequality. These inequalities
can also be extended to the case where more than two types
of lightpaths are considered, as described in [20].

2) Clique Inequalities: A common relaxation, when incom-
patibility between binary variables is considered (i.e., variables
that cannot simultaneously assume value 1 in the solution)
is the vertex packing set. These incompatibilities are often
called conflicts and are represented in a conflict graph where
nodes represent variables and edges represent incompatibil-
ity between two binary variables. Given a conflict graph
G = (N , E), the vertex packing set [21] is defined as

XV P =
{
z ∈ {0, 1}n | zu + zv ≤ 1, (u, v) ∈ E

}
, where

zu is a binary variable indicating whether node u is selected
or not and n = |N |.

Here, each node u of the conflict graph in N is a triple
(p, t, i) that corresponds to a variable ypti and there is an
edge in E between two nodes (p, t, i) and (p′, t′, i′), if the
corresponding variables cannot be set simultaneously to one,
that is, ypti + yp′t′i′ ≤ 1. Constraints (III.5) impose incom-
patibility between all pairs of variables representing lightpaths
that use the same wavelength on the same fiber. A complete
description of the convex hull of XV P is not known and since
optimizing a linear function over XV P is NP-hard, there is no
much hope in finding such a description. Nevertheless, families
of valid inequalities are known [18] and one of the most well-
known families is the set of clique inequalities. A clique in
a graph is a subset of nodes such that for each pair of nodes
in the subset there exists an edge connecting them. In the
present case, a clique is a set of variables that are pairwise
incompatible. Then, the following result stands:

Proposition 4: If C ⊂ N is a clique in the conflict graph G,
then the inequality (called clique inequality)

∑

(pti)∈C

ypti ≤ 1, (IV.2)

is valid for X.
A maximal clique is a clique that cannot be extended by

including one more adjacent node, meaning it is not a subset
of a larger clique. It is well-known that only clique inequalities
associated with maximal cliques need to be considered [21].
As the number of clique inequalities can increase exponen-
tially with the number of variables, this family of inequalities
is, in general, added dynamically.

Our preliminary experiences showed that there are too many
clique inequalities resulting in too large models (some of
these clique inequalities can also be identified and added auto-
matically by the solver). Therefore, we focused on deriving
clique inequalities that use the knowledge of the structure
of the GRWA network design problem. A family of clique
inequalities that was shown to be effective in cutting off
fractional solutions with a small number of inequalities is as
follows. We define a Y-structure of a network as a subgraph
which contains four nodes with the structure shown in Fig. 2
where node B is the central node. Considering the conflicts

Fig. 2. Y-structure subgraph.

arising from Y-structures, for t ∈ T , the clique inequality

∑

p∈PB

2∑

i=1

ypti ≤ 1,

is valid for X where

PB =
{
p ∈ P | p passes through central node B

}
.

In order to identify these clique inequalities, we identify
each Y-structure on the fiber network defined by the graph
G = (N, E) (note that each node on N with a degree of 3
is the central node of a Y-structure) and add the value of all
ypti variables representing paths that include two edges of the
Y-structure. If the total value is greater than one, then the
corresponding clique inequality (IV.2) is added.

3) Mixed Integer Rounding (MIR) Inequalities: MIR is a
technique to derive strong valid inequalities for mixed integer
sets. The well-known MIR inequalities [18] can be stated as
follows.

Proposition 5: Consider the simple mixed integer set
XSMI = {(S, Y ) ∈ R+ × Z | S + aY ≥ b} where a, b ∈ R+

are arbitrary constants. The inequality (called MIR inequality)

S ≥ r
(�b/a� − Y

)
, (IV.3)

is valid for XSMI , where r = b − (�b/a� − 1)a.
Next, we apply this proposition to derive valid inequalities

for X . In order to do that, we define mixed integer sets of
the form of XSMI that result from the relaxation of X . For
each lightpath type i ∈ {1, 2}, each demand pair d ∈ D
and considering a subset of paths P ⊂ Pd and a subset
of wavelengths T ⊂ T, we use constraints (III.2), (III.3)
and (III.4) to show that:

