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Abstract. We propose a new method for detecting changes in Markov
network structure between two sets of samples. Instead of naively fitting
two Markov network models separately to the two data sets and figuring
out their difference, we directly learn the network structure change by
estimating the ratio of Markov network models. This density-ratio formu-
lation naturally allows us to introduce sparsity in the network structure
change, which highly contributes to enhancing interpretability. Further-
more, computation of the normalization term, which is a critical compu-
tational bottleneck of the naive approach, can be remarkably mitigated.
Through experiments on gene expression and Twitter data analysis, we
demonstrate the usefulness of our method.

1 Introduction

Changes in the structure of interactions between random variables are interesting
in many real-world phenomena. For example, genes may interact with each other
in different ways when external stimuli change, co-occurrence between words may
disappear/appear when the domains of text corpora shift, and correlation among
pixels may change when a surveillance camera captures anomalous activities.
Discovering such changes in interactions is a task of great interest in machine
learning and data mining, because it provides useful insights into underlying
mechanisms in many real-world applications.

In this paper, we consider the problem of detecting changes in conditional in-
dependence among random variables between two sets of data. Such conditional
independence structure can be expressed as an undirected graphical model called
a Markov network (MN) [1,2,3], where nodes and edges represent variables and
their conditional dependency. As a simple and widely applicable case, the 2nd-
order pairwise MN model has been thoroughly studied recently [4,5]. Following
this line, we also focus on the pairwise MN model as a representative example.

A naive approach to change detection in MNs is the two-step procedure of
first estimating two MNs separately from two sets of data by maximum likelihood
estimation (MLE), and then comparing the structure of learned MNs. However,
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Fig. 1. The rationale of direct structural change learning.

MLE is often computationally expensive due to the normalization factor included
in the density model. There are estimation methods which do not rely on knowing
the normalization factor [6], but Gaussianity is often assumed for computing
the normalization factor analytically [7]. However, this Gaussian assumption is
highly restrictive in practice.

Another conceptual weakness of the above two-step procedure is that struc-
ture change is not directly learned. This indirect nature causes a problem, for
example, if we want to learn a sparse structure change. For learning sparse
changes, we may utilize ℓ1-regularized MLE [8,9,5], which produces sparse MNs
and thus the change between MNs also becomes sparse. However, this approach
does not work if MNs are rather dense but change is sparse.

To mitigate this indirect nature, the fused lasso [10] is useful, where two MNs
are simultaneously learned with a sparsity-inducing penalty on the difference
between two MN parameters [11]. Although this fused-lasso approach allows us
to learn sparse structure change naturally, the restrictive Gaussian assumption
is still necessary to obtain the solution in a computationally efficient way.

A nonparanormal assumption [12,13] is a useful generalization of the Gaus-
sian assumption. A nonparanormal distribution is a semi-parametric Gaussian
copula where each Gaussian variable is transformed by a non-linear function.
Nonparanormal distributions are much more flexible than Gaussian distributions
thanks to the feature-wise non-linear transformation, while the normalization
factors can still be computed analytically.

Thus, the fused-lasso method combined with nonparanormal models would
be the state-of-the-art approach to change detection in MNs. However, the fused-
lasso method is still based on separate modeling of two MNs, and its computation
for more general non-Gaussian distributions is challenging.

In this paper, we propose a more direct approach to structural change learn-
ing in MNs based on density ratio estimation (DRE) [14]. Our method does not
separately model two MNs, but directly models the change in two MNs. This
idea follows Vapnik’s principle [15]:

If you possess a restricted amount of information for solving some prob-
lem, try to solve the problem directly and never solve a more general
problem as an intermediate step. It is possible that the available infor-
mation is sufficient for a direct solution but is insufficient for solving a
more general intermediate problem.

This principle was used in the development of support vector machines (SVMs):
Rather than modeling two classes of samples, SVM directly learns a decision
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boundary that is sufficient for performing pattern recognition. In the current
context, estimating two MNs is more general than detecting changes in MNs
(Figure 1). This direct approach means that we halve the number of parameters,
from two MNs to one MN-difference.

Furthermore, the normalization factor in our DRE-based method can be
approximated efficiently, because the normalization term in a density ratio func-
tion takes the form of an expectation and thus it can be simply approximated
by sample averages without sampling.

