

Edinburgh Research Explorer

Hardware Accelerated Cross-Architecture Full-System
Virtualization

Citation for published version:
Spink, T, Wagstaff, H & Franke, B 2016, 'Hardware Accelerated Cross-Architecture Full-System
Virtualization' ACM Transactions on Architecture and Code Optimization, vol. 13, no. 4, 36. DOI:
10.1145/2996798

Digital Object Identifier (DOI):
10.1145/2996798

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM Transactions on Architecture and Code Optimization

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/77047433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2996798
https://www.research.ed.ac.uk/portal/en/publications/hardware-accelerated-crossarchitecture-fullsystem-virtualization(ab3fccd9-365d-4757-8d2c-f62aaeb59791).html

A

Hardware Accelerated Cross-Architecture Full-System Virtualization

Tom Spink, Harry Wagstaff & Björn Franke, University of Edinburgh, UK

Hardware virtualization solutions provide users with benefits ranging from application isolation through
server consolidation to improved disaster recovery and faster server provisioning. While hardware assis-
tance for virtualization is supported by all major processor architectures, including Intel, ARM, PowerPC
& MIPS, these extensions are targeted at virtualization of the same architecture, e.g. an x86 guest on an
x86 host system. Existing techniques for cross-architecture virtualization, e.g. an ARM guest on an x86
host, still incur a substantial overhead for CPU, memory and I/O virtualization due to the necessity for
software emulation of these mismatched system components. In this article we present a new hardware
accelerated hypervisor called CAPTIVE, employing a range of novel techniques, which exploit existing hard-
ware virtualization extensions for improving the performance of full-system cross-platform virtualization.
We illustrate how (1) guest MMU events and operations can be mapped onto host memory virtualization
extensions, eliminating the need for costly software MMU emulation, (2) a block-based DBT engine inside
the virtual machine can improve CPU virtualization performance, (3) memory mapped guest I/O can be
efficiently translated to fast I/O specific calls to emulated devices, and (4) the cost for asynchronous guest
interrupts can be reduced. For an ARM-based Linux guest system running on an x86 host with Intel VT sup-
port we demonstrate application performance levels, based on SPEC CPU2006 benchmarks, of up to 5.88×
over state-of-the-art QEMU and 2.5× on average, achieving a guest dynamic instruction throughput of up to
1280 MIPS and 915.52 MIPS, on average.

CCS Concepts: rComputing methodologies→ Simulation tools; rHardware→ Simulation and em-
ulation;

Additional Key Words and Phrases: Virtualization

ACM Reference Format:
Tom Spink, Harry Wagstaff, and Björn Franke, 2016. Hardware Accelerated Cross-Architecture Full-System
Virtualization ACM Trans. Architec. Code Optim. V, N, Article A (January YYYY), 25 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Virtualization technology enables workload consolidation where multiple applications
are deployed onto Virtual Machines (VMs), which then run on a single, more-powerful
host machine. While virtualization may introduce some runtime overhead, processor
manufacturers have developed support in hardware in the form of instruction set exten-
sions (ISEs) to make their respective architectures efficiently and fully virtualizable,
e.g. Intel VT or ARM Virtualization Extensions. They have also created additional
mechanisms to allow I/O virtualization with less software overhead.

However, these virtualization extensions are geared towards same-architecture vir-
tualization, where both the guest VM and the physical host machine share the same
architecture. For cross-architecture virtualization, where guest VM and host architec-
tures are different, translation between ISAs, emulation of the guest system’s mem-
ory management unit (MMU), interrupt handling and I/O devices are typically imple-
mented entirely in software, resulting in a substantial performance loss. For example,
in full-system mode the gem5 architectural simulator [Binkert et al. 2011] takes about
30 minutes to boot into Linux on a current, mid-range host machine. While this per-
formance level is sufficient for some computer architecture research, it is far too slow
for any practical applications. QEMU [Bellard 2005], a popular cross-architecture full-
system virtualizer using dynamic binary translation (DBT), is substantially faster, but

0New Paper, Not an Extension of a Conference Paper

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 T. Spink et al.

still suffers an up to 20× slow-down [Jones and Topham 2009] compared to native
execution on the host.1

While same-architecture virtualization has become ubiquitous there are fewer, but
nonetheless important applications for cross-architecture virtualization, e.g. Android
software development using the QEMU-based Android Emulator shipped with the An-
droid Studio [Gerber and Craig 2015], which provides a full-system ARM environment
for software developers using an x86 host machine; building ARM Docker [Merkel
2014] containers on x86 machines; providing fast-forwarding in sampling based sim-
ulators [Sandberg et al. 2015]; or early-stage software development without a hard-
ware target [Ceng et al. 2009]. All of these applications critically depend on fast cross-
architecture virtualization due to unavailability or deliberate absence of a hardware
platform supporting the chosen target ISA.

In this article, we develop a novel approach for speeding up cross-architecture vir-
tualization, and implement these ideas in a new cross-architecture hypervisor called
CAPTIVE. The key idea is to eliminate performance bottlenecks by exploiting the ex-
isting virtualization hardware extensions originally devised for same-architecture vir-
tualization. We target four distinct cross-architecture virtualization challenges and
make the following contributions:

(1) We show how virtual-to-physical address translation can be accelerated through
the use of virtualization extensions, by mapping behavior of the guest MMU onto
corresponding behavior of the host MMU – despite substantial differences between
the two MMUs.

(2) We present a DBT system for the translation from the guest to host ISA, where
a fast, block-based just-in-time (JIT) compiler that lives inside the native virtual
machine compiles guest basic blocks to host native code.

(3) We develop an efficient mechanism to emulate the guest’s memory mapped I/O
devices, by exploiting the MMU to detect device accesses.

(4) Finally, we devise an interrupt handling scheme, which correctly honors the guest’s
instruction boundaries, even if one guest instruction is mapped onto several host
instructions, thus implementing precise, yet efficient guest interrupts.

1.1. Motivating Example
It has been well established [Magnusson and Werner 1994; Chang et al. 2014; Wang
et al. 2015; Hong et al. 2015] that emulation of a guest MMU is one of the most time-
consuming parts of cross-architecture virtualization, therefore in this motivating ex-
ample, we will focus on the memory address translation process required for virtualiza-
tion. For this, consider the diagram in Figure 1, which shows the percentage of memory
operations w.r.t. the total number of executed instructions in the SPEC CPU2006 inte-
ger benchmarks. About 50% of the instructions in these benchmarks perform memory
accesses. This means if we are running these benchmarks in a virtualized ARM guest
environment on an x86 host, on average, every other instruction demands an expen-
sive virtual-to-physical memory translation using a virtualized ARM MMU, typically
implemented in software. If we succeed in speeding up these address translations we
will eliminate one of the most severe cross-architecture virtualization performance
bottlenecks.

In a 32-bit ARMv7-A system with an ARMv7-A MMU, there are at most two levels of
page tables representing a virtual memory area. To translate a virtual address into its
corresponding physical address, the first-level page table (an L1 page table), pointed

1Native execution of a binary suitably compiled to the host ISA from the same sources, which have been
used to build the binary for the guest’s ISA.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Hardware Accelerated Cross-Architecture Full-System Virtualization A:3

 0

 20

 40

 60

 80

 100

400.perlbench
401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er
458.sjeng

462.libquantum
464.h264ref
471.om

netpp
473.astar

483.xalancbm
k

G
eom

. M
ean.

%
 o

f
m

em
or

y
in

st
ru

ct
io

n
s

Other
Read
Write

Read/Write

Fig. 1: Distribution of operations in the SPEC CPU2006 integer benchmarks. On aver-
age, around 50% of all instructions executed perform memory operations (either read,
write, or both), which require expensive virtual-to-physical address translation using
a software MMU.

to by the TTBR register, is indexed by bits 20–31 of the virtual address and the entry
interrogated to determine if the mapping is to a section (a 1MB contiguous chunk of
memory) or a small page (a 4kB contiguous chunk of memory). If the page table entry
indicates a section, then the base address points to the physical base address of the
memory. If the page table entry indicates a small page, then the base address points
to the physical base address of a second-level page table (an L2 page table). The L2
page table is indexed by bits 12–19 of the virtual address, and the base address in the
L2 page table entry points to the physical base address of the page corresponding to
the mapping. A page table entry in the L1 (if pointing to a section) or L2 page table in
addition to the base address pointer contains flags that indicate the access permissions
of the page, e.g. whether or not the page is readable and writable, and if it is accessible
whilst executing in the user privilege level.

In a 64-bit x86 system, there are four levels of page tables that represent a 48-bit
virtual address space. Pointers are always 64-bit wide, but can only access 48-bits of
virtual address space. Virtual addresses must be in canonical form, where bits 48–63
of the address are copies of bit 47. Any memory access to a non-canonical address will
result in a general protection fault. Address translation operates in a similar fashion to
ARM, with each level of page table being traversed to translate a 64-bit virtual address
into a 64-bit physical address, subject to permissions which can be applied at any level
of the page table–the higher level permissions taking precedence over the lower levels.

To avoid a costly page table walk for every memory access, both architectures employ
a translation lookaside buffer (TLB), which caches the result of a previous hardware
translation. If the page tables are modified, or the pointer to the top-level page table
changed, the TLB must be flushed.

From this description it should be clear that the structure of the ARM and x86 MMUs
are substantially different, yet fundamentally they both provide a mechanism for the
translation of virtual addresses to physical addresses with access permission checking.
In this article we propose to exploit this hardware address translation capability, and
show how to map the behavior of an ARM MMU onto a virtualized Intel MMU. By inter-
cepting ARM TLB invalidations and maintaining entries in the x86 page table that rep-
resent entries in the ARM page table, we can accelerate address translations. Instead
of using a slow software implementation of the ARM MMU, guest address translations
are redirected to the fast, host virtualized Intel MMU, which our system keeps con-
sistent with the guest’s ARMv7-A MMU. Using existing extensions originally devised
for same-architecture virtualization we are able to speed up critical cross-architecture
address translations over a purely software-based MMU implementation.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 T. Spink et al.