∑

p∈Pd

∑

t∈T

∑

j∈{1,2}|j �=i

αpjxptj +
∑

p∈Pd\P

∑

t∈T\T

αpixpti

+
∑

p∈P

∑

t∈T

αpiδiypti ≥
∑

p∈Pd

∑

t∈T

2∑

j=1

αpjxptj = vd.

where αp1 = 1 and αp2 = αp. To obtain this inequality, we
start from constraint (III.2) and replace variables xpti (with
p ∈ P and t ∈ T ) with the term δiypti (if i = 1) coming from
constraints (III.3) or the term αpδiypti (if i = 2) coming from
constraints (III.4). In this way, for a given type i and demand
pair d, the inequality (IV.3) holds by setting

S =
∑

p∈Pd

∑

t∈T

∑

j∈{1,2}|j �=i

αpjxptj +
∑

p∈Pd\P

∑

t∈T\T

αpixpti,

Y =
∑

p∈P

∑

t∈T

αpiypti, a = δi, b = vd.
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Fig. 3. MIR inequality for XM = {(S, Y ) ∈ R+ × Z | S + 4Y ≥ 14}.

Algorithm 1 Relax and Fix Algorithm
1: Solve the LP relaxation of Model 1 with increased demand

values
2: repeat
3: Identify and add violated inequalities
4: Solve the LP relaxation of the resulting model
5: until no new violated inequalities are found
6: Set (x′, y′) to the fractional solution
7: Set variables ypti to one if y′

pti = 1 and run solver for at
most T ime1 seconds

8: Set variables ypt2 to one if y′
pt2 = 1 and run solver for at

most T ime1 seconds
9: Set (x, y) to the best solution found

Example 6: Let a = δ1 = 4 and vd = 14. In Fig. 3, the
facet of the convex hull of XSMI defined by the MIR inequality
S + 2Y ≥ 8 ⇔ S ≥ 2(4 − Y ) is the line segment between
points (0, 4) and (2, 3).

In order to identify the MIR inequalities, we have to decide
whether each pair (p, t) belongs to (P , T ) or not. We select
one MIR inequality for each i ∈ {1, 2} and each d ∈ D in the
following way: for a given relaxation solution, we compare
the value of xpti with r · ypti and put (p, t) in (P , T ) if
xpti > r · ypti.

V. HYBRID HEURISTIC PROCEDURE

As we are dealing with an NP-hard problem, one can hardly
expect to solve all problem instances to optimality within
reasonable runtime limits. Hence, in this section, we propose a
heuristic procedure combining two algorithms: a Relax and Fix
Algorithm that aims at finding an initial feasible solution and
a Local Search Algorithm that aims at improving the feasible
solution provided by the first algorithm.

In the Relax and Fix Algorithm (see Algorithm 1), we start
by determining a fractional solution (x′, y′) (steps 1 to 6) in
the following way: we solve the LP relaxation of Model 1 with
the demand values increasing rule as defined in the previous
section (Step 1) and, then, we add the valid inequalities that
are violated and solve again the LP relaxation until no new
violated inequalities are found (steps 2 to 5). The addition of
the valid inequalities follows the order: Knapsack, MIR, and
Clique inequalities (the computational tests have shown that
this order leads to the smallest number of added inequalities,
keeping the size of the models as small as possible).

Then, some of the y binary variables with value 1 in the
fractional solution (x′, y′) are fixed to 1 and the resulting

Algorithm 2 Local Search Algorithm
1: repeat
2: Fix the variables ypt1 to one if y′

pt1 = 1 and ypt1 = 1
3: Add inequality (V.1)
4: Run solver for at most T ime2 seconds
5: If a better solution is found then update (x, y)
6: until No improvement is obtained

restricted integer model is solved with a runtime limit of
T ime1. We have considered two fixing strategies: (i) fix to 1
all ypti variables i.e., for both types of lightpaths i ∈ {1, 2}
that have value 1 (step 7) and (ii) fix to 1 the ypt2 variables
(i.e., only for lightpaths of type 2) that have value 1 (step 8).
In the first case, we have a more restrictive integer model that
is solved in shorter runtime but has a lower probability of
being feasible. In the second case, we have a less restrictive
integer model that is solved in longer runtime but has a higher
probability of being feasible. If both approaches provide a
feasible solution, the best one is chosen (step 9).

