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ABSTRACT
The stellar haloes of large galaxies represent a vital probe of the processes of galaxy evolu-
tion. They are the remnants of the initial bouts of star formation during the collapse of the
protogalactic cloud, coupled with imprint of ancient and ongoing accretion events. Previously,
we have reported the tentative detection of a possible, faint, extended stellar halo in the Local
Group spiral, the Triangulum galaxy (M33). However, the presence of substructure surround-
ing M33 made interpretation of this feature difficult. Here, we employ the final data set from
the Pan-Andromeda Archaeological Survey, combined with an improved calibration and a
newly derived contamination model for the region to revisit this claim. With an array of new
fitting algorithms, fully accounting for contamination and the substantial substructure beyond
the prominent stellar disc in M33, we reanalyse the surrounds to separate the signal of the
stellar halo and the outer halo substructure. Using more robust search algorithms, we do not
detect a large-scale smooth stellar halo and place a limit on the maximum surface brightness
of such a feature of μV = 35.5 mag arcsec−2, or a total halo luminosity of L < 106 L�.

Key words: galaxies: haloes – galaxies: individual: M33 – Local Group.

1 IN T RO D U C T I O N

A key feature of � cold dark matter cosmological models is the
hierarchical formation of structure (see Mo, van den Bosch & White
2010, for an overview). With this, large galaxies are built up over
time through the continual accretion of smaller structures. Accretion
progenitors that fall towards the centre of their new host are heavily
disrupted and the short dynamical time-scales in the inner halo
rapidly mix accreted structures to form a smooth stellar background.
In the outer halo, where time-scales are longer, ongoing accretion
events can be found in the form of coherent phase-space stellar
streams. However, major mergers can add to the confusion, violently
disrupting the host and erasing most information of past accretions.
The final resting place of many of the accretion events is the diffuse
stellar halo, a faint component making up only a few per cent of
the total luminosity of its host galaxy. Hence the properties of these

� E-mail: b.mcmonigal@physics.usyd.edu.au

stellar haloes represent an archaeological record of the processes
that shape a galaxy over cosmic time (e.g. Brook et al. 2004; Bullock
& Johnston 2005; Cooper et al. 2015).

Recent focus has turned to studying the stellar haloes of Local
Group galaxies through the identification of resolved stellar pop-
ulations, with surveys such as SDSS/Sloan Extension for Galactic
Understanding and Exploration revealing the extensive halo prop-
erties of our own Milky Way (e.g. Xue et al. 2015). The other
large galaxies within the Local Group, namely the Andromeda
(M31) and Triangulum (M33) galaxies, have been the targets of
the Pan-Andromeda Archaeological Survey (PAndAS), uncovering
substantial stellar substructure and an extensive halo surrounding
Andromeda (Ibata et al. 2014).

M33 has also been found to possess extensive stellar substruc-
ture, in the form of a highly distorted outer disc, thought to have
been formed in an interaction with the larger M31 (McConnachie
et al. 2009, 2010); this substructure is roughly aligned with the pre-
viously detected distorted H I disc (Putman et al. 2009; Lewis et al.
2013). Being about a 10th the size of the two other large galaxies
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The elusive stellar halo of M33 4375

within the Local Group, the properties of any stellar halo of M33
would provide clues to galaxy evolution on a different mass scale
than for the Milky Way and M31. The smooth halo component
around M33 has been extremely elusive; early work presented in
Ibata et al. (2007) claimed a detection, which was later shown to be
the extended substructure. Cockcroft et al. (2013), hereafter C13, af-
ter excising significant substructure and accounting for foreground
contamination, presented a tentative detection of a smooth stellar
halo with a scalelength of ∼20 kpc, and an estimated total luminos-
ity of a few per cent of the luminous disc. In this work, we revisit
the detection and characterization of the stellar halo of M33 using
new analysis techniques, the final PAndAS data set with improved
calibration, and a more detailed contamination model developed
from the PAndAS data (Martin et al. 2013b). We seek to fully char-
acterize the smooth component of the stellar halo without resorting
to masking the lumpy substructure component; ideally this should
be recovered and characterized as a byproduct of our analysis. In
order to monitor the validity of our results, we thoroughly test our
methods using synthetic data sets generated to match the PAndAS
data for M33.

Section 2 describes the data and models we employ in investigat-
ing the M33 stellar halo. In Section 3, we discuss the overarching
methodology we use throughout, including colour–magnitude se-
lection, spatial selection, masking, binning, and most importantly
the synthetic data used to test the fitting algorithms. We present
the results of our tests in Section 4, first of replicating the methods
in C13 and then of alternative algorithms, both for the PAndAS
data and synthetic mock data. Finally in Section 5 we discuss and
conclude.

2 PA N D A S DATA

The stellar data employed in this study was obtained as part of
the PAndAS (McConnachie et al. 2009). This large program
on the 3.6-metre Canada–France–Hawaii Telescope (CFHT) used
the 0.96 × 0.94 deg2 field of view MegaPrime camera to map out
the haloes of M31 and M33 to distances of approximately 150 and
50 kpc, with a total coverage of ∼390 deg2. Full details of the data
reduction are presented in Ibata et al. (2014), and a public release
of the data is forthcoming (McConnachie et al., in preparation). All
observations were taken in good seeing (�0.8 arcsec), with a mean
seeing of 0.67 arcsec in g-band and 0.60 arcsec in i-band. The resul-
tant median depth of the survey is g = 26.0 mag and i = 24.8 mag
(5σ ).

The data were pre-processed with CFHT’s ELIXIR pipeline, to per-
form bias, flat, and fringe correction and determine the photometric
zero-point of the observations. Further processing was undertaken
using a bespoke version of the CASU photometry pipeline (Irwin &
Lewis 2001) adapted for CFHT/MegaPrime observations, including
re-registration, stacking, catalogue generation and object morpho-
logical classification, and creating merged g, i catalogues. Based
on curve of growth analysis, the pipeline classifies objects as noise
detections, galaxies, and probable stars. We employ all objects in
the final catalogue that have been reliably classified as stars in both
bands (aperture photometry classifications of −1 or −2 in both g
and i, which corresponds to point sources up to 2σ from the stellar
locus). The CFHT instrumental magnitudes g and i are transformed
to de-reddened magnitudes g0 and i0 on a source-by-source basis,
using the following relationships from Schlegel, Finkbeiner & Davis
(1998): g0 = g − 3.793 E(B − V) and i0 = i − 2.086 E(B − V).

Despite every effort to systematically cover the PAndAS survey
region, holes are unavoidable at the location of bright saturated stars,

chip gaps, and a few failed CCDs. These holes are filled with fake
stars by duplicating information from nearby regions (for details,
see Ibata et al. 2014). These entries make up only a few per cent of
the catalogue entries, and are included in the following analysis to
best approximate homogeneous coverage of the M33 region.