The remainder of this paper is structured as follows. In Section 2, we for-
mulate the problem of detecting structural changes and review currently avail-
able approaches. We then propose our DRE-based structural change detection
method in Section 3. Results of illustrative and real-world experiments are re-
ported in Section 4 and Section 5, respectively. Finally, we conclude our work
and show future directions in Section 6.

2 Problem Formulation and Related Methods

In this section, we formulate the problem of change detection in Markov network
structure and review existing approaches.

2.1 Problem Formulation

Consider two sets of samples drawn separately from two probability distributions
P and Q on Rd:

{xP
i }

nP
i=1

iid∼ p(x) and {xQ
i }

nQ

i=1
iid∼ q(x).

We assume that p and q belong to the family of Markov networks (MNs) con-
sisting of univariate and bivariate factors:

p(x;α) =
1

Z(α)
exp

 d∑
i=1

α⊤
i gi(xi) +

d∑
i,j=1,i>j

α⊤
i,jgi,j(xi, xj)

 , (1)

where x = (x1, . . . , xd)
⊤, αi,αi,j are parameters, gi, gi,j are univariate and

bivariate vector-valued basis functions, and Z(α) is the normalization factor.
q(x;α) is defined in the same way.

For notational simplicity, we unify both univariate and bivariate factors as

p(x;θ) =
1

Z(θ)
exp

(∑
t

θ⊤
t f t(x)

)
, where Z(θ) =

∫
exp

(∑
t

θ⊤
t f t(x)

)
dx.

q(x;θ) is also simplified in the same way.
Our goal is to detect the change in conditional independence between random

variables between P to Q.
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2.2 Sparse MLE and Graphical Lasso

Maximum likelihood estimation (MLE) with group ℓ1-regularization has been
widely used for estimating the sparse structure of MNs [16,4,5]:

max
θ

n∑
i=1

log p(xP
i ;θ)− λ

∑
t

∥θt∥, (2)

where ∥ · ∥ denotes the ℓ2-norm. As λ increases, θt for pairwise factors may drop
to 0. Thus, this method favors an MN that encodes more conditional indepen-
dencies among variables. For computing the normalization term Z(θ) in Eq.(1),
sampling techniques such as Markov-chain Monte-Carlo (MCMC) and impor-
tance sampling are usually employed. However, obtaining a reasonable value
by these methods becomes computationally more expensive as the dimension d
grows.

To avoid this computational problem, the Gaussian assumption is often im-
posed [9,17]. If we consider a zero-mean Gaussian distribution, the following
p(x;Θ) can be used to replace the density model in Eq.(2):

p(x;Θ) =
det(Θ)1/2

(2π)
d/2

exp

(
−1

2
x⊤Θx

)
,

where Θ is the inverse covariance matrix (a.k.a. the precision matrix) and det(·)
denotes the determinant. Then Θ is learned by

max
Θ

log det(Θ)− tr(ΘSP )− λ∥Θ∥1,

where SP is the sample covariance matrix of {xP
i }ni=1. ∥Θ∥1 is the ℓ1-norm

of Θ, i.e., the absolute sum of all elements. This formulation has been studied
intensively in [8], and a computationally efficient solution called the graphical
lasso [9] has been proposed.

Sparse changes in conditional independence structure between P and Q can
be detected by comparing two MNs separately estimated using sparse MLE.
However, this approach implicitly assumes that two MNs are sparse, which is
not necessarily true even if the change is sparse.

2.3 Fused-Lasso Method

To more naturally handle sparse changes in conditional independence structure
between P and Q, a method based on fused lasso [10] has been developed [11].
This method jointly maximizes the conditional likelihood in a feature-wise man-
ner for P and Q with a sparsity penalty on the difference between parameters.
More specifically, for each element xs (s = 1, . . . , d) of x,

max
θP
s ,θQ

s

ℓPs (θ
P
s ) + ℓQs (θ

Q
s )− λ1(∥θP

s ∥1 + ∥θQ
s ∥1)− λ2∥θP

s − θQ
s ∥1,
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where ℓPs (θ) is the log conditional likelihood for the s-th element xs ∈ R given
the rest x−s ∈ Rd−1:

ℓPs (θ) =

nP∑
i=1

log p(xP
i,s|xP

i,−s;θ).