The Local Search Algorithm (see Algorithm 2) takes as
input the best solution, denoted by (x, y), obtained by the
previous algorithm, and searches for better solutions in a
neighborhood of this solution. This neighborhood is charac-
terized by those solutions such that the number of lightpaths
assigned to a path and/or to a wavelength that differs from the
one in y is at most Δ. From a modeling point of view, this
corresponds to adding (in step 3) a constraint ensuring that
at most Δ variables ypti can have a different value from the
value they have in solution (x, y), which is given by ypti:

∑

p∈P,t∈T,i∈{0,1}|ypti=0

ypti

+
∑

p∈P,t∈T,i∈{0,1}|ypti=1

(1 − ypti) ≤ Δ. (V.1)

The first term counts the number of variables ypti that have a
value 0 in (x, y) and flip their value to 1 while the second term
counts the number of variables ypti that have a value 1 in (x, y)
and flip their value to 0. Then, we solve the resulting model
for at most T ime2 seconds (step 4), update the best feasible
solution if a better solution is found (step 5) and repeat the
process until no improvement is obtained (step 6). In order
to speed up the algorithm, we fix to 1 all variables that have
value 1 in both the fractional and the best solution (step 2).

Note that Δ, T ime1 and T ime2 are parameters of the
heuristic procedure. For the problem instances considered in
the computational results, and after some preliminary com-
putational tests, we have observed that the best trade-off
between the quality of the final solution and the runtime to
find it, on average, was obtained with the parameters Δ = 5,
T ime1 = 1500 seconds and T ime2 = 600 seconds.

An important issue is whether the Relax and Fix Algorithm
is able to find a feasible solution when the problem is feasible.
We added a last step to the Relax and Fix Algorithm that is
run when none of the fixing strategies finds a feasible solution.
In this step, paths that are common to both lightpath types
are only considered for type 2 (i.e., for p ∈ P such that
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αp = 1 we set xpt1 = 0 and ypt1 = 0 in Model 1). We solve
this model (which is much easier). If the problem is feasible,
the feasible solution is given as input to the Local Search
Algorithm. Otherwise, we show that the problem is infeasible.

As a final remark, note that two alternative approaches for
the Relax and Fix Algorithm used in other works could be as
follows. After computing the fractional solution (x′, y′), the
initial solution (x, y) is determined by (i) applying rounding
techniques or (ii) solving the integer problem restricted to the
non-null variables of (x′, y′). Our computational tests have
shown that the proposed Relax and Fix Algorithm computes
always significantly better cost solutions due to the obvious
reason that is less restrictive (we fix to 1 some variables that
are 1 in the LP solution and we keep in the model all other
variables free) and, in many cases, the alternative approaches
fail to provide a feasible solution.

VI. COMPUTATIONAL RESULTS

The problem instances used for these computational results
assume that all client demand interfaces are of Ethernet
10 Gbps type and lightpaths can be either of type OTU-3
(δ1 = 4) or of type OTU-4 (δ2 = 10). Following a recent
paper [22] (which proposes a cost model for different core
network components, including optical components, together
with predictions for technology evolution up to 2018), we have
assumed a transparent reach of l1 = 2500 km for lightpaths
of type OTU-3 and of l2 = 2000 km for lightpaths of type
OTU-4. Note that the transparent reach of a lightpath is
imposed by the optical degradation suffered not only on the
fibers but also of the intermediate optical switching nodes.
We consider that the optical degradation suffered by a lightpath
while traversing an optical switching node is equivalent to the
degradation incurred due to transmission over a 160 km of
fiber link [23].

Concerning costs, since we do not consider regenerators in
the middle of lightpaths, a lightpath cost is the sum of the
muxponder costs of its end nodes. We assume a reference
cost of 100 (i.e., cp1 = c1 = 100, for all p ∈ P ) for a
pair of muxponders required in a lightpath of type OTU-3
(muxponders grooming 4 Ethernet 10 Gbps demands into one
OTU-3 lightpath). Then, we consider three possible cost values
for the muxponder pairs required in the lightpaths of type
OTU-4 (muxponders grooming 10 Ethernet 10 Gbps demands
into one OTU-4 lightpath): a cost of 340 (representing an
early introduction of this technology in the market with a
very high price), a cost of 260 (representing a decrease of
price due to increased market penetration) and a cost of 180
(representing a huge decrease of price due to advances in
equipment manufacturing). Therefore, cp2 = c2 = 340, 260
or 180, for all p ∈ P .