2.1 Contamination model

For the study of the M33 halo, there are three main sources of ex-
tensive contamination within the PAndAS footprint: namely fore-
ground faint Milky Way dwarfs and M31 halo giant stars, and at
fainter magnitudes unresolved compact background galaxies. Since
the signal of the M33 stellar halo we are searching for is extremely
faint, it is critical that the contamination be modelled as accurately
as possible. In C13, this contamination was modelled as a constant
value, ignoring any spatial variation. This is reasonable for small
spatial regions, but is unlikely to be representative of the contami-
nation over a region as large as the M33 stellar halo. More recently,
Martin et al. (2013b) presented a spatially resolved contamination
model developed empirically from the PAndAS data, and it is this
model that is employed in this study. With this, the density of con-
taminants from intervening Milky Way populations, �, at a given
location (ξM31, ηM31) and a given colour and magnitude (g0 − i0,
i0) is given by an exponential dependent upon three components:

�(g0−i0,i0)(ξM31, ηM31) = exp(α(g0−i0,i0)ξM31

+ β(g0−i0,i0)ηM31 + γ(g0−i0,i0)). (1)

The coordinates, (ξM31, ηM31), in this model are a tangent-plane
projection centred on M31, although for the remainder of this work
we use the coordinates (ξ , η) to refer to the tangent-plane projec-
tion centred on M33. This contamination model also contains the
contribution of M31 halo giants to the colour–magnitude diagram
(CMD) through isochrone-driven models that encompass the spread
in populations through the halo.

The contamination model is defined over the colour and magni-
tude ranges 0.2 ≤ (g0 − i0) ≤ 3.0 and 20 ≤ i0 ≤ 24, and enables
the generation of a CMD for contamination at any location in the
PAndAS footprint. From these contamination CMDs, we can gen-
erate contamination luminosity functions and stellar densities for
any region of the PAndAS survey; for full details, see Martin et al.
(2013b).

3 M E T H O D O L O G Y

In this section, we explain how we have selected the data to be
fit, involving colour–magnitude cuts and spatial cuts. Then we de-
tail the process used to fit the data, which involves pixelation of
the data, model selection and parametrization, and Markov Chain
Monte Carlo (MCMC) algorithms. Finally, and most importantly,
we discuss the synthetic data sets generated to test the reliability of
the results of the fitting algorithms.

Fig. 1 shows Hess diagrams for the region around M33 split into
three rough radial ranges: disc, substructure, and halo. The upper-
left panel covers the inner range (‘disc’) from the centre out to
0.8 deg, within which the disc of M33 dominates completely. The
upper-right panel covers the intermediate range (‘substructure’),
from 0.8 to 2 deg. The extended stellar substructure around M33
discussed in McConnachie et al. (2010) is principally contained
within this range, and can be seen in the black selection box. The
lower-left panel contains the outer range (‘halo’), from 2 out to
3.75 deg. This range is dominated by contamination, and excluding
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4376 B. McMonigal et al.

Figure 1. Hess diagrams for the three key radial ranges around M33: disc (upper-left panel), substructure (upper-right panel), and halo (lower-left panel). The
lower-right panel presents a schematic of all key features visible in the other panels. This includes the contamination from the Milky Way (orange), the M33
disc (red), compact background galaxies and faint stars (grey), and the extended stellar substructure around M33 (purple). Isochrones are overlaid in green for
ancient 12 Gyr stellar populations at the distance of M33, with [α/Fe] = 0.0 and with [Fe/H] ranging from −2.5 (leftmost) to −1.0 (rightmost) in increments
of 0.5. Mean errors as a function of magnitude for the full stellar population are shown to the right of the lower-right panel. The selection box is marked in
black on all panels. Pixel size is 0.025 × 0.033 mag. Throughout this paper, colour maps were generated using the ‘cubehelix’ scheme (Green 2011).
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The elusive stellar halo of M33 4377

Figure 2. Stellar density of the contamination within our colour–magnitude
selection box, in the tangent-plane projection centred on M33, generated by
the model in Section 2.1.

the extended substructure, is otherwise identical to the ‘substruc-
ture’ range. To highlight the similarities between these two ranges,
the colour-axis for the ‘halo’ range has been shifted to match the
‘substructure’ range to normalize for area.

We do not extend the outer range past 3.75 deg for several reasons;
the PAndAS footprint only extends past 3.75 deg towards M31 in
the north-west, so going beyond this range would bias the data to
this quadrant (∼25 per cent of the azimuthal range). For the same
reason, this would risk a substantial increase in contamination from
the M31 stellar halo, which rapidly increases in density in this
direction. Finally, this cut-off matches C13, enabling a more direct
comparison to their results.

To assess the stellar completeness within our selection box over
the M33 region, we refer the reader to the extensive study presented
in Ibata et al. (2014). As noted in this study, the median depth of
PAndAS is 26.0 and 24.8 in g and i, respectively (5σ detection),
while Fig. 2 in this paper demonstrate the low dust extinction over
the region. Fig. 3 in Ibata et al. (2014) presents the spatial complete-
ness (again to 5σ ) for g (upper) and i (lower), respectively. Noting
that the i-band limit and colour range of the selection box presented
in Fig. 1, we can conclude that the stellar data under examination is
complete.

CFHT isochrones were generated using the Dartmouth Stellar
Evolution Database1 (Dotter et al. 2008) for ancient metal-poor
stellar populations at the distance of M33 using a distance modulus
of 24.57 (Conn et al. 2012) which corresponds to a distance of
820 kpc. The selection box marked in black in Fig. 1 is chosen
to cover the only area in colour–magnitude space these isochrones
occupy which is not dominated by contamination. The isochrone
populations fade to the upper right, as the contamination from the
Milky Way rapidly begins to dominate. Beneath the isochrones,
we fall into the noise of the background galaxies. The base of the
selection box is sufficiently bright so as to avoid issues with spatially
variable incompleteness. This selection box roughly matches C13,
further enabling a consistent match to their results.

This selection region is unsurprisingly completely overlapped by
the M33 disc population. As we are interested in searching for the

1 http://stellar.dartmouth.edu/models/index.html

halo of M33, this dominance at very small radii is not an issue. How-
ever, the extended stellar substructure also lies completely on top of
this selection box, and is spatially distributed throughout much of
the PAndAS footprint around M33, extending beyond 2 deg. Since
this substructure is coincident with the stellar halo both in spatial
location and colour–magnitude space, it is impossible to distinguish
using photometric data alone. This is very problematic, and com-
plicates the process of detecting the stellar halo significantly.

This selection region is also intersected by two sequences of
Milky Way contamination, previously identified in Martin et al.
(2014). The upper sequence was determined to be dominated by
the thin Pisces/Triangulum globular cluster stream, independently
discovered in the Sloan Digital Sky Survey (SDSS) data by Bonaca,
Geha & Kallivayalil (2012) and Martin et al. (2013a). The lower
sequence is likely related to TriAnd2, discovered in Martin, Ibata &
Irwin (2007). These streaks are much fainter than the other sources
of contamination, however they intersect with the selection box at
the base, where the signal for the stellar halo is most likely to be
seen.

