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Understanding the processes that drive the distribution patterns of organisms and the scales over which
these processes operate are vital when considering the effective management of species with high
commercial or conservation value. In the deep sea, the importance of scleractinian cold-water corals
(CWCs) to fish has been the focus of several studies but their role remains unclear. We propose this may
be due to the confounding effects of multiple drivers operating over multiple spatial scales. The aims of
this study were to investigate the role of CWCs in shaping fish community structure and individual
species-habitat associations across four spatial scales in the NE Atlantic ranging from “regions” (separated
by 4500 km) to “substratum types” (contiguous). Demersal fish and substratum types were quantified
from three regions: Logachev Mounds, Rockall Bank and Hebrides Terrace Seamount (HTS). PERMANOVA
analyses showed significant differences in community composition between all regions which were most
likely caused by differences in depths. Within regions, significant variation in community composition
was recorded at scales of c. 20–3500 m. CWCs supported significantly different fish communities to non-
CWC substrata at Rockall Bank, Logachev and the HTS. Single-species analyses using generalised linear
mixed models showed that Sebastes sp. was strongly associated with CWCs at Rockall Bank and that
Neocyttus helgae was more likely to occur in CWCs at the HTS. Depth had a significant effect on several
other fish species. The results of this study suggest that the importance of CWCs to fish is species-specific
and depends on the broader spatial context in which the substratum is found. The precautionary ap-
proach would be to assume that CWCs are important for associated fish, but must acknowledge that
CWCs in different depths will not provide redundancy or replication within spatially-managed con-
servation networks.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Understanding how fish are distributed across marine land-
scapes is vital in establishing effective management strategies for
their conservation and sustainable use. This is particularly true
where management is to be largely based on spatially explicit
management tools (e.g. Marine Protected Areas (MPAs); FAO,
2007). The deep sea is one such environment, with management
measures increasingly targeted towards identifying and protecting
Vulnerable Marine Ecosystems (VMEs; e.g. FAO, 2009). In Europe
these measures have largely been introduced in response to the
requirements of the Habitats Directive (Council Directive 92/43/
EEC). Further spatial measures are being implemented due to the
r Ltd. This is an open access article

llege of Natural Sciences and
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).
Marine Strategy Framework Directive (MFSD; 2008/56/EC), under
which a far wider range of species and habitats must be con-
sidered through ecosystem-level approaches to management.
Unfortunately, relatively little is understood about how deep-sea
fish are spatially distributed over the seafloor, and there is there-
fore an urgent requirement for high quality data to inform man-
agement decisions.

Many deep-sea demersal fish species inhabiting the continental
slopes (200–4000 m) are targeted by deep-water fisheries or
captured as bycatch. Although deep-sea fish show a range of life-
history traits (Drazen and Haedrich, 2012), they can be particularly
vulnerable to over-exploitation if, for example, they have low fe-
cundity or slow growth rates (Norse et al., 2012). Given the high
mobility and potentially broad spatial ranges of deep-sea fish,
studies examining their fine-scale distribution patterns are rare,
and yet such data are vital in developing appropriate management
plans for the conservation and sustainable management of fish
stocks. However, if a fish species or community associates strongly
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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with particular habitat features, then it may be possible to use
those features as surrogates for fish distributions (e.g. Anderson
et al., 2009). If those features are themselves of conservation im-
portance, then it may be relatively simple to extend existing
management objectives to include the requirements of the fish
species.

Framework-forming cold-water corals (CWCs) are colonial,
ahermatypic scleractinians and one of the most widespread taxa
in the deep oceans (Roberts et al., 2006; Roberts et al., 2009).
CWCs have a circumglobal distribution defined predominantly by
depth, temperature and water chemistry (Roberts et al., 2006;
Davies and Guinotte, 2011), and are believed to increase benthic
habitat heterogeneity and biological diversity by providing “is-
lands” of complex, hard substrata in an environment otherwise
dominated by soft sediments (Buhl-Mortensen et al., 2010).
However, as well as being ecologically valuable, CWCs are highly
vulnerable to trawl damage (Hall-Spencer et al., 2002; Althaus
et al., 2009). CWCs have therefore been recognised as VMEs and
are a target of global conservation efforts in the High Seas (e.g. de
Juan and Lleonart, 2010; Rengstorf et al., 2013). In European wa-
ters, they are listed as Annex 1 habitats under the Habitats Di-
rective. If CWCs provide important substrata for deep-sea fish,
closures to protect CWCs may also be a useful tool for the man-
agement of those species.

Despite increasing interest in understanding the importance of
CWCs to fish, results published to date remain equivocal. In Nor-
wegian waters, Mortensen et al. (1995) and Fosså et al. (2002)
reported higher abundances of redfish (Sebastes spp.) over coral
bioherms. Husebø et al. (2002) used long-lines and gillnets to
capture higher numbers of redfish where CWCs were present, as
well as larger sizes of redfish (Sebastes spp.), ling (Molva molva)
and tusk (Brosme brosme) compared to areas where CWCs were
absent, while Kutti et al. (2014) caught higher numbers of several
commercially-important fish species where CWCs were present.
Costello et al. (2005) used a range of methodologies to study fish
associations with CWCs across eight regions of the NE Atlantic and
found that although depth was the strongest predictor of com-
munity composition across the entire study area, areas containing
CWCs generally supported a different fish fauna to those without
CWCs, with a number of species-specific associations occurring
within different regions. Soeffker et al. (2011) conducted two ROV
video surveys across the Giant and Twin coral mounds (NE
Atlantic), but only detected a significant effect of substratum type
at the Giant Mound. Again however, they noted a small number of
significant species-specific associations with CWCs. In the NW
Atlantic, Ross and Quattrini (2007) provided one of the clearest
demonstrations of CWC association by deep-water fish, reporting a
unique and possibly obligate fish fauna occurring on coral mounds
on the Blake Plateau. In the NE Pacific, Du Preez and Tunnicliffe
(2011) reported close associations between Sebastes spp. and both
CWCs and emergent epifauna (e.g. gorgonians and sponges).