In all problem instances, we have considered the topology
of the German Backbone Network (GBN), with 17 nodes and
26 edges (Fig. 4) and a fiber capacity of |T | = 80 wavelengths.
The fiber lengths of GBN (also shown in Fig. 4) are such that
it is always possible to set up a lightpath between any pair of
nodes within the considered transparent reach values.

Concerning client demands, we have randomly generated
9 demand scenarios involving different numbers of demand

Fig. 4. German Backbone Network (fiber lengths in km).

pairs and different levels of aggregated demand. We have
considered three values for the number of demand pairs |D| ∈
{50, 70, 90} which represent around 37%, 51% and 66% of the
total number of node pairs, respectively. For each value of |D|,
three instances were randomly generated corresponding to
three levels of aggregated demand. First, the end nodes of each
demand pair d are randomly selected (considering all nodes
with the same probability). Then, the aggregated demand
value vd of each pair d is an integer number ran-
domly generated in the intervals ]0, 3000/|D|], ]0, 6000/|D|],
]0, 9000/|D|] and the corresponding instances are denoted by
a, b, c, respectively. Note that, on average, the total number
of Ethernet 10 Gbps client demands is 1500 on instances a,
3000 on instances b and 4500 on instances c. In general, the
best solutions for instances of type a have few fully occupied
fibers (i.e., using the 80 wavelengths), while the best solutions
for instances of type c have typically many fully occupied
fibers.

All computations were performed using the optimization
software Xpress-Optimizer Version 28.01.04 with Xpress
Mosel Version 3.10.0, on a computer with processor
Intel Core i7, 2.4 GHz and with 16 GB RAM.

Based on preliminary tests, Model 1 was shown to provide
the best performance (either it reaches the same results in
shorter runtimes or it reaches better results within the same
runtime limit). Note that the MIR inequalities cannot be
applied to Model 2 (one of the reasons why the proposed
heuristic based on Model 1 is more efficient). So, we only
present the results based on Model 1. Table I (for c2 = 180),
Table II (for c2 = 260) and Table III (for c2 = 340) present
the lower bounds provided by the cost of the LP relaxation
solutions of Model 1 without improvements (column M),
Model 1 with increased demands (column M + I), Model 1
with increased demands and Knapsack inequalities (column
M + IK), Model 1 with increased demands, Knapsack and
MIR inequalities (column M + IKM ), and Model 1 with
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TABLE I

LOWER BOUNDS FOR THE CASE c2 = 180

TABLE II

LOWER BOUNDS FOR THE CASE c2 = 260

TABLE III

LOWER BOUNDS FOR THE CASE c2 = 340

increased demands, Knapsack, MIR and Clique inequalities
(column M + IKMC). These tables also present the no.
of variables that are set to 1 in the fractional solutions
(columns 1’s) and the no. of inequalities added by each method
(columns Cuts).

A first observation of these results is that the number of
added inequalities is reasonably low, therefore, not penal-
izing significantly the performance of B&C (as explained
in Section IV). Moreover, the increased demands and the
Knapsack inequalities improve significantly the lower bounds
of the resulting models while the MIR and the Clique
inequalities have a minor impact since, although cutting off
fractional solutions, they do not improve the lower bound
for any of the problem instances. Concerning the number of
variables that are set to 1 in the fractional solutions, there is
a significant increase of this value from Model 1 without any
improvement to Model 1 with all improvements. Therefore,
not only the lower bounds are improved but also the fractional
solutions exhibit more variables set to 1 which is of paramount
importance to the efficiency of the Relax and Fix strategy
(see Section V). Note that the addition of each different type
of valid inequalities does not necessarily result in the increase

TABLE IV

LOWER BOUNDS OBTAINED THROUGH THE 2-DIMENSIONAL
KNAPSACK SUBPROBLEMS RELAXATION

of the number of variables set to 1. The results show that the
number of such variables might even decrease in some cases
(especially when adding the MIP and Clique inequalities).
In general, the fractional solutions become closer to the integer
solutions not only when the variables that should be 1 in the
integer solutions become closer to 1 in the fractional solutions
but also when the variables that should be 0 in the integer
solutions become closer to 0 in the fractional solutions.