Any stellar halo will be centrally concentrated, becoming system-
atically fainter into the outer halo. This fact highlights the difficulty
with detecting the M33 halo, as the entire inner region is polluted
with the extended substructure, masking the presence of the halo.
Looking beyond the substructure in the ‘halo’ range, there is no
obvious sign of a halo sequence in the selection box. Therefore, the
only hope for finding the halo is a statistical detection.

By summing the contamination model over the colour–magnitude
selection box, we obtain a stellar density contamination map for the
entire M33 region, shown in Fig. 2. This contamination map varies
by 50 per cent over our spatial selection, so it is a significant shift
away from the assumption of a constant contamination level used
in C13.

A smoothed contamination-corrected stellar density map for the
M33 region, using the colour–magnitude selection box discussed
above, is shown in Fig. 3. The M33 disc dominates in the centre,
with the extended substructure dominating the rest of the inner-
most radial degree, and stretching out beyond two degrees to the
north, and out to two degrees to the south. M31 lies ∼15 deg to
the north-west, with the prominent dwarf galaxy Andromeda II
nearby, but outside our selection radius, at (−3.6, 2.8). Andromeda
XXII is within our selection but barely visible at (−1.4, −2.6).
Several globular cluster systems of background galaxies are visible
within our selection around (−2.5, 3.0) (Martin et al. 2013b). Ide-
ally, any substructures such as these will be returned by the fitting
algorithm.

The structure in the M33 disc seen in the central parts of Fig. 3;
while the spiral structure of the disc are apparent, other features
(white blurred lines) are apparent due to overcrowding in the inner
regions of the disc. Despite our resolve to avoid masking in general,
the significant crowding problems within the disc, along with other
blemishes, force us to mask out the entire disc region to an elliptical
radius of 0.8 deg, with an ellipticity of 0.5 and position angle of
23 deg. The ellipticity, e, is defined e = 1 − b/a, where b and a are
the semiminor and semimajor axes of the ellipse, respectively. The
position angle is taken from north towards east (counterclockwise,
in the figures presented throughout this work).

3.1 Data pixelation

We now pixelate all the stars within the colour–magnitude selection
box (ignoring any spatial restrictions). This enables the calculation
of residuals from models, which will be a key analysis tool later

MNRAS 461, 4374–4388 (2016)
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4378 B. McMonigal et al.

Figure 3. Stellar density map of PAndAS stars with de-reddened colours and magnitudes consistent with metal-poor red giant branch populations at the
distance of M33, using the selection box in Fig. 1. Pixels are 0.◦025 × 0.◦025, and the map has been smoothed (to improve visual presentation) using a Gaussian
with a dispersion of σ = 0.◦1. It is displayed in tangent-plane projection centred on M33, with scaling chosen to highlight the structure in the halo region. This
map has been contamination subtracted, using the model discussed in Section 2.1 (see Martin et al. 2013b, for full details). The dashed lines mark the 1, 2, and
3 deg radii, and the black circle marks the 3.75 deg radius. The M33 disc is marked by a black ellipse, and the boundary of the PAndAS footprint is marked by
a white line.

in this paper. We note here that the focus is on replicating C13.
Additional algorithms were developed, but these did not have any
further success detecting the halo; we include them in the appendix
for completeness.

The three pixelations used for the rest of this work are shown in
Figs 4–6. Following C13, the ultrafine pixelation 430 × 430 with
pixel sizes of 0.◦02 × 0.◦02. In addition to this we generate two
more pixelations; the fine pixelation is 200 × 200, with pixel sizes
of 0.◦043 × 0.◦043, and the coarse pixelation is 100 × 100, with
pixel sizes of 0.◦087 × 0.◦087. In all cases, any pixels even partially
outside the PAndAS footprint are excluded from fits, as well as any
pixels which have centres within the M33 disc mask or outside the
3.75 deg radius.

Each of these pixelations is useful in different ways. The coarse
pixelation clumps substructure together, allowing the fitting algo-
rithms to more easily detect the presence of substructure in any
single pixel. In contrast, the fine pixelation provides a good spatial
resolution for all the substructure; however, the increased pixel den-
sity also comes at the cost of a longer run-time for the algorithms.
Furthermore, these two pixelations provide a consistency check for
the algorithms, as they should produce the same results. The ultra-

fine pixelation enables a direct comparison to C13; at this resolution
most pixels are empty, and the clumpy nature of the substructure
can be seen.

Pixelations coarser than our 100 × 100 grid discard too much spa-
tial information. Conversely, pixelations finer than our 200 × 200
grid are also problematic, not just due to time and space complexity
issues for the algorithms, but because they provide no smoothing on
the scale of gaps in the data set. While these gaps are in theory cov-
ered by fake entries in the catalogue, in practice this is an imperfect
process. Residual comparisons also lose their visual utility, as pixel
counts fall to zero in most pixels. For the fine pixelation in Fig. 5, the
majority of pixels usable for fits are already ≤1 star pixel−1. These
problems are unfortunately unavoidable for the ultrafine pixelation.

3.2 Models

Modelling the stellar halo as a projected generalized triaxial ellip-
soid would require many parameters and would greatly complicate
the fitting procedure. Instead, we simply assume the stellar halo is
spherically symmetric and centred on M33, enabling us to model
it with a simple two parameter exponential radial profile. Thus,

MNRAS 461, 4374–4388 (2016)
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The elusive stellar halo of M33 4379

Figure 4. Ultrafine pixelation of the stellar data within the colour–
magnitude selection box using a logarithmic colour-axis. The white circle
marks the 3.75 deg radius. The M33 disc mask is marked by a black el-
lipse, and the boundary of the PAndAS footprint is marked by a white line.
Pixels excluded from the fits in the rest of this work are marked with black
cross-hatching. Pixels are 0.◦02 × 0.◦02.

Figure 5. Fine pixelation of the stellar data within the colour–magnitude
selection box using a logarithmic colour-axis. The white circle marks the
3.75 deg radius. The M33 disc mask is marked by a black ellipse, and the
boundary of the PAndAS footprint is marked by a white line. Pixels excluded
from the fits in the rest of this work are marked with black cross-hatching.
Pixels are 0.◦043 × 0.◦043.

combined with a contamination component, the data are modelled
by

�(ξ,η) = �0 exp

(
− r(ξ,η)

rs

)
+ �C(ξ,η), (2)

where �0 varies the intensity of the halo component, rs is the
scalelength of the halo, and �C(ξ , η) is the contamination model as
discussed in Section 2.1. We note that fits to stellar haloes typically
consider power-law distributions (e.g. Zibetti, White & Brinkmann
2004; Guhathakurta et al. 2005; Brown et al. 2008; Deason et al.