Not all studies have demonstrated associations between CWCs
and fish however. A long-term video study of individual species
associations with CWCs in the Belgica Mound province of the NE
Atlantic found no differences in either the abundance or biomass
of fish associated with CWCs. Instead, physical variables such as
depth were cited as the main predictors of distribution, though
effects varied between sites (Biber et al., 2014). Long-lining
(D'Onghia et al., 2012) and towed-video surveys (D'Onghia et al.,
2011) conducted in the Santa Maria de Leuca CWC province in the
Mediterranean Sea found no significant effect of CWCs on the
overall fish community, though it was suggested that some taxa
may use CWCs preferentially at different life stages. In the NW
Atlantic, Auster (2005) found that coral substrata in the Gulf of
Maine were functionally indistinguishable from substrata created
by other large epifauna and did not support a distinct fish
assemblage. Baker et al. (2012) examined fish abundance and
community composition in three canyons in the Grand Banks re-
gion, but failed to find any association between fish abundance or
community composition and CWCs, instead citing depth as the
major influence. Stone (2006) noted that apparent associations
could arise because certain fish and “habitat-forming” fauna share
a preference for similar substrata leading to covariance which may
be difficult to separate. The studies considered here include a di-
verse range of methodologies and taxa and cover a wide geo-
graphic range, but when taken together suggest that the dis-
tributions of fish within CWC areas may be influenced by a range
of processes operating across multiple scales of organisation.

The importance of scale in ecological studies is well known (e.g.
Levin, 1992; Chave, 2013). Patterns of both biodiversity (e.g. Levin
et al., 2001; Buhl-Mortensen et al., 2010) and the habitat selection
choices made by individuals (Morris, 1987; Mayor et al., 2009;
Gaillard et al., 2010) are strongly influenced by spatial scale. Fol-
lowing their 2007 study, Ross and Quattrini (2009) determined
that faunal associations at the Blake Plateau were driven primarily
by depth and habitat structure over regional scales (700 km),
though the nature of these relationships varied between sites. At
fine scales, Quattrini et al. (2012) determined that other habitat
characteristics were important to distributions of fish at the Blake
Plateau, and their importance was specific to particular fish spe-
cies. Linking fine-scale variability in habitat diversity and habitat-
use patterns to broader scales that are appropriate for manage-
ment use is likely to be important in understanding the high
variability observed in fish associations with CWCs to date. How-
ever, the influence of multiple spatial scales has not yet been ex-
amined within a single study, which may lead to difficulties in
extrapolating from one study to another due to differences in
methodologies and temporal variation.

The aims of the present study were to examine the importance
of CWCs in shaping the distribution patterns of demersal fish
populations and communities and to determine how they may be
influenced by the scale at which the analysis is conducted. The
aims are addressed using opportunistically-collected ROV video
footage from the NE Atlantic collected over four nested spatial
scales and the data are used to provide recommendations for fu-
ture management of deep-sea fish.
2. Study sites

The distributions of fish were studied in three regions of the NE
Atlantic (Fig. 1): the Logachev Mounds (SE Rockall Bank), NW
Rockall Bank and the Hebrides Terrace Seamount (HTS; con-
tinental slope). CWCs have previously been observed in all regions.

2.1. Logachev Mounds

The Logachev Mounds are located on south-eastern slope of the
Rockall Bank, between c. 600–800 m and extend approximately
120 km along the slope edge (Kenyon et al., 2003). The mounds in
this region support prolific “framework building reefs” (primarily
of Lophelia pertusa and Madrepora oculata) containing extensive
areas of living and dead framework. Parts of the Logachev Mound
area have been closed to fishing (EC 41/2006; Fig. 1), but these lie
outside the region studied here.

2.2. NW Rockall Bank

Small patches of Lophelia pertusa have been recorded from NW
Rockall Bank between c. 220–350 m depth (Wilson, 1979a; Howell
et al., 2009). Part of this area was closed to fisheries in 2006 (EC
41/2006; Fig. 1) and has since been recognised as an EU Site of



Fig. 1. Map of the study area showing the three regions (circled) and reefs within
them. 1. Logachev Mounds, 2. Rockall Bank, 3. HTS. Current closed areas at the
Logachev Mounds and NW Rockall Bank are highlighted (solid lines), where fishing
with mobile and static gears has been prohibited. The Scottish MPA around the
Barra Seafan and HTS is highlighted (dashed line), but no restrictions are currently
in force. Contour lines are spaced at 200 m intervals. Chart datum: WGS84.
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Community Importance (SCI; UK0030363). The management areas
lie outside the region examined here.

2.3. Hebrides Terrace Seamount (HTS)

The HTS is a volcanic guyot on the base of the Scottish con-
tinental slope with a maximum depth of 2000–1650 m, and rising
to a flat summit at approximately 1000 m (Buckley and Bailey,
1975). Using the same video transects as the present study, Henry
et al. (2014) reported the presence of small patches of Solenosmilia
variabilis and other taxa on the flanks of the HTS. The HTS and
Barra seafan have recently been designated as a “Nature Con-
servation MPA” by the Scottish Government, but no management
measures were in place at the time of the study.
3. Materials and methods

Data on the demersal fish were collated from opportunistically-
collected high-definition video footage captured during research
cruise JC073 (Roberts, 2013) using an Insite Mini Zeus camera
mounted on the ROV Holland I. In total, 17 ROV transects provided
27 h 7 min of useable video footage covering a total linear distance
of 17.9 km (Fig. 2, Table 1). Additional metadata for each transect
are provided in Supplement A.