ℓQs (θ) is defined in the same way as ℓPs (θ). In this fused-lasso method, Gaus-
sianity is usually assumed to cope with the normalization issue described in
Section 2.2.

2.4 Nonparanormal Extensions

In the above methods, Gaussianity is required in practice to compute the nor-
malization factor efficiently, which is a highly restrictive assumption.

To overcome this restriction, it has become popular to perform structure
learning under the nonparanormal settings [12,13], where the Gaussian distribu-
tion is replaced by a semi-parametric Gaussian copula. x = (x1, . . . , xd)

⊤ is said
to follow a nonparanormal distribution, if there exists a set of monotone and
differentiable functions, {hi(x)}di=1, such that h(x) = (h1(x

(1)), . . . , hd(x
(d)))⊤

follows the Gaussian distribution. Nonparanormal distributions are much more
flexible than Gaussian distributions thanks to the non-linear transformation
{hi(x)}di=1, while the normalization factors can still be computed in an ana-
lytical way.

3 Direct Learning of Structural Changes via Density
Ratio Estimation

The fused-lasso method can more naturally handle sparse changes in MNs than
separate sparse MLE, and its nonparanormal extension is more flexible than the
Gaussian counterpart. However, the fused-lasso method is still based on sepa-
rate modeling of two MNs, and its computation for more general non-Gaussian
distributions is challenging.

In this section, we propose to directly learn structural changes based on
density ratio estimation [14], which does not involve separate modeling of each
MN and which allows us to approximate the normalization term efficiently.

3.1 Density Ratio Formulation for Structural Change Detection

Our key idea is to consider the ratio of p and q:

p(x;θP )

q(x;θQ)
∝ exp

(∑
t

(θP
t − θQ

t )
⊤f t(x)

)
.
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Here θP
t −θQ

t encodes the difference between P and Q for factor f t, i.e., θ
P
t −θQ

t

is zero if there is no change in the t-th factor.
Once we consider the ratio of p and q, we actually do not have to estimate

θP
t and θQ

t ; instead an estimate of their difference θt = θP
t − θQ

t is sufficient for
change detection:

r(x;θ)=
1

N(θ)
exp

(∑
t

θ⊤
t ft(x)

)
, where N(θ)=

∫
q(x) exp

(∑
t

θ⊤
t ft(x)

)
dx.

(3)

The normalization term N(θ) guarantees4
∫
q(x)r(x;θ) dx = 1. Thus, in this

density ratio formulation, we are no longer modeling each p and q separately,
but we model the change from p to q directly. This direct nature would be
more suitable for change detection purposes according to Vapnik’s principle that
encourages avoidance of solving more general problems as an intermediate step
[15]. This direct formulation also allows us to halve the number of parameters
from both θP and θQ to only θ.

Furthermore, the normalization factor N(θ) in the density ratio formulation

can be easily approximated by sample average over {xQ
i }

nQ

i=1
iid∼ q(x), because

N(θ) is the expectation over q(x):

N(θ) ≈ 1

nQ

nQ∑
i=1

exp

(∑
t

θ⊤
t ft(x

Q
i )

)
.

3.2 Direct Density-Ratio Estimation

Density ratio estimation (DRE) methods have been recently introduced to the
machine learning community [14] and are proven to be useful in a wide range of
applications. Here, we concentrate on a DRE method called the Kullback-Leibler
importance estimation procedure (KLIEP) for a log-linear model [18,19].

For a density ratio model r(x;θ), the KLIEP method minimizes the
Kullback-Leibler divergence from p(x) to p̂(x) = q(x)r(x;θ):

KL[p∥p̂] =
∫

p(x) log
p(x)

q(x)r(x;θ)
dx = Const.−

∫
p(x) log r(x;θ) dx. (4)

Note that our density-ratio model (3) automatically satisfies the non-negativity
and normalization constraints:

r(x;θ) ≥ 0 and

∫
q(x)r(x;θ) dx = 1.