1.2. Overview
The remainder of this article is structured as follows. In Section 2 we provide back-
ground information on MMU virtualization in full-system simulators, Intel virtualiza-
tion technology (Intel VT) and the kernel-based virtual machine (KVM) framework,
on which our work relies. We then present our novel cross-architecture virtualization
techniques in Section 3 and our results in Section 4. We discuss related work in Section
5, before we summarize and conclude in Section 6.

2. BACKGROUND
While this article is largely self-contained we assume a certain level of familiarity
with the Intel VT extensions and also KVM. In this section we briefly introduce these
technologies before describing our virtualization infrastructure in the next section.

2.1. Intel VT
Intel VT [Intel 2016] is a set of hardware extensions introduced by Intel to provide
support for virtualization of an x86 processor. It provides new instructions for setting
up and managing these virtual machines, transitioning between hypervisor and vir-
tualized execution, and support for virtualizing the guest MMU with extended page
tables (EPT). EPT provides an extra level of page tables that are walked by hardware
when a virtual memory address that is not present in the TLB is encountered whilst
running in the virtual machine. CAPTIVE utilizes Intel VT extensions by creating a
virtual machine with the KVM infrastructure provided by the Linux kernel.

2.2. KVM
Hardware accelerated virtualization is well supported by multiple processor vendors,
such as Intel with Intel VT and AMD with AMD-V. Whilst these extensions produce
the same effect, i.e. they create an abstract computing platform on which to run un-
modified operating systems, they are implemented and accessed completely differently.
KVM [KVM 2016] is a virtual machine monitor implemented as part of the Linux ker-
nel, which can utilize any supported hardware virtualization, on any platform. Its job
is to abstract the details of the virtualization extensions, and to provide a generic in-
terface for creating and managing a virtualization environment. KVM fully supports
virtualization extensions such as Intel EPT or AMD RVI, which is used to accelerate
a virtualized MMU. KVM itself is only an interface to hardware virtualization exten-
sions, it will not work in the absence of these.

KVM was developed in tandem with QEMU, but does not depend on QEMU—it is an
independent technology that is part of the standard Linux kernel.

In CAPTIVE, we utilize KVM to create a virtual machine backed by Intel VT or AMD-
V in a platform-agnostic way. The use of KVM, and consequently the use of Intel VT is
described in more detail in Section 3.1.

3. VIRTUALIZATION INFRASTRUCTURE
Our virtualization infrastructure consists of three main components:

(1) A hypervisor component, which runs on the host machine and uses KVM to con-
trol the host’s hardware virtualization extensions.

(2) An execution engine component, which runs inside a normal virtual machine on
the host.

(3) An architectural implementation, which defines the behavior of the architec-
ture being virtualized.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Hardware Accelerated Cross-Architecture Full-System Virtualization A:5

Host Machine
x86

Virtual Machine
x86

Hypervisor

Post Interrupts
to VM

Make Device Request
to Host

Platform
Device

Emulation

Execution
Engine Architecture

Specific
Behaviour

ARMv7

KVM

VM
Memory

Support
Libraries

Fig. 2: A high-level overview of the virtualization infrastructure. The CAPTIVE hyper-
visor runs in the operating system (Linux) of the host machine, and creates a virtual
machine that is the same architecture as the host (x86). Inside this virtual machine,
the CAPTIVE execution engine virtualises a guest platform (ARMv7) by mapping the
behaviour of the guest, to the behaviour of the host.

For the rest of this article, we will be assuming that we are virtualizing an ARMv7-
A guest architecture (modelling a RealView Platform Baseboard for Cortex-A8 [ARM
2011b]), on a standard x86-64 host machine with Intel VT virtualization extensions.

Due to the multi-layer nature of this system, it is important to define some termi-
nology at this point to establish exactly what terms will describe what aspects of the
system.

Definition 3.1 (Host). The host machine is the system on which we will be running
the virtualized platform. This article will use an x86-64 machine as the host machine.

Definition 3.2 (Guest). The guest machine is the target platform that we wish to
virtualize. This article will use an ARMv7-A platform as the guest machine.

Definition 3.3 (Native Virtual Machine (VM)). The hardware extensions provided
by the host machine naturally provide a same-architecture virtual machine, e.g. us-
ing QEMU with KVM on x86 would result in an x86 virtual machine. In our case, the
Native Virtual Machine (VM) refers to the virtual machine provided by these hard-
ware extensions, to which we utilize in our infrastructure. Therefore, in this article,
the Native VM is of the same architecture (x86-64) as the host.

Definition 3.4 (Hypervisor). The hypervisor is the software which runs on the
host machine (within the host operating system), and is responsible for providing sup-
port to the Native VM, along with software implementations of guest platform devices
(e.g. a timer device, or an interrupt controller).

Definition 3.5 (Execution Engine). The execution engine is a bare-metal applica-
tion that runs inside the Native VM (without an operating system) and provides the
CPU virtualization necessary to run the cross-ISA guest instructions. It maintains the
state of the guest platform being emulated, and executes platform specific behavior,
such as what happens when an MMU fault occurs or an external interrupt is signalled.

3.1. Overview
This section will give an overview of the operation of CAPTIVE. It will continue to use
the example of an x86-64 host machine, and an ARMv7-A guest machine, implementing

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 T. Spink et al.

the RealView Platform Baseboard Cortex-A8 [ARM 2011b]. This example leads to the
following assumptions:

(1) We are virtualizing a 32-bit guest system on a 64-bit host system.
(2) We depend on KVM as a framework to provide access to Intel VT virtualization

extensions.
(3) We utilize (but do not depend on) the address-space identifier (ASID) feature of the

guest operating system to accelerate context switches.
(4) We exploit the fact that ARM page tables have similar access permissions to x86

page tables, enabling us to efficiently map MMU behavior.

Our system starts by instantiating a native virtual machine on the host, using the
KVM framework. KVM is the interface to the Intel VT virtualization extensions, and
starts by initializing the required structures that represent a virtual machine on an
Intel processor (e.g. creating the VMCS structure, and issuing the VMXON instruction).
Then, a single virtual x86-64 CPU is requested from KVM which will ultimately repre-
sent the virtual ARM processor.

This native VM is configured with physical memory that represents the physical
memory provided by the guest platform—in this case, 2GB of physical memory is in-
stalled. An additional block of physical memory is also installed that contains the ex-
ecution engine binary, and heap space for memory allocations and the translated code
cache. The guest kernel (an ARMv7-A Linux kernel), is written into the guest physical
memory at the correct location (as specified by the platform boot protocol). Finally, the
virtual x86-64 CPU is configured to start up in 64-bit mode (by manipulating the vir-
tual CPU state structure), and with the entry-point of the execution engine. The native
VM is then started, and control is transferred to the execution engine running inside.

Once inside the native VM, we have full control of a bare-metal x86-64 machine,
the execution engine is essentially an x86-64 kernel, with full privileged access to this
virtual machine. We configure the virtual memory of the native VM in such a way as
that the lower 4GB portion represents either a one-to-one mapping of guest physical
memory (if the guest MMU is turned off) or the actual virtual memory mapping of the
guest machine (detailed in Section 3.3). The execution engine itself resides in the high
portion of virtual memory, and certain other virtual memory areas are mapped to the
heap and stack.

When first started, the execution engine performs some platform initialization of the
native VM, such as setting up the native (x86) page tables and the interrupt descriptor
table (IDT), and eventually begins executing guest ARM code. We have already popu-
lated guest physical memory with the guest kernel we are about to execute, so execu-
tion begins from this entry-point, using JIT compilation of the guest ARM instructions
to native x86-64 instructions (detailed in Section 3.2).

Any access by guest instructions to the memory of the guest machine is performed
with a normal memory access, without having to translate/transform any virtual mem-
ory addresses – they are simply made to the address to which they would be made if
running on a non-virtualized ARM system.

The guest platform we are virtualizing is a 32-bit platform and so any memory access
can only be in the 0-4GB (232) range of lower virtual memory. Virtualization of a 64-bit
platform is outside the scope of this article, but will require an extra layer of software
indirection and is planned for future work. When an access to a particular address
occurs for the first time, a page fault is generated and handled by installing a mapping
of the corresponding virtual page to guest physical memory (subject to the operation
of the ARM guest MMU).

External interrupts generated by devices (such as a timer device) are propagated as
real interrupts into the guest system, which causes a flag to be set to indicate that

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Hardware Accelerated Cross-Architecture Full-System Virtualization A:7

Listing 1: High-level instruction format description.

1 %% Define the MOVW instruction format: 4-bit condition, 4-bit operand, ...
2 ac_format <Type MOVW> = "%cond:4 %op:4 %subop:4 %rn:4 %rd:4 %imm32:12";
3

4 %% Link movt, movw instructions to the MOVW instruction format
5 ac_instr<Type MOVW> movt, movw;
6

7 %% Define the ARM instruction set architecture
8 ISA_CTOR(arm) {
9 %% Instruction: movt, where (op = 0x3) and (subop = 0x4)

10 movt.set_decoder(op = 0x3, subop = 0x4);
11 %% Assembly mnemonic
12 movt.set_asm("movt[%cond] %reg, #%imm", cond, rd, imm32);
13 %% Instruction behavior is defined in the "movt_behavior" function
14 movt.set_behavior(movt behavior);
15

16 %% Instruction: movw, where (op = 0x3) and (subop = 0x40)
17 movw.set_decoder(op = 0x3, subop = 0x0);
18 %% Assembly mnemonic
19 movw.set_asm("movw[%cond] %reg, #%imm", cond, rd, imm32);
20 %% Instruction behavior is defined in the "movw_behavior" function
21 movw.set_behavior(movw behavior);
22 }

Listing 2: Semantic description of the behavior of the movt and movw instructions.