The study area was subdivided according to four nested spatial
scales. “Regions” were the broadest scale (c. 175–540 km), and
contained a number of “reefs” (5.5–49.5 km). Reefs in turn con-
tained a number of “transects” (containing footage from one ROV
survey dive; 20–3400 m) and each transect contained contiguous
“substratum patches” (hereafter simply referred to as “patches”).
These categories should be considered approximations of spatial
scale, as they varied between regions. Notably, the HTS did not
contain “reefs” and the distances between transects were greater
than in other regions (15.2–16.2 km). Patches were classified ac-
cording to the dominant substratum type within the total field of
view (following Dorschel et al., 2009; Fig. 3) and defined the
sampling units and spatial resolution of the study. These classifi-
cations could be generalised into “coral reef” substrata (coral
thicket, open coral thicket), “transitional” substrata (coral rubble
and colonies, coral rubble) or “non-coral” substrata (where scler-
actinian corals were not observed in the video) following defini-
tions adapted from Costello et al. (2005).

Each transect was initially reviewed by one of two observers to
identify the locations of fish fauna and changes in substrate type.
Transects were assigned to an observer at random and analysed in
a randomised order. Footage was only analysed when the ROV was
moving over the seafloor at an approximately steady speed and
direction, and when the camera was fully zoomed-out and stable.
Footage was excluded where poor visibility prevented detection of
the fish fauna, and from periods when the ROV was stationary,
moving erratically, or was engaged in other activities. Only
transects containing more than five minutes of useable footage
were processed. All useable footage was then reviewed and
transects divided into discrete patches. The start and end times of
each patch were recorded.

Each transect was reviewed a second time and the fish fauna
were counted and identified to the highest possible taxonomic
resolution based on morphological and behavioural character-
istics, following Hureau (1996). Individuals that could not be for-
mally identified to species but that were morphologically distinct
from the other taxa were classified as distinct morphotypes (e.g.
“Macrouridae sp. 1”). Individuals that could not be identified were
classed as “indeterminate species” and excluded from analysis. The
time at which each fish was first observed was recorded. Finally,
all substratum classifications and species identities were reviewed
to remove observer bias.

Time, depth and position of the ROV over the seabed were
recorded at two-second intervals using a USBL navigation sensor.
The locations and lengths of each patch were calculated by cross-
referencing their start and end times to the USBL data. Degrees
latitude and longitude were converted to UTM (Northing and
Easting) and combined with the depth measurements to describe
the ROV’s position in metres using an x, y, z grid system. Outliers
were manually removed from the 3D position data and the re-
maining data smoothed using moving averages (N¼10 data
points). Any small sections of data which remained erratic (i.e.
where the distance travelled was unfeasibly high) were removed
and substituted with mean data from neighbouring patches. Es-
timates of mean depth (m), Northing, Easting and survey speed
(m min�1) and length (m) were calculated for each patch. The
mean gradient (“slope”) of the seafloor was estimated for each
patch by dividing the depth range by the horizontal distance tra-
velled. Survey speed was included because it can influence survey
error and fish responses towards the ROV (Trenkel et al., 2004).
Metadata for each survey are available through the British Ocea-
nographic Data Centre (Milligan et al., 2016).

3.1. Data analysis

Fish community structure was analysed using non-metric
multivariate comparisons of community composition within and
between sample groups using patches as the sampling units. Since
the three regions were spatially distinct from each other (Fig. 2)
and did not always have the same nested structure (i.e. the HTS
did not contain “reefs”), all analyses were conducted in two stages.
The first examined the broad-scale effects of “region” on commu-
nity structure, and the second stage examined the finer-scale
variation within each region separately.

Multivariate analyses were conducted using PRIMER 6 software
with PERMANOVA (Clarke and Gorley, 2006). Multivariate results
were considered significant at po0.05. Samples that contained no
fish were excluded as they would strongly bias the results. Fish
counts were standardised by patch length to control for differ-
ences in survey effort between different patches and produce an
estimate of relative abundance (N m�1). While this approach does



Fig. 2. Locations of the ROV transects conducted at (a) Region 1: Logachev, (b) Region 2: Rockall Bank, (c) Region 3: HTS. Gaps in the transects indicate where unusable
footage was removed prior to analysis. Projection: UTM Zone 28U (a) & (b); UTM Zone 29U (c) & (d).
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not account for fine-scale spatial autocorrelation between neigh-
bouring patches, it will nonetheless allow us to examine general
patterns of fish associations with CWCs over the total study area.
The relative abundances were then multiplied by 1000 for ease of
presentation and analysis. Scaling in this manner has no effect on
the analytical outputs. However, the abundances should not be
extrapolated beyond the spatial limits of the present study as they
may not be accurate over broader spatial scales. Finally, the data
were square-root transformed prior to analysis. Bray-Curtis simi-
larity matrices were generated to analyse the relative abundance
data, and Euclidian distance matrices for the environmental data.
Six outliers, each containing a single individual from a unique
species, were identified using non-metric Multi-Dimensional
Scaling (nMDS) and removed to avoid biasing the results.