4 An alternative normalization term N ′(θ,θQ) =
∫
q(x;θQ)r(x;θ)dx may also be

considered. However, the expectation with respect to a model distribution can be
computationally expensive as in the case of MLE, and this alternative form requires
an extra parameter θQ which is not our main interest. It is noteworthy that the
use of N(θ) as a normalization factor guarantees the consistency of density ratio
estimation [18].
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In practice, we maximize the empirical approximation of the second term in the
right-hand side of Eq.(4):

ℓKLIEP(θ) =
1

nP

nP∑
i=1

log r(xP
i ;θ)

=
1

nP

nP∑
i=1

∑
t

θ⊤
t f t(x

P
i )− log

1

nQ

nQ∑
i=1

exp

(∑
t

θ⊤
t f t(x

Q
i )

)
.

Because ℓKLIEP(θ) is concave with respect to θ, its global maximizer can be
numerically found by standard optimization techniques such as gradient ascent
or quasi-Newton methods: The gradient of ℓKLIEP with respect to θt is given by

∇θtℓKLIEP(θ) =
1

nP

nP∑
i=1

f t(x
P
i )−

1
nQ

∑nQ

i=1 exp
(∑

t θ
⊤
t f t(x

Q
i )
)
f t(x

Q
i )

1
nQ

∑nQ

j=1 exp
(∑

t θ
⊤
t ft(x

Q
j )
) .

3.3 Sparsity-Inducing Norm

To find a sparse change in P and Q, we may regularize our KLIEP solution with
a sparsity-inducing norm

∑
t ∥θt∥. Note that the motivation for introducing

sparsity in KLIEP is different from MLE. In the case of MLE, both θP and θQ

are sparsified and then consequently the difference θP − θQ is also sparsified.
On the other hand, in our case, only the difference θP − θQ is sparsified; thus
our method can still work well even if θP and θQ are dense.

In practice, we may use the following elastic-net penalty [20] to better control
overfitting to noisy data:

max
θ

[
ℓKLIEP(θ)− λ1∥θ∥2 − λ2

∑
t

∥θt∥

]
,

where ∥θ∥2 penalizes the magnitude of the entire parameter vector.

4 Numerical Experiments

In this section, we compare the proposed KLIEP-based method with the Fused-
lasso (Flasso) method [11] and the Graphical-lasso (Glasso) method [9]. Results
are reported on datasets with three different underlying distributions: multivari-
ate Gaussian, nonparanormal, and a non-Gaussian “diamond” distribution.

4.1 Setup

Performance Metrics: by taking the advantage of knowing the ground truth
of structural changes in artificial experiments, we measure the performance of
change detection methods using the precision-recall (P-R) curve. For KLIEP and
Flasso, a precision and recall curve can be plotted by varying the group-sparsity
control parameter λ2; we fix λ1 = 0 because the artificial datasets are noise-free.
For Glasso, we vary the sparsity control parameters as λ = λP = λQ.
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Model Selection: for KLIEP, we use the log-likelihood of an estimated density
ratio on a hold-out dataset, which we refer to as hold-out log-likelihood (HOLL).

More precisely, given two sets of hold-out data {x̃P
i }

ñP
i=1

iid∼ P , {x̃Q
i }

ñQ

i=1
iid∼ Q for

ñP = ñQ = 3000, we use the following quantity:

ℓHOLL =
1

ñP

ñP∑
i=1

log
exp

(∑
t θ̂

⊤
t ft(x̃

P
i )
)

1
ñQ

∑ñQ

j=1 exp
(∑

t θ̂
⊤
t ft(x̃

Q
j )
) .

In case such a hold-out dataset is not available, the cross-validated log-
likelihood (CVLL) may be used instead.

For the Glasso and Flasso methods, we perform model selection by adding
the hold-out/cross-validated likelihoods on p(x;θ) and q(x;θ) together:

1

ñP

ñP∑
i=1

log p(x̃P
i ; θ̂

P
) +

1

ñQ

ñQ∑
i=1

log q(x̃Q
i ; θ̂

Q
).

Basis Function: we consider two types of ft: a power nonparanormal fnpn and
a polynomial transform fpoly.

The pairwise nonparanormal transform with power k is defined as

fnpn(xi, xj) := [sign(xi)x
k
i sign(xj)x

k
j , 1].

This transforms the original data by the power of k, so that the transformed data
are jointly Gaussian (see Section 4.3). The univariate nonparanormal transform
is defined as fnpn(xi) := fnpn(xi, xi).