1 %% Instruction behavior for "movt"
2 execute(movt behavior)
3 {
4 uint32 orig = read_register_bank(RB, inst.rd) & 0xffff;
5 uint32 rn = inst.imm32 | (inst.rn << 12);
6

7 uint32 result = orig | (rn << 16);
8 write_register_bank(RB, inst.rd, result);
9 }

10

11 %% Instruction behavior for "movw"
12 execute(movw behavior)
13 {
14 uint32 result = inst.imm32 | (inst.rn << 12);
15 write_register_bank(RB, inst.rd, result);
16 }

Fig. 3: Instruction formats and semantics are specified using an ArchC-like high-level
architecture description language. Example showing the specification of formats (in
Listing 1) and semantics (in Listing 2) of the movt and movw instructions, respectively.

native code should stop executing at the next safe point. At a minimum, a safe point is
an instruction boundary, but we insert safe points at guest basic block boundaries to
improve performance.

3.2. CPU Virtualization
Same-architecture virtualization is easily supported by modern processors that include
hardware support for virtualization. Technologies such as Intel VT and AMD-V allow
guest code to run directly on the host processor, without modification or instrumen-
tation for maximum performance. Certain privileged operations (such as changes to
control registers, and TLB invalidations) are trapped by the host CPU and handled by
a hypervisor (for example KVM).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 T. Spink et al.

This virtualization is trivial in the same-architecture case, because both the guest
and the host have the same instruction set architecture (ISA) and are therefore binary
compatible. However, this presents a problem for cross-architecture CPU virtualiza-
tion, as the ISAs are different, and completely incompatible.

In a traditional full-system simulator, techniques such as interpretation or dynamic
binary translation (DBT) are used to virtualize the guest ISA on the host ISA, the for-
mer being straightforward to implement, and the latter being recognized as one of the
fastest ways [Ung and Cifuentes 2000; Ebcioglu et al. 2001; Bellard 2005] to emulate
guest instructions on a host machine. Emulation of guest instructions is a necessity for
cross-architecture virtualization, and techniques for doing so have been well studied
and presented in DBT improvement articles such as [Kumar et al. 2005; Guha et al.
2010].

Our approach to instruction emulation is based on a basic block just-in-time (JIT)
compiler engine, which takes guest basic blocks discovered at runtime, and compiles
them into corresponding host basic blocks. Block compilation is synchronous to the ex-
ecution of the guest system, and occurs on-demand when a translation for a particular
guest basic block is not available. Generated host code is stored in a code cache, for
later use. This is similar to the approach taken by QEMU, except for two important
differences: (1) we generate code independent of the virtual address of the guest basic
block, and (2) the JIT compiler in CAPTIVE lives inside the native virtual machine as
part of the execution engine.

QEMU has implemented an advanced caching strategy that initially uses a fast first-
level cache indexed by virtual address to look up the code associated with a guest basic
block, which is invalidated when page mappings change. As basic-blocks are translated
for specific virtual addresses, the virtual PC may be constant-folded into the trans-
lations. However, the translation cannot be re-used if the same physical address is
mapped to different virtual addresses. To handle this situation, when a miss occurs
in the first-level cache, a second-level cache that is indexed by virtual PC, physical PC
and memory access flags is consulted. If this cache misses, then the guest basic block is
translated. This results in a guest basic block being translated for each distinct virtual
address mapping. In contrast, CAPTIVE always indexes the code cache by physical PC,
and translates code in a way that is independent of its virtual address, meaning we
can re-use the same translation for multiple virtual addresses.

The JIT compiler is generated from a high-level instruction description, where
instruction formats are defined in an ArchC-like domain specific language (DSL)
[Azevedo et al. 2005], and the semantic behaviors are specified in a C-like DSL. In
an offline pass, this architecture definition is parsed, and a high-speed instruction de-
coder and instruction IR generator are produced, which are then used by the execution
engine to compile guest code.

Listing 1 shows an extract of an instruction-format description from our ARMv7-A
model, which is used to generate an instruction decoder. Line 2 contains a bit-level
representation of the instruction format, and line 5 declares two instructions (movt
and movw) that conform to this pattern. Lines 10 and 17 further specialize the pat-
tern, specific to the two instructions, by placing constraints on the values of the fields
defined in the instruction format. Lines 12 and 19 assist debugging by producing a
disassembly format for the instructions, in a printf-style declaration. Finally, lines
14 and 21 attach semantic behaviors to the instructions. Listing 2 shows the C-like
DSL that describes the behaviors of the corresponding instructions. These descriptions
are fed into an offline generator, which produces a fast instruction decoder, and a low-
level intermediate representation (IR) emitter. The instruction decoder is used by the
execution engine to decode guest basic blocks. The IR emitter is called for each decoded
instruction, which produces a sequence of low-level IR instructions.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Hardware Accelerated Cross-Architecture Full-System Virtualization A:9

Listing 3: ARM guest basic block

1 ldr r3, [r4] // Load value from memory
2 cmp r3, #0x1000000 // Compare value to constant
3 movcs r0, #1 // Set r0 to 1, if carry flag
4 bcs 5412dc // Branch if carry flag

Listing 5: x86 host basic blocks

1 mov 0x10(%rdi),%eax
2 mov (%rax),%eax // Load value from memory
3 mov %eax,0xc(%rdi)
4 sub $0x1000000,%eax // Compare to constant
5 setae 0x140(%rdi)
6 seto 0x143(%rdi)
7 sete 0x141(%rdi)
8 sets 0x142(%rdi)
9 lea 0x8(%r15d), %r15d // Increment PC

10 cmpb $0, 0x140(%rdi)
11 jnz 1f // Skip if not carry
12 movl $0x1,(%rdi) // Set r0 to 1
13 lea 0x4(%r15d), %r15d // Increment PC
14 lea -0x1d8(%r15d),%eax
15 and $0xfffffffe,%eax
16 mov %eax,%r15d // Update PC to branch target
17 jmp 2f
18 1: lea 0x8(%r15d), %r15d // Increment PC
19 2: // Epilogue
20 //

Listing 4: Execution Engine IR

1 // Load r4
2 b0: ldreg i4 $0x10, i4 v0
3 // Read memory
4 ldmem i4 v0, i4 v0
5 // Store value in r3
6 streg i4 v0, i4 $0xc
7 // Subtract, and update guest

flags
8 sbc flags i4 $0x1000000,
9 i4 v0,

10 i1 $0x1
11 inc-pc i4 $0x8
12 // Read carry flag, and branch
13 ldreg i4 $0x140, i1 v0
14 branch i1 v0, b1, b2
15

16 // Set r0 to 1
17 b1: streg i4 $0x1, i4 $0x0
18 inc-pc i4 $0x4
19 // Calculate branch target
20 ldpc i4 v0
21 sub i4 $0x1d8, i4 v0
22 and i4 $0xfffffffe,
23 i4 v0
24 streg i4 v0, i4 $0x3c
25 jmp b3
26 // Increment PC
27 b2: inc-pc i4 $0x8
28 b3: ret

Fig. 4: Example inputs and outputs during the JIT compilation phase of CPU virtual-
ization. ARM guest code is initially translated to an internal representation for opti-
mization, before x86 host code is generated and emitted.

3.2.1. Native Code Production. Our execution engine compiles guest basic blocks at a
time, but will extend to a trace-based approach if the branch targets are static and land
on the same guest memory page. Guest basic blocks are terminated at page boundaries
for memory protection purposes. Normal control flow out of a block is optimized util-
ising techniques from [Spink et al. 2014], which includes directly chaining to other
basic blocks that are part of the same memory page to avoid costly returns to the main
execution loop. If a translation does not exist, or the destination does not live on the
same page, control is returned to the main execution loop, which will then handle the
situation accordingly. We dedicate an x86 host register (%r15d) to tracking the guest
PC, which significantly improves performance by avoiding an increment to a memory
location (i.e. the emulated guest register file) on each instruction.

As each instruction is being translated to a sequence of IR instructions, we employ
the partial evaluation technique described in [Wagstaff et al. 2013] to constant-fold
values known at compilation time into the IR. This technique also allows us to evaluate
control flow within an instruction that can be resolved at compilation time too, i.e.
control flow that depends on values which are constant.

After producing IR that represents the basic block being translated, we then perform
some basic optimization passes (such as liveness analysis, control flow optimization
and dead code elimination) before performing a linear-scan register allocation pass.
After allocating registers, we perform some final optimizations (such as register value
re-use and dead code elimination) and then forward the IR to the instruction lowering
pass which translates IR instructions into corresponding host instructions.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 T. Spink et al.

Although there are existing JIT compilers, we choose to implement our own JIT com-
piler for three main reasons:

(1) It is not feasible to use compilers such as GCC and LLVM with our system, because
they have dependencies on external libraries, such as libc for example. The JIT
compilation is performed inside the native VM, which is not running an operating
system and does not have a C library.

(2) Compilers such as GCC and LLVM are too slow to be used as JIT compilers [Brand-
ner et al. 2009], as they would introduce an unacceptable amount of compilation
latency. Our JIT is specialized for fast dynamic binary translation, much like TCG
in QEMU.

(3) Existing JIT compilers, e.g. TCG in QEMU, are not well suited for automatic re-
targeting from a high-level architecture description and would require additional
modifications to support bare-metal code generation.

Listing 3 shows an example ARM guest basic block that is encountered during the
Linux kernel boot process. The IR emitter iterates over this block and after an op-
timization pass produces the IR shown in Listing 4. Finally, a quick template-based
lowering pass produces the native x86 machine code shown in Listing 5.

It can be seen here that multiple host basic blocks are produced from a single guest
basic block. In this example, this occurs because of a predicated ARM instruction
(movcs) that may or may not be executed, depending on the current state of the flags.
Since we do not class predicated instructions as basic block terminators, additional
control flow is required to account for this.