In Table IV, we present the lower bounds obtained by
solving the 2-dimensional knapsack subproblems as described
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TABLE V

BOUNDS GIVEN BY MODEL 1 WITH ALL IMPROVEMENTS (OPTIMAL VALUES IN BOLD, TIME VALUES IN h:mm:ss FORMAT)

TABLE VI

RESULTS OBTAINED USING THE HEURISTIC PROCEDURE (TIME VALUES IN h:mm:ss FORMAT)

in Section III. Comparing these values with the previous lower
bounds, we can see that the lower bounds obtained from the
linear relaxation with the proposed improvements are always
either better or equal.

Before running the heuristic procedure, we have run Xpress
to solve Model 1 with all improvements with a runtime limit
of 2 hours. The results are presented in Table V where the
best solution cost values are shown in columns UB (the
optimal values are highlighted in bold), the lower bound
values at the end of the runs are shown in columns LB
and the running times (in h:mm:ss) are shown in columns
Time (a running time of 2:00:00 means that the runtime limit
was reached). Note that in 12 out of 27 problem instances,
a provable optimal solution was not obtained, despite the
significant lower bound improvements of the strengthening
techniques. Overall, problems are harder to solve for higher
values of c2, higher values of aggregated demand, and client
demands spread among more node pairs. Nevertheless, these
results enable another important conclusion. Note that if we
consider the decomposition of the GRWA problem into the
Grooming subproblem + the RWA subproblem (the usual
decomposition for lightly loaded problem instances), the solu-
tion of the Grooming subproblem is given by the solution
of the 2-dimensional knapsack subproblems (as described in
Section III). So, the problem instances whose cost values
shown in Table IV are lower than the lower bounds shown
in Table V cannot be solved with this decomposition, (i.e., the
optimal solution of the Grooming subproblem does not allow
a feasible solution to the RWA subproblem). Note that this
happens when c2 is 260 or 340 (the cases that have motivated
this work) showing that solving techniques based on such
decomposition are invalid for the cases addressed here.

In Table VI, we present the results obtained by the heuristic
procedure, as described in Section V. The cost values of
the best solutions obtained by the heuristic procedure are
given in columns H while columns BLB present the best
known lower bound for each problem instance (this bound
is the best bound among the ones presented in the previous
tables). The corresponding gap 100 ∗ (H − BLB)/BLB is
presented in columns GAP. The overall running time is given
in columns Time. Note that for all 15 problem instances that
were optimally solved before, the heuristic procedure was
also able to find solutions with the same optimal cost value
(the ones whose gap is 0%). Moreover, in the remaining
cases, all gaps were below 1.0% showing, in this way, that
the proposed heuristic approach is able to find solutions
with cost values always very close to the optimal ones (the
average gap increases as c2 increases but, for any c2 value,
the average gap is always below 0.2%). Finally, comparing
these results with the ones shown in Table V, the heuristic
procedure was always faster, providing a better solution for
8 problem instances and a slightly worst solution for 2 problem
instances.

Note that we have also run the heuristic procedure with
two other settings: (i) without using the Clique inequalities
and (ii) without using the MIR and Clique inequalities.
In setting (i), the cost values of the best solutions were worse in
6 instances (with an average penalty of 3.28%) and better in
only 2 instances (with an average improvement of 0.06%).
In setting (ii), the cost values of the best solutions were worse
also in 6 instances (with an average penalty of 3.22% and
better also in only 2 instances (with an average improvement
of 0.03%). So, in both cases, the results are better, on average,
when all types of valid inequalities are used although, as seen
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TABLE VII

VALUES OBTAINED THROUGH OTHER HEURISTICS INSPIRED ON RELATED WORKS

before, the MIR and Clique inequalities neither improve the
lower bounds nor increase the number of variables set to 1 in
the fractional solutions.

