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Abstract— Understanding activities of people in a monitored
environment is a topic of active research, motivated by ap-
plications requiring context-awareness. Inferring future agent
motion is useful not only for improving tracking accuracy, but
also for planning in an interactive motion task. Despite rapid
advances in the area of activity forecasting, many state-of-the-art
methods are still cumbersome for use in realistic robots. This
is due to the requirement of having good semantic scene and
map labelling, as well as assumptions made regarding possible
goals and types of motion. Many emerging applications require
robots with modest sensory and computational ability to robustly
perform such activity forecasting in high density and dynamic
environments. We address this by combining a novel multi-camera
tracking method, efficient multi-resolution representations of state
and a standard Inverse Reinforcement Learning (IRL) technique,
to demonstrate performance that is better than the state-of-the-art
in the literature. In this framework, the IRL method uses agent
trajectories from a distributed tracker and estimates a reward
function within a Markov Decision Process (MDP) model. This
reward function can then be used to estimate the agent’s motion
in future novel task instances. We present empirical experiments
using data gathered in our own lab and external corpora (VIRAT),
based on which we find that our algorithm is not only efficiently
implementable on a resource constrained platform but is also
competitive in terms of accuracy with state-of-the-art alternatives
(e.g., up to 20% better than the results reported in [1]).

I. INTRODUCTION

Tracking multiple agents in a dense environment, be it
humans or robots, is a challenging problem. A multitude of
solutions exist for dealing with its different facets, such as
overcoming occlusion or motion prediction. Inferring future
motion of agents is useful not only for improving tracking
accuracy, but also for planning in interactive tasks. Inferring
future actions of an agent is known as activity forecasting.

Over the past decade, many novel methods have been de-
veloped for activity forecasting. These methods include those
based on classifiers with structured outputs, which directly
discriminate at the level of trajectories albeit with richer
representations of the same. Another approach, called Inverse
Reinforcement Learning, posits that the motion may be well
described as being generated by optimisation within an MDP
model, so that learning the motion is the same as inferring
the implicit reward function being optimised. In order to
keep these algorithms efficient, one often makes assumptions,
such as that the scene and environment have been labelled
in a semantically meaningful way (thus reducing the sample
complexity) or that the space of possible motions is well
parametrised and understood.

In many realistic robotics domains, we must apply these
methods with a less clear understanding of potential goals
(perhaps because the environment is new to the robot, such
as in a rescue or rapidly changing construction environment),
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Fig. 1. Activity forecasting using the proposed framework based on IRL.
Raw data are acquired from a set of Kinects and then processed by the
PTracking algorithm. The agent trajectories in output are subsequently used
by an IRL method to generate the agent’s set of possible future activities.

including in dynamic environments [2]. We address this
setting by combining a distributed multi-camera tracking
method and a multi-resolution representation of the envi-
ronment, with a standard IRL method. This paper uses a
relatively standard IRL method, allowing for the possibility
that more sophisticated alternatives could be employed in
future, within the overall proposed framework. Our focus is
on demonstrating that a complete pipeline including this IRL
method can be implemented in a resource constrained real-
time setting, to solve the challenging problem of predicting
agent’s future motion.

Contributions. We propose an integrated framework (Fig.
1) that brings together an IRL technique with distributed
tracking and multi-resolution state representation, such that it
(1) does not rely on semantic scene labelling before activity
forecasting, (2) incrementally updates the IRL model over
time as new data becomes available and (3) makes use of
non-uniform grids for state representation, making the entire
framework linearly scalable with respect to the size of the en-
vironment. We use PTracking, our distributed multi-camera
multiple object tracker, as the first component [3]–[5]. Local
and global agent position, as well as velocity estimates,
are updated via online tracking, providing trajectories that
are then used within an IRL algorithm. This algorithm is
fairly standard, and taken directly from the literature, in
this first instantiation of our framework. While this allows
us to implicitly consider sensor noise and false positives,
we do recognise that a more elaborate IRL method that
can target a Partially Observable Markov Decision Process
motion model - something that is still hard to do and certainly
not yet efficient for robot implementation - could be a useful
future step. The output of this process is a set of reward
functions - one for each goal (see Section IV-B) - per agent,



Fig. 2. The functional architecture of the PTracking approach. Each node performs a local and a global estimation of the observed situation. For the
global estimation, local information collected from other nodes (black arrows) are used.

describing its goal-oriented navigation policy across space.
These reward functions represent the agent’s set of possible
future activities, forecasted or chosen from a probability
distribution function via comparison with real-time observed
agent behaviour. Additionally, the proposed approach allows
us to perform anomaly detection by adopting a flexible notion
of trajectory distance, such as the Fréchet distance which
allows for graceful degradation even when dealing only with
small fragments of the overall motion.