3.2.2. Exploitation of Hardware Features. Given that we are operating in a bare-metal
environment, we have full control of an x86 machine and so exploit our ability to use
privileged instructions and access normally privileged features to generate efficient
native code. Furthermore, we exploit our ability to switch the virtualized CPU into
and out of privileged mode (ring 0 in x86 terminology) so that we can execute ARM
guest code that usually runs in ARM user mode in x86 user mode, and ARM guest
code that usually runs in ARM system mode in x86 privileged mode. This enables us
to utilise the user/kernel memory protection available in x86 page tables, by mapping
it to the corresponding ARM page table permissions. This is something that a user-
space system like QEMU cannot do, as it is constrained by the host operating system.

We implement fast mode switching in x86 by using the syscall and sysret in-
structions, which provide efficient means of transitioning between user and privileged
mode. We make use of the general-purpose segment register FS to point to a per-CPU
data structure, which contains the state of the emulated ARM CPU, and also the GS
segment register for efficient user-mode emulated memory accesses as described in
Section 3.3.3.

We utilise the x86 call gate mechanism for invoking functions from user mode
that require kernel mode permissions. This is an alternative to the slower software-
interrupt based mechanism (i.e. using the int instruction).

3.2.3. Code Cache. In order to improve execution performance, translated guest basic
blocks are kept in a code cache, indexed by physical address. The benefit of using
physical addressing is that if the guest page tables are invalidated, we do not need to
invalidate any compiled code. In fact, the only time we have to invalidate code is in
the presence of self-modifying code, or more generally when a page that has previously
been executed is written to. We detect this occurrence by marking (physical) pages that
have been executed with a flag, and protecting those pages from being written to. When
a memory fault occurs because of a write, and the page has been flagged, all cached
code corresponding to that page is invalidated. If the memory fault was to an address

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Hardware Accelerated Cross-Architecture Full-System Virtualization A:11

Native Page Fault Handler

Consult Guest MMU

Is Access OK?

Fill in Native VM Page Table

YES NO

Main Execution Loop

Native Code
...
mov %(rax), %edx
...

Page Fault

Platform Specific MMU
Fault Behaviour

Safe Point

Retry Instruction

Virtual
Address

Physical
Address/

Error

Guest MMU

Walk Guest Page Tables

Generate Response

1

3

4

2

Return to Safe Point

Normal
Entry-point

Non-local
Jump Entry-point

Fig. 5: Operation when virtualizing memory accesses. A memory access (1) is per-
formed as a single native instruction, which when accessing a virtual address for the
first time will cause a page fault in the Native VM. The native page fault handler will
(2) consult the guest MMU implementation, to determine if the mapping is valid, then
either (3) fill in a native page table entry, or (4) perform a non-local jump from the page
fault handler back to a safe point to invoke platform specific memory fault handling.

on the page that was currently executing, we return to the main execution loop via
a non-local jump, since we cannot return to cached code that represents instructions
that were potentially modified.

3.3. MMU Virtualization
One of the most important parts of full-system virtualization is the faithful emula-
tion of the memory management unit (MMU), which if implemented incorrectly will
lead to an unusable system, and if implemented poorly can lead to severe performance
penalties. Hardware extensions for same-architecture virtualization provide acceler-
ated means of virtualizing the MMU of a guest machine on the host, but a problem
arises when virtualizing a guest with a different architecture. As described in the mo-
tivating example (Section 1.1), the MMUs between two different architectures behave
quite differently, and traditional full-system cross-architecture virtualization uses a
(correct, but slow) software MMU implementation to emulate this subsystem. Thus,
much work has been done [Wang et al. 2015; Chang et al. 2014; Hong et al. 2015] in
the area of software MMUs to reduce the translation penalty and hence increase overall
throughput of the virtualization system.

Fundamentally, the function of the MMU is to translate a virtual address to a physi-
cal address, applying any permissions that may be defined for that access. Usually, this
mapping is represented with page tables, with various levels of indirection to suit the
granularity of the mapping. Full-system virtualization requires that every instruction
that accesses virtual memory is subject to the behavior of the MMU. For the same-
architecture case, memory instructions are mapped one-to-one, and the hardware ex-
tensions take care of performing the virtual-to-physical translation and permissions
checking, but for cross-architecture virtualization, each memory access must be emu-
lated in such a way as to perform the translation and permissions checking subject to
the behavior of the guest platform.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 T. Spink et al.

Software approaches when faced with a memory access (in the base case), will tra-
verse the guest page table to resolve the physical address, and check that the access
satisfies the permissions imposed by the translation. These accesses will be subse-
quently sped up by introducing a software cache, much like a software translation
lookaside buffer (TLB), so that future memory accesses do not incur a penalty of a
costly page table walk. When the guest page tables change, the software TLB will be
flushed, and the process will start again.

Since the native VM is a bare-metal environment, we can take full control of the na-
tive MMU, and use it to reflect the mappings of the guest, allowing us to use unmodified
guest virtual addresses, and to emulate the access with a single native instruction.

Definition 3.6 (Native MMU). The native MMU is the MMU that is part of the Na-
tive VM. In this example, the MMU is an x86-64 MMU, which has a 4-level hierarchy.

Definition 3.7 (Native Page Table Entry). A native page table entry is an entry
in the page table of the native MMU.

Definition 3.8 (Guest MMU). The guest MMU is a (software) implementation of the
MMU that is part of the guest machine. In this example it is an implementation of
an ARMv7-A MMU. It is implemented as a service that takes a virtual address, and
returns either success (along with the corresponding physical address and a bitmask
of allowed permissions), or failure (along with the type of failure).

Our approach to cross-architecture virtualization of the MMU is to present the lower
4GB (i.e. virtual addresses 0x0 to 0xffffffff in the native VM’s 48-bit address space)
of virtual memory to the execution engine, as the 4GB (232) of virtual memory required
for our 32-bit guest machine (see Figure 7). This area is now an exact 1:1 mapping of
guest virtual addresses to native VM virtual addresses. Figure 5 shows how the var-
ious components work together. When we virtualize a memory access from the guest
(whether a load, store or fetch), we perform that access on the unmodified memory
address directly, which will of course (for the 32-bit system we are virtualizing) lie in
the lower 4GB region. The first time a memory address is accessed, it will cause a page
fault inside the native VM, and at this point we consult the software implementation of
the guest’s MMU. The response is either the corresponding guest physical address, or
a fault condition. If the access is to be allowed, we then populate the x86 page table of
the native VM with an entry that maps the associated virtual page to the correspond-
ing physical page of the guest, and return to executing code. Further accesses to this
page will now go via the native VM’s page tables, and hardware TLB.

To improve performance, when the guest MMU is asked for the translation, it also
returns the allowed permissions associated with that mapping (such as read/write and
user/privileged), so that the native VM’s page tables can be pre-populated with this
information. This means that a read to a page that is also permitted to be written to
will only fault once—the first time it is accessed.

On a 64-bit x86 machine, there are four levels of page tables, which we will refer
to as L4 thru L1. The first entry in the (top-level) L4 page table represents the lower
0–512GB of virtual memory, and we reserve this region to contain the entire 4GB
virtual address space of the guest, starting at virtual address 0x0. This means we can
apply permission flags to the first entry in this table, to control the entirety of the 4GB
virtual address space. If the guest alters the content of their page tables, just as on
actual hardware they are required to issue a TLB flush instruction, which we intercept
and use as a signal invalidate the native VM’s page tables. As the native VM has a
four-level page table, we deny access to the entire lower 4GB area of virtual memory,
by clearing the page present flag in the first entry of the L4 page table, then perform
a native TLB flush. This makes invalidations very quick to perform. The next time

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Hardware Accelerated Cross-Architecture Full-System Virtualization A:13

Top-level Page Table (L4)

First Entry1

ASID == 0

ASID == 1

ASID == 2

L3 Page Table

L3 Page Table

L3 Page Table

2

Native Page Table Base Pointer (cr3)

ASID == n
L3 Page Table

Fig. 6: The top-level (L4) page table
remains static, and the pointer to the
L3 page tables (1) are tracked with the
ASID (2).

Guest Virtual Memory (GVM)
0x000000000000

0x0000ffffffff

Secondary GVM
0x008000000000

0x0080ffffffff

Guest Physical Memory
0x010000000000

0x0100ffffffff
Heap/Stack Data

0x200000000

0x2ffffffff

Native Virtual Machine
Physical Memory

Native Virtual Machine
Virtual Memory

0xfff8ffffffff

0xfff800000000
Execution Engine Code

0x600000000000

0x6fffffffffff
Heap/Stack Data

Execution Engine
0x000000000

0x0ffffffff

Guest Physical Memory
0x1ffffffff

0x100000000

Global Memory Regions
(used by the execution engine)

Fig. 7: Native VM Physical and Vir-
tual memory organization. We reserve
the bottom 512GB to contain the entire
4GB virtual address space.

a memory access happens, a page fault will occur, and the page tables will be rebuilt.
This invalidation technique also applies when the guest changes the value of their own
page table base pointer, which involves an implicit TLB flush.

An important corner-case to consider is the behavior of the system when an un-
aligned memory access spans a page boundary, e.g. a 32-bit memory access to the last
byte of a page. This situation is handled automatically by CAPTIVE, as the page fault-
ing behavior between the guest and host systems is identical.

3.3.1. Address-space Identifier. Usually, changing the page table base pointer naturally
causes a TLB invalidation, as the previous mappings are no longer valid. However,
since the page table base pointer is changed on every context switch, this can lead to
a severe performance penalty, especially in our virtualization environment when the
native page tables need to be rebuilt each time. An approach to reduce this penalty
is described by [Wang et al. 2015] as “Private SPT”, which utilizes the ARM address
space identifier (ASID) register to quickly switch between pre-populated mappings.

We take inspiration from this approach, and use the ASID register to point to mul-
tiple L3 mappings, as shown in Figure 6. The top-level native page table (the L4 page
table) remains static, but when the current ASID is changed by the guest, we replace
the base pointer to the L3 page table (in the first slot of the L4 page table), and inval-
idate the native TLB. As previously described, the first entry in the L4 page table is
used solely for the purpose of managing guest virtual memory, so even though it rep-
resents an address space >4GB, it simplifies both our fast invalidation technique, and
changing the corresponding page tables that represent the guest 4GB address space.