The polynomial transform up to degree of k is defined as:

fpoly(xi, xj) := [xk
i , x

k
j , xix

k−1
j , . . . , xk−1

i xj , x
k−1
i , xk−1

j , . . . , xi, xj , 1].

The univariate polynomial transform is defined as fpoly(xi) := fpoly(xi, 0).

4.2 Multivariate Gaussian

First, we investigate the performance of each learning method under Gaussianity.
Consider a 40-node sparse Gaussian MN, where its graphical structure is

characterized by precision matrix ΘP with diagonal elements equal to 2. The
off-diagonal elements are randomly chosen5 and set to 0.2, so that the overall
sparsity of ΘP is 25%. We then introduce changes by randomly picking 15 edges
and reducing the corresponding elements in the precision matrix by 0.1. The
resulting precision matrices ΘP and ΘQ are used for drawing samples as

{xP
i }ni=1

iid∼ N (0, (ΘP )−1) and {xQ
i }

n
i=1

iid∼ N (0, (ΘQ)−1).

Datasets of size n = 50 and n = 100 are tested.

5 We set Θi,j = Θj,i for not breaking the symmetry of the precision matrix.
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Fig. 2. Experimental results on the multivariate Gaussian dataset.

We repeat the experiments 20 times with randomly generated datasets and
report the results in Figure 2. The top 6 graphs are examples of regularization
paths (black and red color represents the ground truth) and the bottom 3 graphs
are the data generating distribution and averaged P-R curves with standard
error. The top row is for n = 100 while the middle row is for n = 50. The
regularization parameters picked by the model selection procedures described in
Section 4.1 are marked with blue vertical lines. In this experiment, the Gaussian
model (the nonparanormal basis function with power k = 1) is used for KLIEP.
Because the Gaussian model is also used in Flasso and Glasso, the difference in
performance is caused only by the difference of estimation methods.

When n = 100, KLIEP and Flasso clearly distinguish changed (black) and
unchanged (red) edges in terms of parameter magnitude. However, when the
sample size is halved, the separation is visually rather unclear in the case of
Flasso. In contrast, the paths of changed and unchanged edges are still almost
disjoint in the case of KLIEP. The Glasso method performs rather poorly in
both cases. A similar tendency can be observed also in the averaged P-R curve.
When the sample size is 100, KLIEP and Flasso work equally well, but KLIEP
gains its lead when the sample size is reduced. Glasso does not perform well in
both cases.
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4.3 Nonparanormal

We post-process the dataset used in Section 4.2 to construct nonparanormal
samples: simply, we apply the power function

h−1
i (x) = sign(x)|x| 12

to each dimension of xP and xQ, so that h(xP ) ∼ N (0, (ΘP )−1) and h(xQ) ∼
N (0, (ΘQ)−1).

In order to cope with the non-linearity, we apply the nonparanormal basis
function with power 2, 3 and 4 in KLIEP and choose the one that maximizes the
peak HOLL value. For Flasso and Glasso, we apply the nonparanormal transform
described in [12] before the structural change is learned.

The experiments are conducted on 20 randomly generated datasets with
n = 50 and 100, respectively. The regularization paths, data generating dis-
tribution, and averaged P-R curves are plotted in Figure 3. The results show
that Flasso clearly suffers from the performance degradation compared with the
Gaussian case, perhaps because the number of samples is too small for the com-
plicated nonparanormal distribution. Due to the two-step estimation scheme,
the performance of Glasso is poor. In contrast, KLIEP separates changed and
unchanged edges still clearly for both n = 50 and n = 100. The P-R curves also
show the same tendency.

4.4 “Diamond” Distribution with No Pearson Correlation

In the previous experiment, though samples are non-Gaussian, the Pearson cor-
relation is not zero. Therefore, methods assuming Gaussianity can still capture
the linear correlation between random variables. In this experiment, we consider
a more challenging case with a diamond-shaped distribution within the expo-
nential family that has zero Pearson correlation coefficient between dependent
variables. Thus, the methods assuming Gaussianity (i.e., Glasso and Flasso) can
not extract any information in principle from this dataset.