Figure 6. Coarse pixelation of the stellar data within the colour–magnitude
selection box using a logarithmic colour-axis. The white circle marks the
3.75 deg radius. The M33 disc mask is marked by a black ellipse, and the
boundary of the PAndAS footprint is marked by a white line. Pixels excluded
from the fits in the rest of this work are marked with black cross-hatching.
Pixels are 0.◦087 × 0.◦087.

2014), but here an exponential is chosen to allow a robust compar-
ison with C13 who also employed this model. Furthermore, given
the expected low signal to noise of the signal of any stellar halo
(see fig. 7 in C13), the differences in an exponential and power-law
distribution between one and three scalelengths will be effectively
indistinguishable.

Several other models for the contamination were also considered,
including a simple constant �C (as was used in C13), a combina-
tion of a constant and the spatially varying contamination model
�C(ξ , η) + �C, and a modified version of the spatially varying con-
tamination model with an extra free parameter allowing the intensity
to vary α�C(ξ , η); this last model was to allow for the possibility that
the spatially varying contamination model was not suitability opti-
mised for the M33 region. All of these produce equivalent or inferior
fits to the original spatially varying contamination model �C(ξ , η),
thus for the remainder of this work, all fits use this contamination
model.

3.3 MCMC algorithms

The backbone of all of the fitting algorithms we use is a pseudo-
randomized walk through the parameter space via an MCMC, an al-
gorithm that efficiently samples the parameters space to give a mea-
sure of the posterior distribution. A simple example of an MCMC is
the Metropolis–Hastings algorithm, which pseudo-randomly steps
though parameter space, evaluating the likelihood function on each
step to determine the chance of accepting that step.

Simple algorithms such as this suffer greatly when the parame-
ter space contains strong degeneracies, which relegate most of the
parameter space and thus most of the attempted steps within it, to
very low probability. Even with the simple parametrization of the
model we have chosen, there is a strong degeneracy between the
halo parameters �0 and rs.

Goodman & Weare (2010) proposed an affine-invariant ensemble
sampler for MCMC, which is able to sample parameter spaces with
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4380 B. McMonigal et al.

strong degeneracies with much greater efficiency – over an order
of magnitude faster than Metropolis–Hastings algorithms. The key
to its method is instead of sending out a single walker, it sends out
a large ensemble of walkers, which sample information from each
other to determine which points to investigate in parameter space.

We use this affine-invariant sampler for all of our algorithms, with
the exception of the final algorithm discussed in this work. Due to
the complexity of this last method, we fall back on a standard
Metropolis–Hastings algorithm in this case.

3.4 Synthetic data

The most important aspect of this analysis, is our use of synthetic
data testing, or ‘Sanity Testing’. We generate mock data sets with
similar structures to the PAndAS data for M33, and then test the
precision and accuracy of the fitting algorithms in retrieving the
known parameters. This step provides critical verification as to how
strongly (or not) the results from a given fitting method can be
trusted.

To optimally test the validity of the algorithms for the pixelations
in Section 3.1, the synthetic data must be a close match. Thus, we use
the same grids, boundaries, masks, and selections of usable pixels
as for the PAndAS data. Using the same centre of M33, and the
model in equation (2) combined with a model for the substructure,
we generate noise-free synthetic pixelations. Finally, to add noise
we use the value in each pixel, n(ξ , η), to define a Poisson distribution
with this as the mean value,

P (N ) = nN
(ξ,η) exp(−n(ξ,η))

N !
, (3)

and replace the pixel value with a random deviate from this distri-
bution.

To test the validity of any results found through replicating the
methodology of C13, we generate a synthetic model to match the
ultrahigh resolution pixelation in Fig. 4. This model does not contain
any halo component; in this way, we test to see if a halo can be
recovered by the algorithm when none is present. To accommodate
a good match to the data in the absence of a halo, we use an
elongated model of the substructure. This structure is based on a
sum of Gaussian components, so bleeds into its surroundings, as
would be expected for the true substructure.

Alternative algorithms discussed in this work are tested against
synthetic data generated to match the coarser pixelations. Unlike the
synthetic ultrafine pixelation, these synthetic pixelations include
halo components. The best fit halo parameter values reported in
C13 are �0 = 158 ± 83 stars deg−2 for the halo central density
and rs = 1.5 ± 1.3 deg for the scale radius. For the synthetic data
sets we use a slightly smaller scale radius of 1.2 deg, for a better
visual match to the pixelated data, which is still well within the
uncertainty range given in C13. For the central density, we use a
much brighter value of 800 stars deg−2. This provides a reasonable
match to the data, and at approximately 5 times brighter than the
value reported in C13, ensures that any method capable of detecting
the stellar halo from C13 will also detect the halo in the synthetic
data. Thus any methods which are unable to correctly recover the
halo parameters in the synthetic pixelations, can be safely excluded
as viable candidates for use with the PAndAS data.

It is important to include the central substructure in all the syn-
thetic data, as it dominates at small radii, where the signal of the
halo is expected to be strongest. All other substructure is excluded
for simplicity, due to ignorance of the true substructure, and to
maximize the chance of the fitting method to detect the halo in the

Figure 7. Random realization of the synthetic data, including extended
substructure, designed to match the ultrafine pixelation of the stellar data in
Fig. 4, using a logarithmic colour-axis. The black circle marks the 3.75 deg
radius. The M33 disc mask is marked by a black ellipse, and the boundary
of the PAndAS footprint is marked by a black line. Pixels are 0.◦02 × 0.◦02.

synthetic data. For the coarse and fine pixelations, we simplify the
extended substructure, representing it very roughly as an ellipse
centred on M33 with a position angle of −8 deg, ellipticity 0.65.
The density falls linearly by elliptical radius from 3000 stars deg−2

at the centre to zero at 2.5 deg. We use a linear decay to avoid the
contamination from the substructure bleeding into too many of
the usable pixels, and also to avoid the form of the model matching
the form of the halo model – reducing the chance that the fitter
would select the much more dominant signal of the substructure
as the halo. These simplifications are made to further aid the al-
gorithms in recovering the halo parameters, thus giving us extra
confidence in their inability to successfully recover halo parameters
for the PAndAS data in the case of their failure with the synthetic
data.

Figs 7–9 show random realizations generated using the above
method and parameters to match the pixelations in Figs 4–6.
We also generate substructure-free synthetic data sets for more
extreme ‘Sanity Testing’ in the same way. We emphasize that the
goal of the synthetic data is not to precisely match the true data,
but simply to roughly match the data so that the parameter retrieval
precision and accuracy of the fitting methods can be tested. Figs 10–
12 compare histograms of the true data pixelations to 100 random
realizations of the synthetic data for ultrafine, fine, and coarse pix-
elations, respectively. These histograms demonstrate a reasonable
match, with the a slight underestimate of the concentration of the
substructure – further ensuring that the halo is detectable in the
synthetic data, if at all.