PERMutational ANalysis Of VAriance (PERMANOVA; Anderson,
2001) was used to test the effects of substratum type and en-
vironmental variables on community composition. The effects of
“region” were tested separately from the environmental variables
because depth and location covaried with region. For analyses
within each region, substratum type was included as a fixed effect
nested within “transect” (random effect), which was nested within
“reef” (random effect) as appropriate. Environmental data were in-
cluded as covariates. Latitude and longitude were excluded from
analyses conducted within regions, because they were not con-
sidered to be biologically meaningful at these spatial scales. In all
cases, sequential (type I) sums of squares were used as appropriate
for nested data with covariates, and environmental terms were in-
cluded before substratum terms. Models were permuted 9999 times
under a reduced model. Backwards model selection was used to
produce the fitted model from the saturated model. Pairwise
comparisons were used to identify where significant differences
occurred between factor levels, using Monte-Carlo sampling if the
number of unique permutations was too small to allow calculation
of p-values by permutation. Where significant differences were
identified, PERMDISP analysis (Anderson, 2006) was used to de-
termine whether these differences could have been caused by
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differences in the multivariate dispersion of points rather than their
location. SIMilarity PERcentages (SIMPER) analysis was used to de-
termine which species contributed most to any significant results.

Within each region, differences in environmental variables
between substrata were tested using linear models (LM) in R
software (Version 3.1.0, R Core Team, 2014). The effects of sub-
stratum type and the other environmental variables were tested
on the patch occupancy (PO; a binary response) and raw counts
(N) of the dominant fish taxa using Generalised Linear Mixed
Models (GLMMs). All samples were included in these analyses,
including those that contained no fish. “Transect”was included as a
random effect and “substratum type” , “survey speed” , “slope” (loge
transformed), “reef” and “depth” were included as fixed effects as
appropriate (Eq. (1)). “Reef” could not be included as a random
effect as it contained too few levels to produce valid results (Bolker
et al., 2009). “Patch length” was included as an offset term. Fish
counts were modelled using packages “glmmadmb” (Fournier
et al., 2012). Patch occupancy (Eq. (2)) was modelled using “lme4”
(Bates et al., 2015) in R software.

( ) = + ( ) + + +

+ ( | ) + ( ( )) ( )

Log N substratum type log slope depth speed reef

transect offset log patch length1 1

e e

e

( ) = + ( ) + +

+ + ( | ) + ( ( )) ( )

logit PO substratum type log slope depth speed

reef transect offset log patch length1 2

e

e

Model selection for the count data was carried out in two stages.
First, the suitability of different distributions (Poisson (P), negative
binomial (NB), zero-inflated Poisson (ZIP) and zero-inflated negative
binomial (ZINB)) was assessed for the saturated model using AIC.
Second, backwards-selection of model terms was used to produce
the fitted model. The significance of each term was assessed using
likelihood-ratio testing and non-significant variables were removed.
Since p-values generated in this way are approximate (Bolker et al.,
2009), GLMM terms were only considered to have a significant effect
if po0.01. Model validation was carried out by plotting Pearson’s
residuals against both the fitted values and against each of the ex-
planatory variable included in the fitted model. Predicted counts
were also plotted against observed counts. Similar model selection
and validation procedures were conducted for the patch occupancy
analyses, with the exception that patch occupancy was always
modelled using a binomial distribution.
4. Results

Analysis of the useable footage revealed a total of 1949 iden-
tifiable fish (plus 80 indeterminate individuals) from 57 taxa (Ta-
ble 2). A morphotype catalogue is provided in Supplement B.

4.1. Broad-scale patterns

4.1.1. Environmental data
The environmental characteristics of the three regions showed

significant differences. All regions were spatially distinct from
each other and occurred at different depths (Table 1). The steepest
seabed slopes occurred at Logachev and the flattest at NW Rockall
Bank (LM: F¼111.8, DF¼2, po0.0001). ROV survey speed also
varied significantly between regions by c. 4 m min�1 (LM:
F¼95.45, DF¼2, po0.0001), with the highest average speeds
occurring at the HTC and the lowest at Rockall Bank.

4.1.2. Community data
Multivariate analysis of the total fish community showed that

region (PERMANOVA: Pseudo-F¼59.0, DF¼2, p¼0.0001; Fig. 4(a)),



Fig. 3. Examples of each substratum type. (a) Coral thicket, (b) Open coral thicket, (c) Coral rubble and colonies, (d) Coral rubble, (e) Hard ground (bedrock), (f) Consolidated
sediment, (g) Soft sediment and stones, and (h) Soft sediment.
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had a significant effect on the fish composition. nMDS plots visua-
lising the effects of depth (Fig. 4(b)), latitude (Fig. 4(c)) and long-
itude (Fig. 4(d)) show a progressive change in community compo-
sition that best correlates with depth. SIMPER analysis indicated
that the similarity between samples taken from the same region
was greater than between samples from different regions (Table 3).
4.1.3. Dominant species
Although similarities in fish composition within regions were

relatively low (SIMPER: 19.28–28.9%), each region could be defined
by a small number of dominant taxa (Table 4). Gadoids and Se-
bastes sp. 1 dominated at NW Rockall Bank, while morids and
macrourids dominated the Logachev Mounds and HTS fauna.



Table 2
Fish taxa observed within each region. Raw counts (N) and standardised counts (N m�1) are provided for each taxon. Taxa for which fisheries landings data are available from
the FAO database (FAO, 2009) are highlighted (species data¼*; family data¼†).