The probability density function of the diamond distribution is defined as
follows (Figure 4(a)):

p(x) ∝ exp

−
∑
i

2x2
i −

∑
(i,j):Ai,j ̸=0

20x2
ix

2
j

 , (5)

where the adjacency matrix A describes an MN structure. Note that this distri-
bution can not be transformed into a Gaussian distribution by any nonparanor-
mal transformations. Samples from the above distribution are drawn by using
a slice sampling method [21]. However, since generating samples from a high-
dimensional distribution is non-trivial and time-consuming, we focus on a rel-
atively low-dimensional case to avoid sampling errors which may mislead the
experimental evaluation.
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Fig. 3. Experimental results on the nonparanormal dataset.

We set d = 9 and nP = nQ = 5000. AP is randomly generated with 35%

sparsity, while AQ is created by randomly removing edges in AP so that the
sparsity level is dropped to 15%.

In this experiment, we compare the performance of all three methods with
their available transforms: KLIEP (fpoly, k = 2, 3, 4), KLIEP (fnpn, k = 2, 3, 4),
KLIEP (fnpn, k = 1; same as the Gaussian model), Flasso (nonparanormal),
Flasso (Gaussian), Glasso (nonparanormal) and Glasso (Gaussian). The aver-
aged P-R curves are shown in Figure 4(c). As expected, except KLIEP (fpoly),
all other methods do not work properly. This means that the polynomial kernel
is indeed very helpful in handling completely non-Gaussian data. However, as
discussed in Section 2.2, it is difficult to use such a kernel in the MLE-based ap-
proaches (Glasso and Flasso) because computationally demanding sampling is
involved in evaluating the normalization term. The regularization path of KLIEP
(fpoly) illustrated in Figure 4(b) shows the usefulness of the proposed method
in change detection under non-Gaussianity.
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Fig. 4. Experimental results on the diamond dataset. “NPN” and “POLY” denote the
nonparanormal and polynomial models, respectively. Note that the precision rate of
100% recall for a random guess is approximately 20%.

5 Applications

In this section, experiments are conducted on a synthetic gene expression dataset
and on a Twitter dataset, respectively. We consider only the KLIEP and Flasso
methods here. For KLIEP, the polynomial transform function with k ∈ {2, 3, 4}
is used. The parameter λ1 in KLIEP and Flasso is tested with choices λ1 ∈
{0.1, 1, 10}. The performance reported for the experiments in Section 5.1 and
5.2 are obtained using the models selected by HOLL and 5-fold CVLL (see
Section 4.1), respectively.

5.1 Synthetic Gene Expression Dataset

A gene regulatory network encodes interactions between DNA segments. How-
ever, the way genes interact may change due to environmental or biological
stimuli. In this experiment, we focus on detecting such changes. We use Syn-
TReN, which is a generator of gene regulatory networks used as the benchmark
validation of bioinformatics algorithms [22].

To test the applicability of the proposed method, we first choose a sub-
network containing 13 nodes from an existing signalling network in Saccha-
romyces cerevisiae (shown in Figure 5(a)). Three types of interactions are mod-
elled: activation (ac), deactivation (re), and dual (du). 50 samples are generated
in the first stage, after which we change the types of interactions in 6 edges, and
generate 50 samples again. Four types of changes are considered in such case: ac
→ re, re → ac, du → ac, and du → re.

The regularization paths for KLIEP and Flasso are plotted in Figures 5(b)
and 5(d). Averaged precision-recall curves over 20 simulation runs are shown
in Figure 5(c). Clearly from the example of KLIEP regularization paths shown
in Figure 5(d), the magnitude of estimated parameters on the changed pairwise
interactions is much higher than that of the unchanged ones, and hits zero only at
the final stage. On the other hand, Flasso gives many false alarms by assigning
non-zero parameters to the unchanged interactions, even after some changed
ones hit zeros. Reflecting a similar pattern, the P-R curves plot in Figure 5(c)
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Fig. 5. Experiments on synthetic gene expression datasets.

show that the proposed KLIEP method achieves significant improvement over
the Flasso method.