We show that our method infers agent goals accurately in
a varied set of environments. We present a comparison of
our framework against state-of-the-art alternatives from the
literature. We use as baselines, a method of Ziebart et al. [1],
the Maximum Entropy Markov Model (MEMM) and a ran-
dom walk method. A quantitative evaluation using multiple
data sets shows how our approach performs competitively.

II. RELATED WORK

The problem of understanding activities of people in a
monitored environment is becoming increasingly well stud-
ied by researchers in multiple communities. The focus is of-
ten on two types of challenges - human activity classification
and activity recognition. Human activity classification is an
important yet difficult problem in computer vision [6], whose
aim is to determine what people are doing, given a set of
observations. It finds wide applicability in video surveillance
[7], human-computer interfaces [8], sport video analysis [9]
and content-based video retrieval [10].

Activity recognition, on the other hand, has as its goal the
estimation of a belief-state from observations over time. It
follows then that, activity recognition is a temporal classifi-
cation problem; an agent must generate a sequence of labels,
identifying the roles or behaviours of the other agents, given
a sequence of observations [11]. Typically methods address-
ing both activity classification [12] and activity recognition
[11] require a substantial amount of captured data during the
training phase to generate useful models, a requirement that
is not satisfied in many realistic applications. Additionally,
even when such data is available, such frameworks may not
be able to adapt the learnt model to changes in the monitored

environment or, as is needed in some cases, adapt to the
dynamics of the environment.

The focus of our work is on trajectory-based human activ-
ity analysis. As a proof-of-concept, we propose a Trajectory-
Based Inverse Reinforcement Learning method for estimating
future actions of people (or of robots, vehicles and other
agents) from noisy visual input. Similar work has been
carried out with success by Ziebart et al. [1], who report
on activity forecasting by combining an IRL algorithm with
a semantic representation of the scene. It is not clear how
that technique would deal with unstructured, and in particular
not previously labelled, environments.

III. TRACKING AND DATA ASSOCIATION

The problem of tracking multiple objects by using multiple
sensors can be formalised as follows. Let O = {o1, . . . , on}
be the set of all moving objects, each one having a different
identity, and S = {s1, . . . , sS} be the set of arbitrarily
fixed sensors, each one having limited knowledge about the
environment (i.e., each camera can monitor only part of the
scene). Moving objects are detected by a background sub-
traction algorithm and the number of objects n is unknown
and can change over time. The set of measurements about
the objects in the field-of-view of a camera s ∈ S at a
time t is denoted by zs,t = {z(1)s,t , . . . , z

(l)
s,t}, l ∈ Z, where

a measurement z(i)s,t represents the Cartesian position, width
and height of the moving object and it can be either a real
object present in the environment or a false positive. The set
of all the measurements gathered by all cameras at time t
is denoted by zS,t = {zs,t | s ∈ S}. The history in time of
all the measurements coming from all cameras is defined as
zS,1:t = {zS,j : 1 ≤ j ≤ t}. It is worth noticing that, we do
not assume the measurements generated by the cameras to
be synchronised.