Fish Taxon Region Logachev Mounds Rockall Bank Hebrides Terrace Seamount

Authority Raw
counts (N)

Standardised counts
(N m�1)�1000

Raw
counts (N)

Standardised counts
(N m�1)�1000

Raw
counts (N)

Standardised counts
(N m�1)�1000

Alepocephalidae sp. 1 0 0.0 0 0.0 3 5.9
Anguilliformes spp. 2 159.5 0 0.0 22 186.2
Angulliforme sp. 1 15 711.8 0 0.0 0 0.0
Antimora rostrata* (Günther, 1878) 0 0.0 0 0.0 1 10.7
Brosme brosme* (Ascanius, 1772) 0 0.0 1 70.2 0 0.0
Chimaera monstrosa* Linnaeus, 1758 3 150.5 0 0.0 2 16.8
Chimaera spp.† Linnaeus, 1758 0 0.0 0 0.0 2 23.0
Chondrichthyes sp. 1 2 10.3 0 0.0 0 0.0
Chondrichthyes sp. 2 1 4.6 0 0.0 0 0.0
Chondrichthyes sp. 3 1 54.2 0 0.0 0 0.0
Chondrichthyes sp. 4 0 0.0 0 0.0 7 334.3
Coelorhynchus caelorhynchus (Risso, 1810) 106 9250.1 0 0.0 0 0.0
Coelorhynchus labiatus (Köhler, 1896) 0 0.0 0 0.0 83 839.8
Coryphaenoides armatus (Hector, 1875) 0 0.0 0 0.0 1 0.9
Coryphaenoides rupestris* Gunnerus, 1765 0 0.0 0 0.0 32 1123.4
Epigonus sp. 1 0 0.0 0 0.0 4 3.7
Gadidae sp. 1 0 0.0 290 24,452.8 0 0.0
Gadiformes sp. 1 0 0.0 17 3168.8 0 0.0
Gaidropsarus sp. Rafinesque, 1810 10 277.6 0 0.0 0 0.0
Guttigadus latifrons (Holt & Byrne,

1908)
1 92.3 0 0.0 0 0.0

Halosauridae spp. 0 0.0 0 0.0 12 196.3
Halosauridae sp. 1 0 0.0 0 0.0 2 410.2
Halosauridae sp. 2 0 0.0 0 0.0 13 116.3
Halosauridae sp. 3 1 67.2 0 0.0 0 0.0
Helicolenus dactylopterus* (Delaroche, 1809) 141 16,307.1 127 15,875.3 0 0.0
Hydrolagus mirabilis† (Collett, 1904) 0 0.0 0 0.0 5 9.4
Lepidion eques (Günther, 1887) 295 26,313.2 0 0.0 73 2759.2
Lophius sp.† Linnaeus, 1758 1 102.4 0 0.0 0 0.0
Lotidae spp. 1 70.7 0 428.0 2 38.1
Macrouridae spp. Gilbert & Hubbs,

1916
16 2763.7 0 0.0 33 961.6

cf. Malacoraja kreffti (Stehmann, 1978) 0 0.0 0 0.0 2 31.0
Micromesistius poutassou* (Risso, 1827) 1 685.5 43 1604.5 0 0.0
Molva dypterygia* (Pennant, 1784) 13 243.4 5 583.7 0 0.0
Molva molva* (Linnaeus, 1758) 0 0.0 9 530.2 0 0.0
Molva spp. Lesueur, 1819 0 0.0 7 642.6 1 2.1
Mora moro* (Risso, 1810) 6 504.6 0 0.0 0 0.0
Moridae spp. Moreau, 1881 29 2924.0 0 0.0 1 10.3
Neocyttus helgae (Holt & Byrne,

1908)
1 6.7 0 0.0 64 4630.9

Phycis blennoides* (Brünnich, 1768) 1 164.5 3 115.2 0 0.0
Pleuronectiformes sp. 2 0 0.0 36 1476.0 0 0.0
Pleuronectiformes sp. 3 0 0.0 1 30.3 0 0.0
Pollachius virens* (Linnaeus, 1758) 0 0.0 1 18.3 0 0.0
Scorpaenidae spp. 1 182.1 0 0.0 0 0.0
Sebastes sp. 1* 0 0.0 238 18,571.7 0 0.0
Synaphobranchidae sp. 0 0.0 0 0.0 1 0.9
Synaphobranchus kaupii Johnson, 1862 1 92.3 0 0.0 44 491.2
Trachyscorpia cristulata
cristulata

(Goode & Bean,
1896)

2 324.3 0 0.0 0 0.0

Teleostei sp. 1 0 0.0 0 0.0 3 1.3
Indet. 80 11,027.6 26 2572.3 66 2280.0
Regional total 731 72,490.2 804 70,139.9 479 14,483.5

R.J. Milligan et al. / Deep-Sea Research I 114 (2016) 43–54 49
Close-up views of Sebastes sp. 1 suggested that this species was
likely to be Sebastes viviparus, though it could only be consistently
identified to morphotype.
4.2. Intermediate and fine-scale patterns

4.2.1. Region 1: Logachev Mounds
4.2.1.1. General description. The CWCs at Logachev comprised ex-
tensive banks of Lophelia pertusa, and had the highest proportion of
coral cover of any of the regions, with coral reef and transitional
substrata comprising between 70.4% (Logachev 3) and 98.7%
(Logachev 1) of the total surveyed substrata. Coral reef substrata
were more likely to occur at shallower depths (LM: F¼74.7, DF¼12,
po0.01) and on steeper slopes (LM: F¼10.06, DF¼12, po0.01) than
transitional and non-coral substrata. Other emergent epifauna (e.g.
Alcyonacea) were observed but not recorded in the present study.

4.2.1.2. Community data. A total of 731 individual fish were ob-
served (Table 2). Substratum type (PERMANOVA: Pseudo-F¼1.69,
DF¼25, p¼0.0007; Fig. 5(a)) and depth (PERMANOVA: Pseudo-
F¼18.577, po0.001) had significant effects on community com-
position. No significant difference in multivariate dispersion was



Fig. 4. nMDS showing the differences in assemblage composition (a) between regions (ANOSIM: po0.001); (b) with depth (BIOENV: po0.001), (c) with latitude (BIOENV:
po0.001), (d) with longitude (BIOENV: po0.01). Each point represents one patch. For clarity, three outlying points are not shown. Data have been square-root transformed
and distances are based on Bray-Curtis similarity. Stress¼0.05.