4 R EVI SI TI NG C 1 3 A N D B E YO N D

The motivation of this work is to characterize the smooth stellar
halo component of M33. Here we replicate the method used by C13,
with our updated data for M33 and more detailed contamination.
We compare the results to an analysis of similar synthetic data, that
is known not to contain a halo component.

Smoothing Figs 4 and 7 using a Gaussian with a dispersion
of σ = 0.◦08, or four pixel widths, results in Figs 13 and 14,
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The elusive stellar halo of M33 4381

Figure 8. Random realization of the synthetic data, including central sub-
structure, designed to match the fine pixelation of the stellar data in Fig. 5,
using a logarithmic colour-axis. The black circle marks the 3.75 deg radius.
The M33 disc mask is marked by a black ellipse, and the boundary of the
PAndAS footprint is marked by a black line. Pixels are 0.◦043 × 0.◦043.

Figure 9. Random realization of the synthetic data, including central sub-
structure, designed to match the coarse pixelation of the stellar data in Fig. 6,
using a logarithmic colour-axis. The black circle marks the 3.75 deg radius.
The M33 disc mask is marked by a black ellipse, and the boundary of the
PAndAS footprint is marked by a black line. Pixels are 0.◦087 × 0.◦087.

respectively. The background level is estimated as the mean of
the pixels within the two red rectangles, ignoring any pixels beyond
the 3.75 deg cutoff or outside the PAndAS footprint. Contours are
drawn to match C13, and show a reasonable match between the
PAndAS data and the synthetic data.

Following C13, we mask out the inner 1 de and the regions
within the grey contours are masked out, with the resulting area
radially binned. Figs 15 and 16 show the radially binned data for
the PAndAS data and synthetic data, respectively, with the fitted
parameters presented in Table 1. We find the signal of a smooth halo
component in the PAndAS data, similar to what was found in C13.
Intriguingly, we find a similar signal of a smooth halo component

Figure 10. Histogram of the pixel values in the ultrafine pixelation in Fig. 4,
compared to 100 random realizations of the synthetic data as exemplified in
Fig. 7. Error bars give the 2σ range for the ensemble of realizations of the
synthetic data.

Figure 11. Histogram of the pixel values in the fine pixelation in Fig. 5,
compared to 100 random realizations of the synthetic data as exemplified in
Fig. 8. Error bars give the 2σ range for the ensemble of realizations of the
synthetic data.

Figure 12. Histogram of the pixel values in the coarse pixelation in Fig. 6,
compared to 100 random realizations of the synthetic data as exemplified
in Fig. 9. Error bars give the 2σ range for the ensemble of realizations of
the synthetic data. The horizontal range excludes three pixels with values
between 60 and 100 stars pixel−1.

in the synthetic data, and, as no halo is present, this must represent
a spurious detection due to the presence of substructure that cannot
be removed via a simple magnitude-limit cut; this clearly brings
into doubt the feature characterized in C13. The upturn visible in
the contamination model at large radii is explained in more detail in
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Figure 13. Density distribution of PAndAS stars using the ultrafine pixe-
lation in Fig. 4. The grey contour is 1σ above the background. The black
contours are 2σ , 5σ , 8σ , and 12σ above the background. The regions used
for background estimation are marked with red rectangles. The black circle
marks the 3.75 deg radius. The M33 disc mask is marked by a black ellipse,
and the boundary of the PAndAS footprint is marked by a thick black line.
Pixels are 0.◦02 × 0.◦02.

Figure 14. Density distribution of synthetic stars using the ultrafine pixe-
lation in Fig. 7. The grey contour is 1σ above the background. The black
contours are 2σ , 5σ , 8σ , and 12σ above the background. The regions used
for background estimation are marked with red rectangles. The black circle
marks the 3.75 deg radius. The M33 disc mask is marked by a black ellipse,
and the boundary of the PAndAS footprint is marked by a thick black line.
Pixels are 0.◦02 × 0.◦02.

Figure 15. Radially binned PAndAS data with 1σ error bars normalized
by area. The upper (red) line marks the best radial fit, the lower (green) line
marks the contribution of the contamination model.

Figure 16. Radially binned synthetic data with 1σ error bars normalized
by area. The upper (red) line marks the best radial fit, the lower (green) line
marks the contribution of the contamination model.

Table 1. Cockcroft fits.

Data set Halo central density Scale radius
(binning, options) �0 (stars deg−2) rs (deg)

Synthetic 385+512
−138 0.68+0.16

−0.17
(ultrafine, substructure, masked)

PAndAS 528+230
−102 1.01+0.14

−0.16
(ultrafine, masked) 1.01+0.14

−0.16

Appendix A1. What we have just shown is that this substructure can
also masquerade as a halo when none is present. As the substructure
is not well defined, and significantly brighter than the expected
smooth halo, a signal for a smooth halo can be left behind by
incorrectly masking or modelling the substructure.

With this result, and thus a loss of trust for this method, we
test a range of other algorithms. For completeness, we begin with
very simple algorithms, namely simple radial binning, and fits to
the two-dimensional pixelated data. This is followed by a test of
simple masking, in which we mask the coarsely pixelated data
by simple density cuts. After this we test two novel algorithms,
both of which seek to account for the substructure statistically. The
first of these is the marginalized substructure fit, which treats the
substructure as a nuisance parameter within each pixel. Our final
method is the parametrized substructure fit, which allocates a free
parameter for the substructure in each pixel. As noted earlier, these
methods and the results of our tests with them are included in full
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in the appendix. However, none of them are able to recover the
parameters correctly when tested against the synthetic pixelations
which include the centralized extended substructure. We find that the
presence of substructure, like that which is found around M33, ruins
all attempts to characterize an underlying smooth halo component.

However, the question of whether a stellar halo of M33 is present
remains. As noted throughout this paper, substructure confuses all
reasonable attempts to extract the properties of this component, but
here we attempt to estimate just how bright a stellar halo could
be hidden in the data. Based upon the various approaches pre-
sented in this paper, we estimate that, to be robustly detected, any
halo component must have an average surface brightness of μg ∼
36 mag arcsec−2 (μi ∼ 37 mag arcsec−2), over the range from 0.8
to 3.75 deg, which corresponds to a luminosity of approximately
106 L� in the V band. Extending this model to cover the entire
M33 region from the centre out to 3.75 deg, gives an average sur-
face brightness of μg ∼ 35 mag arcsec−2 (μi ∼ 36 mag arcsec−2),
roughly doubling the luminosity; further extending the model out
to infinity does not significantly alter the luminosity.