If this is the first time the ASID has been seen, the normal page-fault lazy resolution
process will occur as described previously, but if the ASID has already been encoun-
tered, the page tables already contain mappings ready to be used (unless they were
explicitly invalidated), without incurring any page faults.

We trap the special invalidation instructions issued by the guest to invalidate TLB
entries by ASID, and use these signals to invalidate the page tables that we have asso-
ciated with that particular ASID.

This optimization only holds for guest platforms that have the concept of an ASID,
and guest kernels that actually use it (a limitation also encountered by [Wang et al.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 T. Spink et al.

Listing 5: ARM input assembly

1 ; Read memory at address PC + 92 + 8
2 ; (0x100a0) into r0
3 ldr r0, [pc, #92]

Listing 6: CAPTIVE output assembly.

1 ; Read memory from PC + offset + 8
2 mov 0x64(%r15d), %eax
3 mov %eax, (%rdi) ; Store into r0
4 lea 0x4(%r15d), %r15d ; Increment PC

Listing 7: QEMU output assembly.

1 mov $0x100a0,%ebp ; Prepare memory address
2 mov %rbp,%rdi
3 mov %ebp,%esi
4 ; Calculate cache entry address
5 shr $0x5,%rdi
6 and $0xfffffc03,%esi
7 and $0x1fe0,%edi
8 lea 0x2c18(%r14,%rdi,1),%rdi
9 cmp (%rdi),%esi ; Check cache tag

10 ; Restore destination address
11 mov %ebp,%esi
12 jne 0x7f4d682a718f ; Cache-miss?
13 add 0x10(%rdi),%rsi
14 mov (%rsi),%ebp ; Read memory
15 mov %ebp,(%r14) ; Store into r0

Fig. 8: An example of a PC-relative load instruction being translated by CAPTIVE and
QEMU. CAPTIVE tracks the (virtual) PC in %r15d, and emits three instructions for
this memory access whereas QEMU emits 13 instructions that involve interrogating
its address cache.

2015]). However, it is possible to extend this approach to track the guest platform’s
page table base pointer, and maintain a set of mappings for “seen” page table bases.

3.3.2. Native VM Memory Layout. As we are operating inside a native virtual machine,
we have full control over the virtual machine’s virtual memory and so we exploit this
opportunity for manipulating the virtual page mapping arbitrarily. We establish page
mappings for the execution engine and heap/stack data areas, and mark these entries
as global, so that they are not flushed from the TLB when the TLB is flushed. We
provide a one-to-one mapping of guest physical memory, in the virtual memory space
so that we can quickly access data by guest physical address. This is useful for the
emulated MMU, as it uses physical address pointers to traverse the guest page tables.

3.3.3. Secondary Guest Virtual Memory. The secondary guest virtual memory mapping is
part of an optimization for handling ARM ldrt and strt instructions, which perform
memory accesses subject to user-mode memory permission checking, whilst executing
in kernel mode. These instructions are notoriously difficult to optimize [Ding et al.
2012], as they invoke behavior that must be specially handled. As they are defined,
there is no direct mapping of this behavior from an ARM system to an x86-64 system,
however to maintain performance we employ a second region of guest virtual memory
to optimize these accesses specially.

Since it is known at JIT compilation time that a particular memory access has these
special semantics, we can emit an optimized mov instruction, that offsets the calculated
memory address against a base pointer held in the x86 GS register. This base pointer
points to the base of the second virtual memory region, and so all memory accesses are
made into this second region. Then, when a page fault occurs we apply the appropriate
semantics when faulting the page in. Whilst this may sound like a guest architecture-
specific optimization, it is implemented independent of the target architecture, and so
may be used (or not) by any platform that requires it.

3.3.4. Comparison to QEMU. QEMU uses software-based MMU virtualization, and List-
ing 5 shows an example ARM instruction that accesses memory, from a PC-relative
offset. This instruction loads a value from memory, residing at the address PC+92+8.
Listing 7 shows the QEMU generated native code for this single instruction, which

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Hardware Accelerated Cross-Architecture Full-System Virtualization A:15

involves accessing a software cache, with a branch to a handler if a cache miss oc-
curs. Our output code (shown in Listing 6) consists of performing the memory access
directly on memory itself, using the unmodified value from the guest instruction and
access permissions.

The other slight difference is the optimization performed for a PC-relative lookup. In
QEMU’s case, it can constant-fold the address of the memory access (0x100a0) into the
generated assembly because it generates basic blocks for virtual pages. However, we
generate basic blocks for physical pages, which may be accessed by any virtual address,
and hence must read the PC register each time we wish to use it. As we map the guest
PC to a host register, this improves code quality and adds virtually no performance
penalty. This improvement in code quality is not because of an improvement in the
quality of the JIT itself, but rather we have the ability to make memory accesses in
this fashion.

3.4. Device Virtualization
In order to faithfully emulate a guest platform, we must also emulate the devices
present on that platform, e.g. timer devices, interrupt controllers, I/O devices, etc. In
order to do this, the hypervisor contains software emulations for the various devices
that make up the platform. On a real guest platform, these devices are accessed by
the guest through the memory subsystem; they are mapped into the physical memory
space (and then mapped by the guest operating system into the virtual address space)
and device registers are written to and read from with normal memory accesses. This
approach to device communication increases flexibility (e.g. device accesses are subject
to MMU translations and permissions checks), and reduces complexity for operating
systems, but adds a layer of complexity to virtualization frameworks wishing to em-
ulate devices in a particular platform, as they must detect these accesses to device
memory, and handle them accordingly.

As our device implementation lives in the hypervisor (i.e. outside of the native VM),
memory accesses by the guest must be trapped back to the hypervisor, so that they can
be forwarded to the particular device being accessed. The most straightforward way
to accomplish this with our infrastructure is to use the memory-mapped I/O (MMIO)
feature of KVM to intercept memory accesses to regions of guest physical memory that
correspond to devices, and handle them accordingly. This approach works well, but
suffers from a severe performance penalty, as every access to a device must perform a
costly VM exit, then the native guest instruction must be emulated by the hypervisor
to fill in the data that was read, or to extract the data that is to be written.

Device accesses in a full-system occur quite frequently. For example, a Linux system
configured with a 100Hz timer will be interrupted 100 times a second, and each inter-
rupt requires the guest to interrogate the interrupt controller device to ascertain the
cause of the interrupt, then the timer device to read timing related data, then write to
the devices to acknowledge and complete the interrupt.

Another approach is to make a hypercall using port-based I/O (PIO) instructions,
which have slightly faster VM exit sequences, but this suffers from a fundamental prob-
lem: detecting a device access. As mentioned previously, a device access to a memory-
mapped device is indistinguishable from a normal memory access at the instruction-
level—it is performed with a normal memory access instruction (e.g. ldr in ARM).
Therefore, we need a way to detect access to device memory, and trap to the host using
a faster hypercall mechanism. Since we are in control of the native VM MMU, and we
know the locations of devices in physical memory (this is part of the platform config-
uration), we can simply mark any device page as inaccessible, so that every memory
access traps in the native VM, rather than in the hypervisor.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 T. Spink et al.

BARRIER 1

Hypervisor
Thread Waiting

Hypervisor
Performing

Device Access BARRIER 2

2a

Execution
Engine

Device Access
1 Write: <Address,Value>

Read: <Address>
Execution

Engine
Continuing

3
Read: <Value>
Write: (no result)

Executing
Engine Waiting

Hypervisor
Native VM

2b

Fig. 9: An illustration of the fast device access operation, using synchronization barri-
ers. When a device access is made (1), barrier 1 is entered by the guest (at which the
host is already waiting) and the host performs the access on the emulated device (2a).
Meanwhile, the guest waits for the host to complete the operation (2b). Then, when
the access is complete, barrier 2 is entered by the host and execution by the guest
continues (3).

Now that we are receiving a page fault in the native VM (which is faster than trap-
ping to the hypervisor), there are two approaches to take:

(1) Translate the device access into a (slightly) faster PIO access, which still results in
a VM exit, or

(2) use a message-passing implementation to communicate with the hypervisor, avoid-
ing a VM exit.

We wish to avoid VM exits at all costs, as they introduce a significant amount of
overhead [Ott 2009]. A VM exit with Intel VT and KVM requires storing the entire
state of the virtual machine, and performing a context switch back to user-space code.
Returning to the VM (a VM entry) involves restoring this saved state.

For this reason, we implement (2) and once the native VM receives a page fault to
a device memory page, we communicate with a hypervisor thread using a synchro-
nization barrier system. This avoids a costly VM exit, as the virtualized CPU is simply
spinning on a barrier, waiting for a response from the hypervisor. This sequence is
shown in Figure 9. When a device access is to be made Fig. 9 (1), a data structure
is prepared by the execution engine inside the native VM, and a synchronization bar-
rier is entered. A hypervisor thread (which is already waiting on this barrier) resumes
execution and deals with the device access request Fig. 9 (2a). Meanwhile, the guest
waits on a second barrier Fig. 9 (2b) whilst the hypervisor is servicing the request,
and when the request is complete, the hypervisor writes the result back into the data
structure, and enters the barrier. This causes the execution engine to resume execu-
tion Fig. 9 (3), extracting the necessary data from the request structure. The guest
cannot proceed until the hypervisor has signalled that the data has been processed by
the emulated device, and this is the reason for the second barrier.

3.4.1. Device Implementations. Unlike traditional same-architecture virtualization,
where the possibility exists to para-virtualize hardware that exists on the host for
use by the guest, or simply pass-through real hardware devices (e.g. using Intel VT-
d) this same kind of mapping does not exist for cross-architecture virtualization as it
is unlikely that there are any 1-to-1 compatible devices available on the host system.
Therefore, all guest platform devices are implemented in software, which faithfully em-
ulate the behavior of the device they represent. An example of a device we implement
in software is the ARM PrimeCell SP804, which is a two-channel timer device. This

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Hardware Accelerated Cross-Architecture Full-System Virtualization A:17

Raise Local
Interrupt Line

Native VM

Main Execution Loop

Native Code

Interrupt Pending?