Table 3
Mean Bray‐Curtis similarity between regions.

Logachev Mounds Rockall Bank HTS

Logachev Mounds 28.48
Rockall Bank 7.41 28.40
HTS 9.11 0.01 18.98

Table 4
Mean standardised abundance (N m�1 (x1000);71 S.D.) of characteristic taxa from
each region. Blank cells indicate zeros.

Logachev Mounds Rockall Bank HTS

Lepidion eques 106.1 (7156.16) 28.15 (767.06)
Helicolenus
dactylopterus

65.75 (7132.94) 144.3 (7245.04)

Coelorhynchus
caelorhynchus

37.3 (789.65)

Gadidae sp. 1 222.3 (7490.50)
Sebastes sp. 1 168.8 (7506.20)
Neocyttus helgae 47.25 (776.69)
Coelorhynchus
labiatus

8.57 (729.93)

Macrouridae sp. 9.81 (730.98)
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detected between substratum types (PERMDISP: F ¼ 0.35, DF ¼ 5,
p 4 0.05). Significant variation between transects was detected
(PERMANOVA: Pseudo-F¼2.51, DF¼6, po0.001) but not between
reefs (PERMANOVA: Pseudo-F¼0.78, DF¼2, p40.05). Interactions
between substratum type and slope and depth were tested but
none were significant (PERMANOVA: p40.05). The order in which
the variables were entered into the model did not affect the sig-
nificance of the results.

SIMPER analysis indicated that higher counts of Coelorhynchus
caelorhynchus (Macrouridae), Helicolenus dactylopterus (Scorpae-
nidae) and Lepidion eques (Moridae) occurred in coral reef and
transitional substrata, while non-coral substrata contained higher
numbers of Anguillidae and Halosauridae.

4.2.1.3. Single species trends. Three species accounted for over 80%
of the fish community at the Logachev Mounds: Lepidion eques
(43%), Coelorhynchus caelorhynchus (26.8%) and Helicolenus dacty-
lopterus (14.6%). Lepidion eques occurred on all substratum types
and in all transects, but none of the modelled terms had a sig-
nificant effect on L. eques abundance (p40.05). Survey speed had
a significant, negative effect on the probability of L. eques patch
occupancy (GLMM (speed): Chi2¼9.54, DF¼1, po0.001), though
the magnitude of the effect was weak (coefficient¼�0.1, S.
D.¼0.03). No variables had significant effects on the relative
abundance or probability of patch occupancy of Coelorhynchus



Fig. 5. nMDS plots showing the significant effects of substratum type (po0.05) on
fish community composition at (a) the Logachev Mounds; (b) Rockall Bank and
(c) HTS based on Bray-Curtis similarity. Data have been square-root transformed
and distances are based on Bray-Curtis similarity. Reef substrata are indicated by
closed circles, transitional substrata by open circles and non-coral substrata by
crosses.
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caelorhynchus (p40.01). A weak, but significant negative effect of
depth (coefficient¼�0.02, S. D.¼0.002) on Helicolenus dacty-
lopterus abundance (GLMM (depth): Deviance¼111, DF¼1,
po0.001) and patch occupancy (GLMM (depth): Chi2¼80.1,
DF¼2, po0.001) was observed.

4.2.2. Region 2: Rockall Bank
4.2.2.1. General description. Rockall Bank was dominated by soft
sediment and soft sediment and stones, which comprised between
69.9% and 95.3% (mean¼84.9%) of the total substrata in each
transect. Coral substrata typically occurred as small thickets of
Lophelia pertusa (“Wilson rings”; Wilson, 1979b). Water depth
varied by approximately 25 m between reefs sites with no overlap
(Table 1) and so was excluded from the analyses. Slope and speed
varied significantly with substratum type, with CWC substrata
associated with steeper slopes than non-coral substratum (LM:
F¼4.7, DF¼4, po0.02) although this appeared to be caused by the
vertical relief of the CWCs. Coral rubble was surveyed more slowly
than other substratum types.

4.2.2.2. Community data. A total of 839 fish were identified from
16 taxa (Table 2). Substratum type (PERMANOVA: Pseudo-F¼1.41,
DF¼14, po0.05; Fig. 5(b)), slope (PERMANOVA: Pseudo-F¼2.70,
po0.05) and survey speed (PERMANOVA: Pseudo-F¼2.70,
po0.05) were found to have significant effects on community
composition, although the significance of slope and speed dis-
appeared if they were included after substratum type in the
model. No significant difference in multivariate dispersion was
detected between substratum types (PERMDISP: Pseudo-F¼0.367,
DF¼4, po0.05). Significant variation was detected between both
transects (PERMANOVA: Pseudo-F¼2.06, DF¼3, po0.01) and
reefs (PERMANOVA: Pseudo-F¼4.30, DF¼1, po0.0001). Interac-
tions between substratum type and slope were tested but were
not significant.

SIMPER analysis indicated that higher counts of Sebastes sp. 1
(Scorpaenidae) occurred in coral reef substrata, while higher
numbers of Helicolenus dactylopterus (Scorpaenidae) and Gadidae
sp. 1 occurred in transitional substrata, though both were present
in non-coral substrata. Differences between transects and reefs
appeared to be driven primarily by differences in the relative
abundances of common taxa, rather than by a different in species
composition.