In order to evaluate the merits of the proposed heuristic, we
have considered two other approaches proposed for problem
variants close to ours. The cost values of the best solutions
and runtime values are shown in Table VII.

The first approach is based on the iterative method proposed
in [14] that considers the decomposition of the problem in the
Grooming and Routing (GR) subproblem + the Wavelength
Assignment (WA) subproblem solved sequentially on each
iteration. We start by solving the two subproblems (using the
models as described in Section III) considering a fiber capacity
of K = |T | wavelengths. If the solution of GR makes the WA
unfeasible, we decrement K and repeat the process. Note that
the process might end without any solution if it reaches a
value of K which makes GR infeasible. Our implementation
is an improved version of the original one since, in [14], the
GR subproblem is restricted to the 3 shortest paths for each
demand pair and the WA subproblem is solved heuristically.
The results of our implementation are shown in columns D of
Table VII. These results show that our improved version of that
approach could not find solutions for 7 out of the 27 instances.
For the other instances, the cost values of the best solutions
were worse in 8 instances and better in none. In the instances
where both methods gave equal cost solutions, though, that
method was faster, on average, than our method. In conclusion,
our approach clearly outperformed the improved version of the
approach proposed in [14].

The second approach is to consider a restricted set of routing
paths for each demand pair d ∈ D (we have considered
the 7 shortest paths in number of hops) and solve Model 1
on this restricted set (an approach used in many works to
let the models scale to larger instances). Two settings were
tested: with and without using the improvements proposed in
Section IV. The results with a runtime limit of 2 hours are
shown, respectively, in columns R + imp and R of Table VII
where numbers between brackets indicate the runtime value
(otherwise, the runtime limit was reached). Comparing the
cost of the best solutions between the two settings, without
the proposed improvements the restricted model has failed to
find a feasible solution in 7 instances (with the improvements
a feasible solution was found for all instances), the cost
values were worse in 12 of the remaining instances and were
better in none of the remaining instances. These results show

that the improvements proposed in Section IV are also a
valid contribution to improve the efficiency of other known
methods. Comparing the best setting of the restricted method
with our approach (whose results were shown on Table VI),
we can check that it was significantly worse in 7 instances
and slightly better in only 2 instances. Moreover, in terms
of running times, our method exhibits shorter runtime values
for 24 out of 27 instances. In conclusion, our approach clearly
outperformed this approach even when improved with the
techniques proposed in Section IV.

VII. CONCLUSIONS

This paper has addressed the minimum cost network design
of transparent optical networks combining grooming, routing
and wavelength assignment. We have discussed two mixed
integer linear formulations for the design problem and intro-
duced strengthening techniques to improve them. With the
improved formulations, it was possible to solve some instances
to optimality and to derive good lower bounds that are essential
to evaluate the quality of the feasible solutions obtained
through heuristics.

Based on the improved formulations, and by combining
two heuristic techniques (relax-and-fix and local search), we
have derived a hybrid heuristic technique that allowed us
to obtain optimal or near optimal solutions for all tested
problem instances. The tests were based on a real nation-wide
network and have considered a realistic fiber link capacity of
80 lightpaths. Moreover, we have compared our approach with
two other approaches proposed for problem variants close to
the one addressed here and the results have shown that our
approach outperformed the other ones.

Note that the proposed techniques can be easily adapted to
other values of client demand types and lightpath line rates.
Moreover, they can also be extended for more complex cases
with multiple client demand types and more than two line
rates. Nevertheless, in practice, the usefulness of such cases
might be low. For example, the number of line rates on real
networks tends to be low since when an higher line rate and
cost effective technology becomes commercially available, the
lowest line rate technology is progressively removed to make
room for the new one.

As a final remark, although column generation, and branch-
and-price, have been successfully used with path based
formulations, in general, there is the need to derive a decom-
position of the problem into one master problem and a set
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of subproblems such that both problems are not very hard to
solve. Applying such techniques to the GRWA problem is a
challenging problem since, in this case, the master problem
should deal with the grooming part of the problem. In this
work, such techniques were not required since the solver was
able to deal with the models containing all possible routing
paths and, such techniques become more interesting only when
such models become prohibitively large.
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