The total luminosity of M33 is estimated at approximately
109 L� (de Vaucouleurs et al. 1991). McConnachie et al. (2010)
estimated the total luminosity of the extended substructure at ap-
proximately 107 L�, around one per cent of the luminosity of
M33. In C13, the smooth halo component was limited to be-
low ∼2.4 × 106 L� between 0.88 and 3.75 deg from M33.
Extrapolating their model inward raised this limit to ∼4 × 106 L�,
which was not significantly increased by expanding the model out-
ward. We have estimated the luminosity at which our algorithms
would definitely find the halo to be as low as ∼106 L� over the
region from 0.8 to 3.75 deg of the order of 0.1 per cent of the lu-
minosity of M33 (or ∼2 × 106 L� extending the model inwards
and outwards). But we expect the presence of substructure will
continually frustrate its ultimate characterization.

5 D I S C U S S I O N A N D C O N C L U S I O N

The motivation of this research was to characterize the smooth stel-
lar halo of M33, presented as a putative detection by C13; no claim
to the origin of this component is made in this earlier work, and our
characterization will provide evidence to whether this component
represents a halo formed from primordial and accreted compo-
nents, or is in fact extended disc material, potentially distributed in
the event that gave rise to the prominent gas/stellar warping of the
disc of M33. Either result is significant for understanding galaxy
evolution, with M33 sitting between the scale of the larger galaxies
within the Local Group, which are known to host extensive stellar
haloes (e.g. Guhathakurta et al. 2005; Deason et al. 2014), and the
Large Magellanic Cloud, in which an extensive stellar halo appears
to be absent (Saha et al. 2010). Furthermore will provide clues to
the dynamical interactions in the history of the M31-M33 system
(e.g. McConnachie et al. 2009).

Unlike previous approaches, this study employs an extant con-
tamination model for various components, and uses robust statis-
tical analyses to search for a signal of a smooth halo component.
However, we have demonstrated a range of potential problems as-
sociated with detection of any putative halo of this spiral member
of the Local Group. The model parameters are degenerate, the fore-
ground contamination is structured and has not yet been completely
characterized – but principally, the signal for the halo is vanishingly
faint, and completely degenerate with a significantly brighter ex-
tended substructure which pollutes the most desirable region around
M33 to search for the halo. With such faint halo signatures as is

expected for M33, the halo is dominated by every other component.
Statistical fluctuations in any of these components can lead to sig-
nificant changes to the fit of the halo. Thus even if the halo were
detected, it would likely be inaccurately characterized, or with such
large uncertainty bounds as to be unenlightening.

All of the fitting methods presented fail to detect any halo com-
ponent in synthetic test data, which was designed to have a sig-
nificantly brighter and more detectable halo component than any
true halo component in the PAndAS data. These methods work on
pixelation, and could be improved to avoid this (although remov-
ing pixelation from the parametrized substructure method would
require significant changes), but this is unlikely to solve the key
issue – the PAndAS data alone are not sufficient to detect the halo
of M33.

The tentative detection of a possible, faint, extended stellar halo
by C13, undertaken using PAndAS data with an inferior calibration
and without the recent contamination model, describes an aver-
age surface brightness for the smooth halo component of less than
μV = 33 mag arcsec−2. We find no evidence of a smooth halo
component down to the limit reachable using the PAndAS data at
approximately μV = 35.5. Using our methods, we are able to re-
cover the halo parameters consistently down to 10 times fainter than
the haloes used in our synthetic data tests. However, the presence of
substructure such as is found around M33 will always complicate
the fit as it cannot be separated from the signal using photometry
alone, making a proper detection and characterization of the halo
impossible.

While we find no evidence of a smooth halo component around
M33 in this work, there are indications in other studies. The de-
tection of a handful of remote metal-poor globular clusters in the
M33 system (Stonkutė et al. 2008; Huxor et al. 2009; Cockcroft
et al. 2011) provides evidence for the presence of a halo compo-
nent. There has also been more direct evidence, with Chandar et al.
(2002) identifying a kinematic signal of what could be a halo com-
ponent around M33, and several metal-poor RR Lyrae detections
(Sarajedini et al. 2006; Yang et al. 2010; Pritzl et al. 2011). So the
case remains open.
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A P P E N D I X A : FI T T I N G A L G O R I T H M S

For completeness we present our suite of algorithms, and their re-
sults for both PAndAS data and synthetic mock data. All of the
synthetic pixelations used here are generated from a model contain-
ing a smooth halo component defined by a central density �0 of
800 stars deg−2, and a scale radius rs of 1.2 deg (as discussed in
Section 3).

A1 Simple radial fit

We start with the most basic fit, a simple radial binning. This is
the only fitting method which does not directly use the pixelations
discussed earlier, but rather a circular radial binning of the data. The
synthetic data used are a re-binning of a finer grid than discussed
earlier, to ensure high enough resolution for the re-binning. This
binning still excludes stars within the M33 disc mask and beyond
3.75 deg, and the model is normalized for these excluded regions in
the respective radial bins. The likelihood function for this algorithm

Table A1. Radial fits.

Data set (binning, options) Halo central density Scale radius
�0 (stars deg−2) rs (deg)

Synthetic (radial) 742+122
−54 / 833+101

−60 1.24+0.13
−0.06 / 1.16+0.08

−0.05

Synthetic (radial, substructure) 4288+251
−183 0.68+0.02

−0.01

PAndAS (radial) 6080+427
−277 0.56+0.01

−0.01

Note. Fits for two separate random realizations are given above for the
synthetic pixelation (without included substructure) to show that the fit is
able to correctly recover parameters, and is not biased above or below the
true values.

Figure A1. Radially binned PAndAS data with 2σ error bars normalized
by area. The upper (red) line marks the best radial fit, the lower (green) line
marks the contribution of the contamination model, and the dashed (black)
line marks a constant contamination level.

is the product of the Poisson probabilities of the data given the
model in each bin,

L =
3.75∏

r=0.4

mdr
r exp(−mr )

dr !
(A1)

where dr and mr are the data and model values, respectively for each
bin.

When fitting the halo in the absence of substructure, this method
is consistently able to recover the true values of the halo parameters
within 1σ bounds (see example fits to random realizations of the
synthetic data in Table A1). However, once substructure is added,
the fit fails robustly, with an estimate of the central halo density over
5 times larger than the true value, and significantly underestimating
the scale radius.

Using this method on the PAndAS data produces deceptively
promising results. Fig. A1 shows the radial fit to the data, with
reasonable agreement, although there is clearly room for improve-
ment. The fit fails at very small radii, as the substructure near the
core increases rapidly, and fairly consistently overestimates the data
at intermediate radii while underestimating the data at large radii. It
is interesting to see the upturn of the contamination model at large
radii, even when radially binning, producing a substantial departure
from a constant contamination model. This upturn is due to the bias
towards the north-east as the limits of the PAndAS footprint are
reached in all other directions. Thus even using a radial fit, the new
contamination model strongly influences the fit result, encouraging
a shorter scale radius.