4.2.2.3. Individual species trends. Three species accounted for over
80% of the total fish at Rockall Bank: Gadidae sp. 1 (36.4%), Sebastes
sp. 1 (27.6%) and Helicolenus dactylopterus (22.7%). Close-up ob-
servations of Sebastes sp. 1 suggested that this morphotype was
likely Sebastes viviparus and indicated the presence of some gravid
individuals. One gravid specimen was recovered using a suction
sampler. No variables had significant effects on the relative
abundance or probability of patch occupancy of Gadidae sp. 1
(p40.01). Significantly higher counts of Sebastes sp. 1 were ob-
served in open coral thicket than in any other substratum (GLMM
(substratum): z-value¼3.17, po0.01). Slope also had a significant,
positive effect (GLMM (slope): z-value¼3.17, po0.01). No vari-
ables affected the probability of Sebastes sp. 1 patch occupancy
(GLMM: p40.01). No variables had significant effects on the re-
lative abundance or probability of patch occupancy of Helicolenus
dactylopterus (p40.01).

4.2.3. Region 3: Hebrides Terrace Seamount
4.2.3.1. General description. The HTS contained extensive areas of
apparent soft sediment with gravel (classified as soft sediment).
Occasional patches of hard ground were observed on the flanks
(HTS 35 and HTS 37). CWC substrata were rare and comprised small
Solenosmilia variabilis colonies and coral rubble on the flanks of the
seamount. Other emergent epifauna (e.g. Alcyonacea) were ob-
served on the flanks of the seamount but not recorded in the pre-
sent study. Depth was a significant predictor of substratum types on
the flanks, with hard ground and soft sediment and stones occur-
ring in shallower depths than other substrata (LM: F¼5.7, DF¼5,
po0.01). Hard ground was significantly steeper, and soft sediment
flatter, than other substrata (LM: F¼2.5, DF¼4, po0.05).

4.2.3.2. Community data. A total of 483 fish were identified from
25 taxa (Table 2). Substratum type (PERMANOVA: Pseudo-F¼1.45,
DF¼9, po0.05; Fig. 5(c)) and depth (PERMANOVA: Pseudo-
F¼5.62, po0.01) were found to significantly affect community
composition. Significant differences in multivariate dispersion
were detected between substratum types (PERMDISP: F¼3.68,
po0.03) and significant variation was detected between transects
(PERMANOVA: Pseudo-F¼8.51, DF¼2, p¼0.0001). SIMPER analy-
sis suggested that differences between substrata were driven by a
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greater relative abundance of Neocyttus helgae (Oreosomatidae)
over transitional than non-coral substrata, and fewer Lepidion
eques over soft sediment than other substrata. The macrourids
Coryphaenoides rupestris and C. labiatus appeared to be more
abundant over soft sediments than other substrata. Indeterminate
macrourids, halosaurs and anguillids also contributed to the dif-
ferences between substratum types.

4.2.3.3. Individual species trends. Six taxa accounted for over 80% of
the total standardised fish abundance, excluding unidentifiable
species. These were: Neocyttus helgae (37.8%), Lepidion eques
(22.5%), Coryphaenoides rupestris (9.2%), Macrouridae spp. (7.9%)
and Coryphaenoides labiatus (6.9%). Macrouridae spp. was ex-
cluded from further analysis as it was not a mono-specific group.

No variables had significant effects on the relative abundance of
Neocyttus helgae, although it was significantly more likely to occur
over transitional substrata than other types (GLMM (substratum):
Chi2¼18.6, DF¼4, po0.001). Lepidion eques was significantly
more abundant (GLMM: Deviance¼24.7, DF¼1, po0.001), and
more likely to occupy shallower depths (GLMM: Chi2¼20.0, DF¼1,
po0.001). Coryphaenoides rupestris was significantly more abun-
dant (GLMM: Deviance¼7.7, DF¼1, po0.01) and likely to occur
(GLMM: Chi2¼8.0, DF¼1, po0.01) at greater depths, though the
effects were weak (coefficients¼0.005 and 0.007 respectively). No
variables had significant effects on the relative abundance or
probability of patch occupancy of Coryphaenoides labiatus.
5. Discussion

Differences in community composition appeared to be influ-
enced by different variables operating over different spatial scales.
At the broadest scales (175–550 km), significant differences in fish
community composition were correlated with depth. The im-
portance of depth in structuring deep-sea faunal communities is
well-known (e.g. Carney, 2005), and correlations with alpha and
beta biodiversity have been demonstrated for north Atlantic fish
fauna in general (e.g. Koslow, 1993; Priede et al., 2010; Bergstad,
2013) as well as specifically within CWC regions (Costello et al.,
2005; Ross and Quattrini, 2009). While depth per se is unlikely to
be the causal driver of these changes because it either directly
influences or varies with other physical mechanisms that influence
fish distributions (e.g. water mass structure, temperature, light
levels, pressure or food supply; Koslow, 1993; Carney, 2005;
Bergstad, 2013), it nonetheless provides a useful proxy measure
that could be incorporated into a management framework rela-
tively easily (Howell, 2010).

Significant variation in community composition was detected
at intermediate spatial scales (c. 5.5–49.5 km) between transects in
all regions and between reefs at Rockall Bank. These are similar to
findings by Ross and Quattrini (2009) and Quattrini et al. (2012)
from the NW Atlantic. The constraints of the present study meant
it was not possible to determine whether these differences were
driven by underlying environmental variability, or whether they
were the result of stochastic variation caused by the low densities
of deep-sea fish. Future work should be designed to allow for in-
termediate-scale variation, either through robust experimental
design or appropriate statistical methodologies (e.g. the in-
corporation of random effects).