NO

Platform-specific
Interrupt Behaviour

YES

YES

Native IRQ
Handler

Set Interrupt
Pending Flag

Hypervisor

Post IRQ to
Native VM

Clear Interrupt
Pending Flag

Device
Interrupt
Controller

Device

Raise Local
Interrupt Line

IRQ 0

IRQ n

IRQ

IRQ

IRQ

NATIVE VM
HOST

Emulated Devices

External IRQ

Return from interrupt
Native Code

Interrupt Pending?

NO

Fig. 10: An illustration of the injection of an IRQ into the native virtual machine, to
indicate that an emulated IRQ line has gone high.

device is configured and interrogated by the guest through registers that are memory
mapped. It is also capable of raising interrupts when a timeout occurs, depending on
the mode of operation of the timer.

In the future, we hope to map similar devices (e.g. timer devices, etc) to existing
hardware devices. Even though their interfaces may be incompatible, it may be possi-
ble to configure the behavior of the devices in similar ways and avoid having to use full
software implementations of the device.

3.4.2. Device Interrupts. Platform devices may raise interrupts to indicate that an event
has occurred, such as a timer has timed-out, or data is ready to be read. On a physical
platform, an interrupt controller would aggregate the individual interrupts from each
device, and trigger a physical interrupt line on the CPU, to indicate that an interrupt
has been raised. The CPU would enter its external interrupt handling routine, and
interrogate the interrupt controller to work out which device(s) raised the interrupt.
The RealView Platform Baseboard Cortex-A8 [ARM 2011b] has such a setup with an
ARM generic interrupt controller (GIC), that receives interrupts from devices and posts
these to the CPU. We implement the GIC in software, but post real IRQs to the guest
system, when the interrupt controller triggers a physical interrupt line on the CPU.

3.5. IRQ Virtualization
As described in the previous section, emulated devices may issue interrupts to the
guest system by means of an interrupt controller. For the platform we are virtualizing,
the interrupt controller is an ARM generic interrupt controller (GIC), which aggregates
interrupts from other platform devices, and presents them to the CPU.

Fundamentally, the CPU has a single physical interrupt line that is raised when an
interrupt is pending, and lowered when the interrupt is acknowledged. This interrupt
line is toggled by our emulated GIC, and is visible to the virtualized CPU. On the rising

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 T. Spink et al.

System Dell
TM

PowerEdge
TM

R610

Architecture x86-64 Model Intel
TM

Xeon
TM

E5-1620
Cores/Threads 4/8 Frequency 3.50 GHz

L1-Cache 1× 4× 32kB (I$ & D$) L2-Cache 1× 4× 256kB
L3-Cache 1× 10 MB Memory 16 GB

Table I: Host Machine Description

edge of the interrupt line, we inject a native IRQ into the guest machine, to inform
it that the line has been raised. These interrupts of course happen asynchronously,
e.g. a timer device will run as a separate thread on the host machine, and when its
timeout occurs, it will trigger its own interrupt line, propagating through the interrupt
controller and into the guest. The ideal situation would be to immediately invoke the
platform-specific interrupt handling code, on the rising edge of the interrupt line, but
this is not feasible for two reasons:

(1) The guest may not be running in native code (it may be handling a page fault) and,
(2) single guest instructions are compiled to multiple host instructions, which means

the interrupt may happen part-way through the emulation of a guest instruction.

This is unacceptable, as guest instructions are not necessarily re-entrant and may have
partially changed the state of the guest system mid-way through. Guest instructions
need to appear to be atomic, and so they must have completed before we can divert to
the interrupt handling behavior.

We solve this by setting an interrupt pending flag when in the native IRQ handler,
to indicate that the emulated interrupt line has gone high. This flag is checked by
native code at the end of a guest basic block, before it chains to the next. If the flag
is set, it is cleared and we leave native code to perform the guest platform behavior
associated with servicing an interrupt. This defers asynchronous interrupt checking
to basic block boundaries, which significantly improves performance over checking on
instruction boundaries.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our system using industry standard
benchmarks and compare CAPTIVE to the state-of-the-art cross-architecture virtual-
izer QEMU. We use the SPEC CPU2006 integer benchmark suite, as it is widely con-
sidered to be representative of real-world workloads. For our key results, we are using
the reference input set, which requires a minor modification to the guest platform to in-
crease the available guest physical memory for running the benchmarks. The amount
of physical memory presented to the guest system is independent of the amount of
physical memory available on the host system, as it is defined by the platform be-
ing emulated. We implement a RealView Platform Baseboard Cortex-A8 [ARM 2011b]
platform, which specifies only 512MB of physical memory [ARM 2011a], but this is in-
sufficient for running the reference input set of the benchmark suite. To overcome this
limitation, we artifically increase the amount of physical memory in the guest platform
to 2GB in both CAPTIVE and QEMU, enabling the benchmark suite to run.

4.1. Experimental Setup
The platform that we are virtualizing is a RealView Platform Baseboard for Cortex-A8,
which is fully supported by QEMU. We are running a vanilla ARM Linux 4.3.0 kernel,
with the default configuration for the platform, except for the addition of a VirtIO
block device to provide storage to the guest and an increase in physical memory as

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Hardware Accelerated Cross-Architecture Full-System Virtualization A:19

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum
464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

G
eom

. M
ean

R
el

at
iv

e
S
p
ee

d
-u

p

Captive

(a) Relative speed-up of the SPEC benchmark suite using the reference input set, in CAPTIVE over QEMU–
higher is better.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

A
b
so

lu
te

 R
u
n
ti
m

e
(s

) QEMU 2.4.0 ARM-softmmu
Captive

(b) Absolute runtime of the SPEC benchmark suite using the reference input set in seconds–lower is better.

Fig. 11: Key Results: (a) shows relative speed-up, and (b) shows absolute run time. On
average, CAPTIVE is 2.5× faster than QEMU.

described previously. We are using an Arch Linux ARM user-space. The host machine
is described in Table I.

4.2. Key Results
Our key results compare the performance of our system to QEMU version 2.4.0. Fig-
ure 11a shows the relative speed-up of CAPTIVE, compared to QEMU. In all cases we
outperform QEMU, and on average by a factor of 2.5×. Figure 11b shows the absolute
runtime of each benchmark in seconds.

Of interest is 429.mcf, which gains a performance improvement of 5.88×. This is due
in part to the benchmark responding well to our optimizing DBT system, which pro-
duces highly optimal runtime code based on the dynamic behaviour of the benchmark,
versus the static optimization that is performed at compile time.

Only two out of twelve benchmarks show speed-ups less than 1.5×, yet still outper-
form the baseline QEMU. Given the acceptance of SPEC as a realistic workload, there
are multiple characteristics that can affect simulation performance, and it is clear that
the range of benchmarks exercise the simulation system in numerous ways, making it
difficult to pin-point any particular feature that causes fluctuations in performance.

4.3. Comparison to Existing Techniques
One of the most recent efforts to improve memory address translation performance
in full-system simulators is in [Wang et al. 2015] (herein referred to as HSPT), which

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 T. Spink et al.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum
464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

G
eom

. M
ean

R
el

at
iv

e
S
p
ee

d
-u

p

HSPT Private SPT
Captive

Fig. 12: Relative performance improvement of SPEC benchmarks by HSPT and CAP-
TIVE over the Android Emulator baseline–higher is better.

describes a practical implementation of an embedded shadow page table, using Linux
system calls (specifically mmap) to create an efficient guest-virtual to host-physical map-
ping similar to our own approach. In order to compare CAPTIVE to the HSPT imple-
mentation, we have extracted the published results from [Wang et al. 2015] and im-
plemented the same experimental setup, by comparing the performance of CAPTIVE
to the same version and configuration of the Android Emulator as used by HSPT. This
enables us to make a relative performance comparison against the same baseline, even
in the presence of different host machines.

Figure 12 shows that HSPT have achieved an average improvement of 1.94× (geo-
metric mean) over the Android Emulator, using the Private SPT technique, whereas
on average, CAPTIVE achieves a performance improvement of 2.05× (geometric mean).

In the majority of cases, we equal or surpass the speed-up presented by HSPT, in par-
ticular 483.xalancbmk in CAPTIVE shows a much greater speed-up of 2.88×, compared
to 1.72× in HSPT. This is due in part to the I/O nature of this particular benchmark,
and our optimized I/O and IRQ handling techniques give us a clear advantage here.

4.4. I/O Performance
In this section, we evaluate the performance of our I/O virtualization, using the stan-
dard Linux I/O performance measuring tool hdparm. We measure the I/O performance
on a variety of virtualization configurations, including taking a measurement of the
host system. We also introduce Oracle VirtualBox as another virtualization platform
that uses Intel VT extensions, and as such only supports same-architecture virtual-
ization. For measurement of same-architecture virtualization I/O performance, Virtu-
alBox and QEMU are given an x86 Linux distribution containing the hdparm tool. For
cross-architecture virtualization, QEMU and CAPTIVE are provided with a file-system
that exists as a normal file on the host machine’s file-system. For QEMU/ARM and
CAPTIVE/ARM, the platform device used to communicate this data back and forth is a
VirtIO block device, which is fully supported by both hypervisors. VirtIO is a virtual-
ization technology that enables efficient paravirtualization of various platform devices,
such as network and disk devices. Our emulated disk is based on a VirtIO block device,
and is the only paravirtualized device in the platform.

Table II shows the absolute I/O throughput of the virtualization configurations, along
with throughput on the native host platform, using two distinct metrics: cached and
buffered.