Returning to the pixelations discussed earlier, Fig. A2 shows a
histogram of the residuals produced after subtracting the favoured
model for the data. This is quite evenly split between positive and
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Figure A2. Histogram of the residual pixel values in the coarse pixelation
in Fig. 6 after subtracting the radial fit to the PAndAS data in Table A1. The
horizontal range excludes seven pixels with values between 21 and 111 stars
pixel−1. The vertical black line separates positive from negative.

Figure A3. Residual values from the coarse pixelation in Fig. 6 after sub-
tracting the radial fit to the PAndAS data in Table A1. The white circle marks
the 3.75 deg radius. The M33 disc mask is marked by a white ellipse, and
the boundary of the PAndAS footprint is marked by a white line.

negative residuals, with a strong bias to small residuals and a slight
bias to large positive residuals. While this is what would be ex-
pected from a good fit, by examining at the actual residual map in
Fig. A3, it is clear precisely how robustly the fit has failed. While
the substructure is generally still positive, the halo has been signif-
icantly oversubtracted, particularly in the inner halo. From this it is
apparent that a simple radial fit will not suffice.

A2 Simple pixelation fit

Returning to two-dimensional binning enables a more spatially re-
solved analysis, and allows us to take full advantage of the contam-
ination model. The likelihood function is slightly modified from
equation (A1) to

L =
∏ m

d(ξ,η)
(ξ,η) exp(−m(ξ,η))

d(ξ,η)!
, (A2)

where d(ξ , η) and m(ξ , η) are the data and model values, respectively,
for each usable pixel.

As with the radial fit, we start by ensuring that this method
can reliably recover the parameters of a synthetic data set in the

Table A2. Simple pixelation fits.

Data set (binning, options) Halo central density Scale radius
�0 (stars deg−2) rs (deg)

Synthetic (coarse) 780+55
−52 / 821+59

−53 1.22+0.06
−0.06 / 1.16+0.06

−0.06

Synthetic (fine) 797+63
−51 / 753+56

−49 1.19+0.06
−0.06 / 1.24+0.06

−0.06

Synthetic (coarse, substructure) 4483+170
−164 0.67+0.01

−0.01

Synthetic (fine, substructure) 4548+165
−170 0.67+0.01

−0.01

Note. As for Table A1, fits for two separate random realizations are given
above for the synthetic pixelations (without included substructure) to show
that the fit is able to correctly recover parameters, and is not biased above
or below the true values.

absence of substructure. Fits to example random realizations are
given in Table A2. This method reliably recovers the parameter
values within 2σ uncertainty bounds, and generally within 1σ . The
uncertainty bounds are roughly the same size for coarse and fine
pixelations, and are both smaller than for the results of radial fitting
method on corresponding data sets. As with the radial method,
adding substructure results in a complete failure to recover the true
parameter values. It is not possible to fit the stellar halo without
dealing with the substructure.

A3 Masked substructure fit

It is common to resort to masking to fit a faint signal in the pres-
ence of another dominant signal. We believe this approach is sub-
optimal, and masking should generally be avoided. We attempt
masking here for completeness and to demonstrate its failings. This
method uses the same likelihood function as the previous section,
and simply excludes further pixels. By removing the pixels with
the largest number of stars in them, we expect to selectively ex-
clude the denser substructure which is obfuscating the diffuse halo
signal.

The data in the fine pixelation is too spread out to use this method,
since the majority of pixels contain ≤1 star. Thus, for this method we
only use the coarse pixelation. We test four different cuts, masking
down to successively fainter levels each time. Fig. A4 shows the
various cuts tested, with red pixels excluded by all masks, gold
first excluded by the second mask, green first excluded by the third
mask, teal only excluded by the final mask, and blue not excluded
by any mask. The results of the fits are presented in Table A3,
with all fits performed on the same random realization of synthetic
data.

There appears to be a large initial improvement from the fit to the
unmasked coarse synthetic data, with each subsequent cut removing
more pixels and closing in on the true parameter values – but this
is not the case. As further pixels are masked out, the fit to �0

reaches and then passes the true value. Selecting the value at which
the mask excludes pixels, enables us to control the value which
the fit returns for the central halo density, invalidating the results
completely. Furthermore, this method only successfully recovers
the value for the scale radius by the virtue of the uncertainty range
increasing as the masks remove more pixels. Finally, the uncertainty
range for the central density is unsatisfactorily large, at double the
size of the substructure-free fits in the previous section.

It should not be surprising that this method is unsatisfactory, as
it discards a significant portion of the data. It is also unlikely that
masking can remove such dominant contamination properly, as it
will bleed into nearby unmasked pixels, and due to its dominance,
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Figure A4. Random realization of the synthetic data, including central
substructure, designed to match the coarse pixelation of the stellar data in
Fig. 6. The colour-axis has been selected to highlight the different cuts used
in this section. The black circle marks the 3.75 deg radius. The M33 disc
mask is marked by a black ellipse, and the boundary of the PAndAS footprint
is marked by a black line.

missing even a small portion of the contamination has a large effect
on the result of the fit.

In this case in particular, it is unclear what criteria could be
used to mask out a dominant contamination signal which lies in the
same place in parameter space, especially when the target signal
is expected to be most dense in the same regions that the contam-
ination is strongest. A more statistical approach is needed to solve
this.

A4 Marginalized substructure fit

This method was developed specifically to address the problems in
the masked substructure fitting (Section A3). Instead of ignoring
or removing the substructure, we marginalize over the substructure
within each pixel as a nuisance parameter. We expect the substruc-
ture to be reasonably well represented by an exponential distribu-
tion, as there should be many small values and only a few large
values, thus we include an exponential prior on the substructure,
P(s(ξ , η)) = αexp ( − αs(ξ , η)), where α is inverse of the mean of
the exponential distribution and assuming no pixel-to-pixel corre-
lations. We still use a Poisson probability for the value of the data
within each pixel, and thus by marginalizing over all possible values

Table A4. Marginalized substructure fits.

Data set (binning, options) Halo central density Scale radius
�0 (stars deg−2) rs (deg)

Synthetic (coarse, α = 1) 1363+220
−193 0.51+0.04

−0.04

Synthetic (coarse) 815+72
−59 1.14+0.07

−0.07

Synthetic (coarse, substructure) 6302+364
−344 0.51+0.02

−0.02

for the substructure component, the likelihood becomes

L =
∏ ∫ ∞

0
P (d(ξ,η)|m(ξ,η) + s(ξ,η))P (s(ξ,η))ds(ξ,η)

=
∏ ∫ ∞

0
ds(ξ,η)(α exp(−αs(ξ,η)))

×
(

(m(ξ,η) + s(ξ,η))d(ξ,η) exp(−(m(ξ,η) + s(ξ,η)))

d(ξ,η)!

)

=
∏ α exp(αm(ξ,η))�(d(ξ,η) + 1, m(ξ,η)(1 + α))

(1 + α)(d(ξ,η)+1)�(d(ξ,η) + 1)
, (A3)

where d(ξ , η), m(ξ , η), and s(ξ , η) are the data, model, and unknown sub-
structure values, respectively, for each usable pixel. �(x, y) and �(x)
are the incomplete and complete Gamma functions, respectively.