At fine scales (20–3400 m) CWCs supported a significantly
different fish fauna to non-CWC substrata. The clearest example of
this occurred at Rockall Bank, where Sebastes sp. 1 (which included
some gravid individuals) was closely associated with CWC reef
substrata. Links between Sebastes spp. and CWCs have been pre-
viously reported from the NE Atlantic (e.g. Mortensen et al., 1995;
Fosså et al., 2002; Freiwald et al., 2002; Costello et al., 2005), and
Foley et al. (2010) recommended that CWCs should be considered
“essential fish habitat” for the genus in Norwegian waters. How-
ever, while Sebastes spp. do associate with CWCs, the relative
importance of CWCs compared to other biogenic substrata
(formed by Porifera or Alcyonacea for example) is not clear. In the
NW Atlantic and NE Pacific for example, Sebastes spp. associates
with both soft corals (e.g. gorgonians) and CWCs (Stone, 2006; Du
Preez and Tunnicliffe, 2011; Miller et al., 2012). In the present
study, only 24% of Sebastes sp. 1 were observed over non-CWC
substrata, strongly suggesting that CWCs were important to this
species in the NW Rockall Bank region, at least at the time of the
study. Gravid Sebastes spp. were observed in association with
CWCs in the present study. Similar associations between Sebastes
spp. and CWCs have been reported by Costello et al. (2005) and
Fosså et al. (2002), and with seapens by Baillon et al. (2012) during
May and June. Evidence that larval fish were taking refuge within
seapens was interpreted by Baillon et al. (2012) as important ha-
bitat use. If Sebastes sp.1 is reliant on CWCs for all or part of its life
cycle, then they may be predicted to be more vulnerable to en-
vironmental disturbance and habitat loss than more generalist
species (Wilson et al., 2008). Studies at other times of year are
lacking however, and the importance of CWCs to population pro-
cesses have not yet been quantified.

Substratum preferences were less clearly defined in other re-
gions. At Logachev and the HTS, fish community composition
varied significantly with both depth and substratum type, with
CWCs supporting a significantly different fauna to non-CWC sub-
strata. Single-species analyses of the dominant taxa showed that
only Neocyttus helgae was significantly more likely to occur with
CWCs, while the relative abundances of Helicolenus dactylopterus,
Lepidion eques (at the HTS only) and Coryphaenoides rupestris were
significantly affected by depth. These results suggest that CWCs
were no more important than other substratum types to most of
the dominant taxa observed at the time of this study. These
findings are partly supported by Biber et al. (2014) who reported
variable relationships between both L. eques and H. dactylopterus
and CWCs and depth in the NE Atlantic. L. eques is extremely
common in the NE Atlantic and has previously been recorded from
numerous locations (e.g. Mauchline and Gordon, 1980; Soeffker
et al., 2011), suggesting it may be a highly generalist species in
terms of substratum preference. Similarly, H. dactylopterus is ex-
tremely widespread across the Atlantic generally (Kelly et al.,
1999) and was considered a “transient” reef species by Quattrini
et al. (2012) rather than a reef-associated one.

Interpreting apparent species-habitat associations must be
done with care. It is generally assumed that individuals will select
a particular habitat to maximise their success (e.g. Orians and
Wittenberger, 1991; Munday, 2001), but benefits can vary both
spatially and temporally with both resource availability and the
life history stage of the animal (Orians and Wittenberger, 1991;
Munday, 2000; Mayor et al., 2009). Drivers of habitat preference
cannot be inferred simply from observed distribution patterns,
because these do not account for external factors that may con-
strain habitat choice, such as inter- or intra-specific interactions or
other environmental drivers (Auster, 2005). Consequently, any
assessment of a species’ true preference will require detailed study
and experimentation on the organism in question over appro-
priate temporal and spatial scales. This will prove challenging in
the deep sea, but would be beneficial in developing a more com-
plete understanding of the ecological importance of CWCs to
deep-sea fish.

While a more detailed understanding of the importance of
CWCs to fish may be desirable from a scientific perspective, any
such studies are unlikely to produce results for some time. From a
management perspective, it may be more prudent in the short-
term to adopt a precautionary approach to the spatial
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management of deep-water fish, and the results from the present
study suggest some possible considerations. While the constraints
of the survey methodology mean that the results of the present
study should be interpreted cautiously, if MPAs are intended to
protect a representative subset of the wider fish community, then
our data suggest that they should take account of both broad- and
fine-scale spatial drivers of community structure. This would re-
quire accounting for the broad-scale effects of depth by selecting
an appropriate depth range and then accounting for fine-scale
variability within that range by including a sufficient range of
substratum types over the spatial scales at which community
composition was observed to vary (in this case, at “intermediate”
scales of c. 5–50 km). For example, at the Logachev Mounds this
may involve protecting a number of coral mounds across their full
depth range. The EU fishing closures at Logachev (EC 41/2006; see
Fig. 1) may therefore benefit from being extended into shallower
depths to include coral mounds occurring at the top of the slope.
In the context of the Scottish MPA framework, the proposed MPA
at the HTS (JNCC, 2013) should also ensure that a sufficient depth
range is covered to include the full range of species encountered,
providing that appropriate protection is legislated.
6. Conclusions

Our findings suggest that CWCs support different fish assem-
blages to non-CWC substrata, but that the precise composition of
that assemblage is modified by the broader spatial context, in-
cluding the effects of depth or the composition of the regional
species pool for example. Understanding how different drivers
interact to affect the fish fauna across multiple spatial and tem-
poral scales would allow a far greater understanding of the im-
portance of CWCs to different fish and how this may be tied to
their life-history traits. The maintenance of natural fish assem-
blages is nonetheless a valid conservation aim. The precautionary
approach would be to assume that CWCs are important areas for
the associated fish, and that this should be considered when de-
signing future MPAs. For fish assemblages to be fully protected,
MPAs will be needed that encompass both broad- and fine-scale
variability by covering a suitable depth range and variety of sub-
strata, including CWC and non-CWC areas. For those species which
appear to associate strongly with CWCs (e.g. gravid Sebastes sp.
1 at Rockall Bank), it would be prudent to assume that such areas
provide “essential habitats” and to manage them accordingly.
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