Cached reads are subject to the Linux kernel page cache, and as such represent the
performance at which disk data can be accessed from the page cache in the guest sys-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Hardware Accelerated Cross-Architecture Full-System Virtualization A:21

 0.95

 1

 1.05

 1.1

 1.15

 1.2

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum
464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

G
eom

. M
ean

S
p
ee

d
-u

p
ov

er
 E

P
T

 o
ff

QEMU/KVM x86
VirtualBox x86

Captive

Fig. 13: Relative performance improvement gained by turning on Intel’s extended page
tables (EPT) for the SPEC CPU2006 integer benchmark suite–higher is better. We show
that the use of EPT has virtually no effect on the virtualization performance for the
SPEC CPU2006 benchmark suite.

tem. VirtualBox and QEMU/KVM make these accesses at virtually the same rate as
the host platform, since there is no virtualization overhead for memory accesses. For
QEMU/DBT, the accesses to this cache are subject to the software MMU implementa-
tion, and therefore incur a significant access penalty. For QEMU/DBT, in the x86-on-x86
case this causes a slow-down of 9.79×, and a slow-down of 78.87× for the ARM-on-x86
case. In CAPTIVE, the slow-down is only 7.3×, improving over QEMU by 10.8×.

Buffered reads indicate the rate at which data can be accessed directly from disk—
bypassing the page cache. For these experiments, host caching was disabled in each
hypervisor, causing all accesses to the virtual disk device to go directly to the host
file-system, and then onto the underlying storage medium. All hypervisors suffer a
slow-down over native for this case, as there will be overhead in accessing the virtual
disk on the host file-system, but the slow-down over native for CAPTIVE is only 1.11×,
compared to QEMU/ARM being 1.64×. Virtualization of the x86 guest machines on Vir-
tualBox, QEMU/KVM and QEMU/DBT all have even worse slow-downs, but this may be
due to the implementation of the virtual disk device, which for these three hypervisors
is an emulated IDE disk drive, as opposed to the para-virtualized VirtIO device used
in QEMU/ARM and CAPTIVE.

4.5. Additional Hardware Support for MMU Virtualization
The latest version of Intel VT includes hardware support for accelerating virtualized
guest page tables, which is branded as extended page tables (EPT). KVM can make
full use of this technology, and this section evaluates the performance improvement of
EPT over non-EPT backed virtualization. We use QEMU/KVM and Oracle VirtualBox
(which fully supports EPT) to measure the impact of EPT on same-architecture virtu-
alization. We have run six experiments to produce this data, three with EPT disabled

Hypervisor Execution Arch. Cached Buffered
None Native x86 12384.21 MB/s 173.52 MB/s
VirtualBox Intel-VT x86 11941.43 MB/s 91.64 MB/s
QEMU KVM x86 11881.06 MB/s 102.72 MB/s
QEMU DBT x86 1265.03 MB/s 79.80 MB/s
QEMU DBT ARM 157.02 MB/s 105.77 MB/s
CAPTIVE KVM/DBT ARM 1695.29 MB/s 155.72 MB/s

Table II: Absolute I/O throughput for various configurations of execution environments.
Cached reads are subject to the Linux kernel’s page cache, and buffered reads go di-
rectly to the real or emulated disk device.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 T. Spink et al.

 1

 2

 3

 4

 5

 6

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

G
eom

. M
ean

S
lo

w
-d

o
w

n
o
ve

r
N

at
iv

e
A
R
M QEMU ARM

Captive

Fig. 14: Relative slow-down of QEMU and CAPTIVE over native execution on a physical
ARM platform (ODROID-XU using Samsung Exynos5422 Cortex-A15 2.0Ghz quad-
core and Cortex-A7 quad-core CPUs)–lower is better. On average, CAPTIVE is 1.4×
slower than the hardware platform, compared to a 3.51× slow-down for QEMU.

in the respective hypervisor, and three with EPT enabled. We then present the relative
speed-up of each hypervisor with EPT enabled, over EPT disabled. For QEMU/KVM and
Oracle VirtualBox the experiments were naturally made on a virtualized x86-64 sys-
tem, with x86-64 versions of the SPEC benchmark suite. For CAPTIVE, we have used
the same setup as described in Section 4.1, with EPT enabled and disabled.

The data shows that in our experiments, EPT does not make any significant improve-
ment on the workloads we have tested. This is contrary to some published experiments,
e.g. VMware have conducted a performance evaluation of EPT in [VMware 2009], which
shows that EPT can improve performance of MMU-intensive benchmarks by 48%, and
MMU-microbenchmarks by up to 600%. However, our measurement of the impact of
EPT on the SPEC CPU2006 benchmarks shows that the performance increase to be
negligible, which is also the conclusion drawn by Buell et al. [2013] and Merrifield and
Taheri [2016]. Figure 13 shows the relative performance improvement of the SPEC
benchmark suite, running on both a virtualized x86 system (using QEMU/KVM and
Oracle VirtualBox) and on a virtualized ARMv7-A system (using our virtualization
hypervisor). On average, there is virtually no improvement for QEMU and VirtualBox,
and only 3% for CAPTIVE.

4.6. Slow-down over Native Execution on High-End Hardware
We have evaluated the performance of CAPTIVE, compared to execution of the bench-
marks on an ARM hardware platform. We have collected run times on an ODROID-XU,
and Figure 14 shows the relative slow-down of both CAPTIVE and QEMU. On average,
CAPTIVE is 1.4× slower than native execution of SPEC on an ARM platform, whereas
QEMU is 3.51× slower. Again, of interest is the 429.mcf benchmark that actually shows
a speed-up over native. This is again partly due to the JIT compiler discovering opti-
mizations that can be made dynamically, but also due to larger CPU cache (e.g. L1)
sizes on the host platform.

5. RELATED WORK
Instruction set simulation is an active field of research and a large number of tech-
niques for the efficient implementation of either user mode or full system simulators
have been published, e.g. [Böhm et al. 2011; Böhm et al. 2010; Witchel and Rosenblum
1996; Binkert et al. 2011; Patel et al. 2011; Sandberg et al. 2015; Yourst 2007; Bellard
2005; Ding et al. 2011; Magnusson et al. 2002; Qin and Malik 2003; AMD Developer
Central 2010]. In Table III we provide an overview of well-known simulators, their
capabilities and implementation techniques.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Hardware Accelerated Cross-Architecture Full-System Virtualization A:23

Simulator Engine Full- Multi- Detailed Hardware Target ISASystem Core Accelerated
ArcSim Parallel DBT Yes Yes Config. No User Retargetable
Embra DBT Yes Yes Cache No MIPS R3000/R4000
gem5 Discr. Event Yes Yes Yes No User Retargetable
MARSS DBT Yes Yes Yes No Intel x86
OVPSim DBT Yes Yes No No Multiple available
pFSA Direct Exec. Yes No Sampling For same ISA Intel x86
PTLsim Virtualization Yes No Yes No Intel x86-64
QEMU DBT Yes Yes No No Multiple available
QEMU KVM Yes Yes No For same ISA Multiple available
PQEMU DBT Yes Yes No No ARM11MPCore
Simics Interpreter Yes Yes Approx. No Multiple available
Simit-ARM DBT Yes No No No ARM v5
SimNow DBT Yes Yes (COTSon) No Intel x86, AMD64
CAPTIVE DBT Yes Yes* Cache* Yes User Retargetable

(*) Multi-core virtualization and optional cache modelling are beyond the scope of this article.

Table III: Comparison of simulators: techniques and capabilities.

Early work in the context of Simics introduced a software caching mechanism, which
improved the performance of interpreted memory operations by reducing the num-
ber of calls to complex memory simulation code [Magnusson and Werner 1994]. More
recently, Chang et al. [2014], Wang et al. [2015] Hong et al. [2015] have presented
novel schemes for speeding up address translation in full-system simulators. These
two schemes are the closest matches to our work documented in the literature. In
[Chang et al. 2014] a shadow page table – called embedded shadow page table (ESPT)
– is embedded into the address space of a cross-ISA dynamic binary translation (DBT)
system. Similar to CAPTIVE, ESPT uses the hardware memory management unit in
the CPU to translate memory addresses, instead of software translation. However, the
original ESPT approach has a few drawbacks. For example, its implementation relies
on a loadable kernel module (LKM) to manage the shadow page table. Using LKMs is
less desirable for system virtual machines due to portability, security and maintain-
ability concerns. Hence, a different implementation – called HSPT – adopts a shared
memory mapping scheme to maintain the shadow page table using only mmap system
calls [Wang et al. 2015]. In section 4.3 we show a side-by-side performance comparison
between this improved HSPT scheme and the approach taken by CAPTIVE. Dynamic
resizing of a software TLB is proposed in [Hong et al. 2015]. Using per-page-table uti-
lization information the size of the software TLB is adjusted for each process separately.

6. SUMMARY, CONCLUSION AND FUTURE WORK
We have introduced new techniques for cross-architecture virtualization, using hard-
ware accelerated processor extensions and implemented these ideas in a hypervisor
called CAPTIVE. The key contribution is the mapping of guest system MMU behav-
ior to host system MMU behavior, and we improve over the state-of-the-art simulator
QEMU on average 2.5×. We show that CAPTIVE is better than existing techniques to
improve MMU virtualization. There are three major routes that we wish to take to
extend our work:

(1) We wish to extend the capability of our system to 64-bit guests, and find efficient
ways of exploiting our existing infrastructure to handle the larger address space.

(2) We wish to implement a multicore version of the execution engine, to support plat-
forms with multiple (possibly heterogeneous) processor cores.

(3) We wish to explore the possibility of mapping guest platform devices to real host
devices, e.g. timer devices, eliminating hypervisor emulation overhead.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 T. Spink et al.

REFERENCES
AMD Developer Central. 2010. AMD SimNow simulator. http://developer.amd.com/tools-and-sdks/cpu-

development/simnow-simulator/. (2010).
ARM. 2011a. About the PB-A8. (2011). http://infocenter.arm.com/help/topic/com.arm.doc.dui0417d/

BABCHBFC.html“#CHDFGCFB Retrieved 02-June-2016.
ARM. 2011b. RealView Platform Baseboard for Cortex-A8 User Guide. (2011). http://infocenter.arm.com/

help/index.jsp?topic=/com.arm.doc.dui0417d/index.html Retrieved 02-June-2016.
Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu, Guido Araujo, Cristiano Araujo, and Edna Barros.