5.2 Twitter Story Telling

In this experiment, we use KLIEP and Flasso as event detectors from Twitter.
More specifically, we choose the Deepwater Horizon oil spill 6 as the target
event, and we hope that our method can recover some story lines from Twitter
as the news event develops. Counting the frequencies of 10 keywords (BP, oil,
spill, Mexico, gulf, coast, Hayward, Halliburton, Transocean, and Obama), we
obtain a dataset by sampling 1061 times (4 per day), from February 1st, 2010
to October 15th, 2010.

To conduct our experiments, we segment the data into two parts. The first
300 samples collected before the day of oil spill (April 20th, 2010) are regarded
as conforming to a 10-dimensional joint distribution Q, while the second set of
samples that are drawn in an arbitrary 50-day window approximately after the
event happened is regarded as following distribution P .

The MN of Q encodes the original conditional independence of frequencies
between 10 keywords, and the underlying MN of P has changed since an event
occurred. Thus, unveiling a change in MNs between P andQmay recover popular
topic trends on Twitter in terms of the dependency among keywords.
6 http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
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Fig. 6. Change graphs captured by the proposed KLIEP method (top) and the Flasso
method (bottom). The date range beneath each figure indicates when P was sampled,
while Q is fixed to dates from February 1st to April 17th. Notable structures shared by
the graph of both methods are surrounded by the green dashed lines. Unique structures
that only appear in the graph of the proposed KLIEP method are surrounded by the
red dashed lines.

The detected change graphs (i.e. the graphs with only detected changing
edges) on 10 keywords are illustrated in Figure 6. The edges are selected at a
certain value of λ2 indicated by the maximal CVLL. Since the edge set that
is picked by CVLL may not be sparse in general, we sparsify the graph based
on the permutation test as follows: we randomly shuffle the samples between P
and Q and repeatedly run change detection algorithms for 100 times; then we
observe detected edges by CVLL. Finally, we select the edges that are detected
using the original non-shuffled dataset and remove those that were detected in
the shuffled datasets for more than 5 times. In Figure 6, we plot detected change
graphs which are generated using samples of P starting from April 17th, July
6th, and July 26th.

The initial explosion happened on April 20th, 2010. Both methods dis-
cover dependency changes between keywords. Generally speaking, KLIEP cap-
tures more conditional independence changes between keywords than the Flasso
method, especially when comparing Figure 6(c) and Figure 6(f). At the first two
stages (Figures 6(a), 6(b), 6(d) and 6(e)), the keyword “Obama” is very well
connected with other keywords in the results given by both methods. Indeed, at
the early development of this event, he lies in the center of the news stories, and
his media exposure peaks after his visit to the Louisiana coast (May 2nd, May
28nd, and June 5th) and his meeting with BP CEO Tony Hayward on June 16th.
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Notably, both methods highlight the “gulf-obama-coast” triangle in Figures 6(a)
and 6(d) and the “bp-obama-hayward” chain in Figures 6(b) and 6(e).

However, there are some important differences worth mentioning. First, the
Flasso method misses the “transocean-hayward-obama” triangle in Figures 6(d)
and 6(e). Transocean is the contracted operator in the Deepwater Horizon plat-
form, where the initial explosion happened. On Figure 6(c), The chain “bp-spill-
oil” may indicate that the phrase “bp spill” or “oil spill” has been publicly rec-
ognized by the Twitter community since then, while the “hayward-bp-mexico”
triangle, although relatively weak, may link to the event that Hayward steped
down from the CEO position on July 27th.

6 Conclusion and Future Work

In this paper, we proposed a direct approach to learning sparse changes in MNs
by density ratio estimation. Rather than fitting two MNs separately to data and
comparing them to detect a change, we estimated the ratio of two MNs where
changes can be naturally encoded as sparsity patterns in estimated parameters.
Through experiments on artificial and real-world datasets, we demonstrated the
usefulness of the proposed method.

Compared with the conventional two-stage MLE approach, a notable advan-
tage of our method is that the normalization term in the density ratio model
can be approximated by a sample average without sampling. This considerably
loosens the restriction on applicable distributions. Moreover, thanks to its direct
modeling nature with density ratios, the number of parameters is halved.

We only considered MNs with pairwise factors in this paper. However, such
a model may be misspecified when higher order interactions exist. For example,
combination with the idea hierarchical log-linear model presented in [16] may
lead to a promising solution to this problem, which will be investigated in our
future work.
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