The value of the α parameter is dependent on the particular
substructure present within the data. When α is large, the likelihood
returns to a simple Poisson probability, as in the simple pixelation
method, and is the optimal choice in the absence of substructure.
This parameter should be left free for the algorithm to optimize
based on the data, and attempting to set the value for α results in a
suboptimal fit. The two substructure-free fits in Table A4 are both
for the same random realization of synthetic data; however, the fit
with α set to one gives a poor fit, while the other fit recovers the
parameters within 1σ .

To boost the signal of the substructure within each pixel, the
coarse pixelations were used in favour of the fine pixelations. This
method consistently recovers the parameters for substructure-free
synthetic data within 2σ , and generally within 1σ . It performs
slightly worse than the simple pixelation method, although with
comparable uncertainty bounds, as it is designed to operate in the
presence of substructure. Unfortunately, this method is still unable
to cope with the intense central substructure degenerate with the
halo signal, as can be seen by the failed fit in Table A4.

A5 Parametrized substructure fit

We have shown that the substructure cannot be ignored or masked,
and that even marginalization is not sufficient to detect any under-
lying halo component. This last method models the substructure
distribution directly. A free parameter s(ξ , η) is assigned to each
pixel, to represent the substructure present. The pixelation of the
substructure is then smoothed using a Gaussian with a dispersion

Table A3. Masked substructure fits.

Data set (binning, options) Halo central density Scale radius
�0 (stars deg−2) rs (deg)

Synthetic (coarse, substructure, mask > 10) 1161+106
−99 1.00+0.05

−0.05

Synthetic (coarse, substructure, mask > 9) 994+111
−104 0.99+0.06

−0.06

Synthetic (coarse, substructure, mask > 8) 753+120
−98 1.02+0.08

−0.08

Synthetic (coarse, substructure, mask > 7) 612+125
−109 0.94+0.10

−0.09
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Table A5. Parametrized substructure fits.

Data set (binning, options) Halo central density Scale radius
�0 (stars deg−2) rs (deg)

Synthetic (coarse, substructure) 4820+1363
−1430 0.46+0.09

−0.06

PAndAS (coarse) 8964+1895
−1816 0.36+0.03

−0.03

of σ = 0.◦087, or one pixel width. This smoothing speeds up the
fit, and also performs a simple regularization, as it is expected that
substructure would be present in pixels in close proximity to other
substructure containing pixels.

On each step, the non-substructure parameters are stepped in
the standard Metropolis–Hastings fashion, and the substructure pa-
rameters are each stepped with a probability of 0.5 per cent. This
ensured that only a small change to the substructure would be made
each time, resulting in a larger portion of steps being accepted.
Each substructure parameter stepped is given a new value from the
distribution

F (α) =
⎧⎨
⎩

0, if 0 < α ≤ β

−μ ln
(

1 − α−β

1−β

)
, if β ≤ α < 1

(A4)

based on a random value of α between 0 and 1, where β is the
proportion of pixels expected not to contain any substructure, and
μ is the mean of the exponential distribution representing the sub-
structure in the remaining pixels. This distribution function acts as
a prior on the substructure, without which the algorithm would de-
termine the data to be perfectly represented by substructure alone.
The initial values for all substructure parameters are zero. β and
μ are optimized by the fitting algorithm, as setting these parame-
ters manually results in a suboptimal fit by defining the substructure
present in the data, as with α in the marginalized substructure fitting
method.

Due to the complexity of this algorithm, the affine-invariant
ensemble sampler was discarded and replaced with a standard
Metropolis–Hastings sampler. This slowed the fit further, especially
considering the degeneracy between the halo parameters, and the
large increase in parameters overall. However, the likelihood func-
tion is now reduced to a simple Poisson probability,

L =
∏ (m(ξ,η) + s(ξ,η))d(ξ,η) exp(−(m(ξ,η) + s(ξ,η)))

d(ξ,η)!
, (A5)

where d(ξ , η), m(ξ , η), and s(ξ , η) are the data, model, and smoothed
substructure values, respectively, for each usable pixel.

To boost the signal of the substructure within each pixel, and
also to reduce the run-time of the algorithm, the coarse pixelations
were used in favour of the fine pixelations. The fits to the synthetic
data with substructure did not recover the halo parameters, as seen
by the example in Table A5. The substructure is reasonably well
reproduced away from the M33 disc, as shown in Fig. A5, however,
three overdensities are recovered in the north-east quadrant which
are only statistical fluctuations in the background. This should serve
as a warning to overinterpreting the model recovered by this method.

The residuals based on this fit, shown in Fig. A6, are surprisingly
small. This indicates that there is a further degeneracy plaguing the
fits. The fitting algorithm is pruning the central substructure until it
fits the circular model expected for the halo, and then fitting a halo to
this. As was already discussed, this substructure is indistinguishable
from the halo signal using this data alone, and thus this method is
unable to recover the halo.

Figure A5. Substructure model generated by the fit to a random realization
of coarse synthetic data with central substructure by the parametrized sub-
structure method. The fit parameters are given in Table A5. The black circle
marks the 3.75 deg radius. The M33 disc mask is marked by a black ellipse,
and the boundary of the PAndAS footprint is marked by a black line.

Figure A6. Residual map for the fit to a random realization of coarse
synthetic data with central substructure by the parametrized substructure
method. The residuals for this fit range from −13 to 15. The fit parameters
are given in Table A5. The white circle marks the 3.75 deg radius. The M33
disc mask is marked by a white ellipse, and the boundary of the PAndAS
footprint is marked by a white line.

While the fit for the halo parameters is poor, the substructure
model is reasonably reliable away from the M33 core. Thus this
method can be used to recover a rough model of the substructure
around M33, shown in Fig. A7. Within the 3.75 deg cut-off, all
visible substructure has been recovered. This includes the globular
cluster systems in the north-west, a faint overdensity at (1, 3), a
faint overdensity at (2, −1 to 1), a larger overdensity to the south,
and the rough structure of the central substructure to the north and
south. The residual map of this fit in Fig. A8 shows the failure of
the fit to the halo, with large positive and negative residuals at small
radii.
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Figure A7. The substructure model generated by sampling the fit to the
coarse pixelation of the PAndAS data by the parametrized substructure
method. The fit parameters are given in Table A5. The black circle marks
the 3.75 deg radius. The M33 disc mask is marked by a black ellipse, and
the boundary of the PAndAS footprint is marked by a black line.

Figure A8. Residual map for the fit to the coarse pixelation of the PAndAS
data by the parametrized substructure method. The residuals for this fit range
from −10 to 41. The fit parameters are given in Table A5. The white circle
marks the 3.75 deg radius. The M33 disc mask is marked by a white ellipse,
and the boundary of the PAndAS footprint is marked by a white line.
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