2005. The ArchC Architecture Description Language and Tools. Int. J. Parallel Program. 33, 5 (Oct.
2005), 453–484. DOI:http://dx.doi.org/10.1007/s10766-005-7301-0

Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the Annual Con-
ference on USENIX Annual Technical Conference (ATEC ’05). USENIX Association, Berkeley, CA, USA,
41–41. http://dl.acm.org/citation.cfm?id=1247360.1247401

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muham-
mad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The gem5 Simulator. SIGARCH
Comput. Archit. News 39, 2 (Aug. 2011), 1–7. DOI:http://dx.doi.org/10.1145/2024716.2024718

Igor Böhm, Tobias J.K. Edler von Koch, Stephen C. Kyle, Björn Franke, and Nigel Topham. 2011. Gener-
alized Just-in-time Trace Compilation Using a Parallel Task Farm in a Dynamic Binary Translator. In
Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’11). ACM, New York, NY, USA, 74–85. DOI:http://dx.doi.org/10.1145/1993498.1993508

Igor Böhm, Björn Franke, and Nigel P. Topham. 2010. Cycle-accurate performance modelling in an ultra-
fast just-in-time dynamic binary translation instruction set simulator. In Proceedings of the 2010 In-
ternational Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (IC-
SAMOS 2010), Samos, Greece, July 19-22, 2010, Fadi J. Kurdahi and Jarmo Takala (Eds.). IEEE, 1–10.
DOI:http://dx.doi.org/10.1109/ICSAMOS.2010.5642102

Florian Brandner, Andreas Fellnhofer, Andreas Krall, and David Riegler. 2009. Fast and accurate simula-
tion using the LLVM compiler framework. In Proceedings of the 1st Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools (RAPIDO).

Jeffrey Buell, Daniel Hecht, Jin Heo, Kalyan Saladi, and H. Reza Taheri.
2013. Methodology for Performance Analysis of VMware vSphere under Tier-
1 Applications. VMware technical journal. (2013). https://labs.vmware.com/vmtj/
methodology-for-performance-analysis-of-vmware-vsphere-under-tier-1-applications

Jianjiang Ceng, Weihua Sheng, Jeronimo Castrillon, Anastasia Stulova, Rainer Leupers, Gerd As-
cheid, and Heinrich Meyr. 2009. A High-level Virtual Platform for Early MPSoC Software De-
velopment. In Proceedings of the 7th IEEE/ACM International Conference on Hardware/Soft-
ware Codesign and System Synthesis (CODES+ISSS ’09). ACM, New York, NY, USA, 11–20.
DOI:http://dx.doi.org/10.1145/1629435.1629438

Chao-Jui Chang, Jan-Jan Wu, Wei-Chung Hsu, Pangfeng Liu, and Pen-Chung Yew. 2014. Efficient Mem-
ory Virtualization for Cross-ISA System Mode Emulation. In Proceedings of the 10th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE ’14). ACM, New
York, NY, USA, 117–128. DOI:http://dx.doi.org/10.1145/2576195.2576201

J. H. Ding, P. C. Chang, W. C. Hsu, and Y. C. Chung. 2011. PQEMU: A Parallel System Emulator Based
on QEMU. In 2011 IEEE 17th International Conference on Parallel and Distributed Systems (ICPADS).
276–283. DOI:http://dx.doi.org/10.1109/ICPADS.2011.102

Jiun-Hung Ding, Chang-Jung Lin, Ping-Hao Chang, Chieh-Hao Tsang, Wei-Chung Hsu, and Yeh-Ching
Chung. 2012. ARMvisor: System virtualization for ARM. In Ottawa Linux Symposium.

K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye. 2001. Dynamic binary translation and optimization.
IEEE Trans. Comput. 50, 6 (Jun 2001), 529–548. DOI:http://dx.doi.org/10.1109/12.931892

Adam Gerber and Clifton Craig. 2015. Learn Android Studio: Build Android Apps Quickly and Effectively
(1st ed.). Apress, Berkely, CA, USA.

Apala Guha, Kim hazelwood, and Mary Lou Soffa. 2010. DBT Path Selection for Holistic Mem-
ory Efficiency and Performance. In Proceedings of the 6th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE ’10). ACM, New York, NY, USA, 145–156.
DOI:http://dx.doi.org/10.1145/1735997.1736018

Ding-Yong Hong, Chun-Chen Hsu, Cheng-Yi Chou, Wei-Chung Hsu, Pangfeng Liu, and Jan-Jan Wu. 2015.
Optimizing Control Transfer and Memory Virtualization in Full System Emulators. ACM Trans. Archit.
Code Optim. 12, 4, Article 47 (Dec. 2015), 24 pages. DOI:http://dx.doi.org/10.1145/2837027

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Hardware Accelerated Cross-Architecture Full-System Virtualization A:25

Intel. 2016. Intel Virtualization Technology (Intel VT). (2016). http://www.intel.com/content/www/us/en/
virtualization/virtualization-technology/intel-virtualization-technology.html Retrieved 26-April-2016.

Daniel Jones and Nigel Topham. 2009. High Speed CPU Simulation Using LTU Dynamic Bi-
nary Translation. In Proceedings of the 4th International Conference on High Performance Em-
bedded Architectures and Compilers (HiPEAC ’09). Springer-Verlag, Berlin, Heidelberg, 50–64.
DOI:http://dx.doi.org/10.1007/978-3-540-92990-1˙6

Naveen Kumar, Bruce R. Childers, Daniel Williams, Jack W. Davidson, and Mary Lou Soffa. 2005. Compile-
time Planning for Overhead Reduction in Software Dynamic Translators. Int. J. Parallel Program. 33,
2 (June 2005), 103–114. DOI:http://dx.doi.org/10.1007/s10766-005-3573-7

KVM. 2016. KVM. (2016). http://www.linux-kvm.org/page/Main˙Page Retrieved 26-April-2016.
Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hållberg, Johan

Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. 2002. Simics: a Full System Simu-
lation Platform. 35, 2 (Feb. 2002), 50–58. http://dlib.computer.org/co/books/co2002/pdf/r2050.pdf; http:
//www.computer.org/computer/co2002/r2050abs.htm

Peter S. Magnusson and Bengt Werner. 1994. Some Efficient Techniques for Simulating Memory. Technical
Report R94. Swedish Institute of Computer Science technical report.

Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Development and Deployment.
Linux J. 2014, 239, Article 2 (March 2014). http://dl.acm.org/citation.cfm?id=2600239.2600241

Timothy Merrifield and H. Reza Taheri. 2016. Performance Implications of Extended Page Tables
on Virtualized x86 Processors. In Proceedings of the12th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE ’16). ACM, New York, NY, USA, 25–35.
DOI:http://dx.doi.org/10.1145/2892242.2892258

David Ott. 2009. Virtualization and Performance: Understanding VM Exits. (2009). https://software.
intel.com/en-us/blogs/2009/06/25/virtualization-and-performance-understanding-vm-exits Retrieved
07-June-2016.

A. Patel, F. Afram, S. Chen, and K. Ghose. 2011. MARSS: A full system simulator for multicore x86 CPUs.
In Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE. 1050–1055.

Wei Qin and S. Malik. 2003. Flexible and formal modeling of microprocessors with application to retar-
getable simulation. In Design, Automation and Test in Europe Conference and Exhibition. 556–561.
DOI:http://dx.doi.org/10.1109/DATE.2003.1253667

A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten, S. Kaxiras, and D. Black-Schaffer. 2015. Full Speed
Ahead: Detailed Architectural Simulation at Near-Native Speed. In 2015 IEEE International Sympo-
sium on Workload Characterization (IISWC). 183–192. DOI:http://dx.doi.org/10.1109/IISWC.2015.29

Tom Spink, Harry Wagstaff, Björn Franke, and Nigel Topham. 2014. Efficient code generation in a region-
based dynamic binary translator. In Proceedings of the 2014 SIGPLAN/SIGBED Conference on Lan-
guages, Compilers and Tools for Embedded Systems. ACM, 3–12.

David Ung and Cristina Cifuentes. 2000. Machine-adaptable Dynamic Binary Translation. In Proceedings
of the ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and Optimization (DYNAMO
’00). ACM, New York, NY, USA, 41–51. DOI:http://dx.doi.org/10.1145/351397.351414

VMware. 2009. Performance Evaluation of Intel EPT Hardware Assist. Technical Report. VMware. https:
//www.vmware.com/pdf/Perf˙ESX˙Intel-EPT-eval.pdf

Harry Wagstaff, Miles Gould, Björn Franke, and Nigel Topham. 2013. Early partial evaluation in a JIT-
compiled, retargetable instruction set simulator generated from a high-level architecture description.
In Proceedings of the Annual Design Automation Conference (DAC ’13). ACM, New York, NY, USA,
Article 21, 6 pages. DOI:http://dx.doi.org/10.1145/2463209.2488760

Zhe Wang, Jianjun Li, Chenggang Wu, Dongyan Yang, Zhenjiang Wang, Wei-Chung Hsu, Bin Li, and Yong
Guan. 2015. HSPT: Practical Implementation and Efficient Management of Embedded Shadow Page
Tables for Cross-ISA System Virtual Machines. In Proceedings of the 11th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments. ACM, 53–64.

Emmett Witchel and Mendel Rosenblum. 1996. Embra: Fast and Flexible Machine Simulation.
In Proceedings of the 1996 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS ’96). ACM, New York, NY, USA, 68–79.
DOI:http://dx.doi.org/10.1145/233013.233025

M. T. Yourst. 2007. PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural Simulator. In Perfor-
mance Analysis of Systems Software, 2007. ISPASS 2007. IEEE International Symposium on. 23–34.
DOI:http://dx.doi.org/10.1109/ISPASS.2007.363733

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