The goal is to determine an estimation of the positions
xs,t = {x(1)s,t , . . . , x

(v)
s,t }, v ∈ Z, for all the objects in the

scene at time t in a distributed fashion - i.e., exploiting all
the available sensors. In order to achieve this goal, a possible
solution is to use the Bayesian Recursive Estimation, defined
as follows:



p(xs,t|zS,1:t) =
p(zS,t|xs,t)p(xs,t|zS,1:t−1)∫
p(zS,t|xs,t)p(xs,t|zS,1:t−1)dxs,t

(1)

p(xs,t|zS,1:t−1) =

∫
p(xs,t|xs,t−1)p(xs,t−1|zS,1:t−1)dxs,t−1 (2)

Eq. (1) and (2) represent a global recursive update that
can be computed if and only if complete knowledge about
the environment is available - i.e., p(zS,t |xs,t). Since this
is not the case, we approximate the above exact optimal
Bayesian computation by means of a Distributed Particle
Filter-based algorithm (Algorithm 1). In particular, we extend
to a multi-sensor scenario the PTracking method, which is
an open-source tracking algorithm based on a Distributed
Multi-Clustered Particle Filtering.

The estimation of the positions xs,t is given by the
vectors (Is,t,Λs,t,M s,t,Σs,t) containing information about
the identity (I), the weight (Λ), the mean (M ) and the
standard deviation (Σ) of each object, represented as a
Gaussian Mixture Model (GMM). The size of the vectors
can vary during the execution of the tracking algorithm,
depending on the number of detected objects.

The estimation process is made of three main steps:
(1) the prediction step, which computes the evolution of
the estimations xs,t given the observations zs,t provided
by the sensors, (2) the clustering step, which groups the
estimations determining their GMMs parameters and (3) the
data association step, which assigns each observation to an
existing track by considering the history of all existing tracks.

Prediction. The particle filter uses an initial guessed
distribution, based on a transition state model. Then, using
the previous state xs,t−1, the transition model, given by the
measurements zs,t, is applied. From this guessed distribu-
tion, a set of samples is drawn and weighted exploiting the
current observation zs,t. Finally, the Sampling Importance
Resampling (SIR) principle is used to re-sample the particles,
which are then clustered to determine the parameters of the
final GMM model.

Clustering. A novel clustering algorithm, called KCluster-
ize, is used for the clustering phase. KClusterize is designed
for fulfilling the following requirements: (1) the number of
objects to detect is not known a priori, (2) low computational
load is needed for real-time applications and (3) each cluster
has to reflect a Gaussian distribution. First, the particles are
grouped into clusters. Then, a validation step is applied to
verify that each cluster actually represents a Gaussian distri-
bution. All the non-Gaussian clusters are split (if possible) in
Gaussian clusters. In order to check that a cluster represents
a Gaussian distribution, we first draw - for each cluster - a
Gaussian distribution centered on the cluster centroid with
σ = 1. Afterwards, we compare the set of points contained
into each cluster with the corresponding ones generated
from the cluster centroid by using the Euclidean distance.
It is important to note that, the final number of Gaussian
distribution components provided as output can be different
from the one found during the first step. Finally, the obtained
clusters form a GMM set (λs,t,µs,t,σs,t) representing the
estimations performed by the sensor s at time t.

Algorithm 1: PTracking
Input: perceptions zs,t, local track numbers is,t−1, global

track numbers Is,t−1

Data: set of local particles ξ̃s,t, set of global particles ξ̃S′,t,
local GMM set L, global GMM set G

Output: global estimations xs,t = (Is,t,Λs,t,Ms,t,Σs,t)

1 begin
2 ξ̃s,t ∼ πt(xs,t|xs,t−1, zs,t)

3 Re-sample by using the SIR principle

4 L = KClusterize(ξ̃s,t)

5 (is,t,λs,t,µs,t,σs,t) = DataAssociation(L, is,t−1)

6 Communicate belief (is,t,λs,t,µs,t,σs,t) to other agents
7 end
8 begin
9 Collect LS′ from a subset S ′ ⊆ S of cameras within a ∆t

10 ξ̃S′,t ∼ π̃ =
∑

s∈S′ λs,tN (µs,t,σs,t)

11 Re-sample by using the SIR principle

12 G = KClusterize(ξ̃S′,t)

13 (Is,t,Λs,t,Ms,t,Σs,t) = DataAssociation(G, Is,t−1)
14 end

As a difference with other clustering methods (e.g., k-
means, Hierarchical Clustering or QT-Clustering), KClus-
terize does not require to know in advance the number of
clusters, has a linear complexity, and all the obtained clusters
reflect a Gaussian distribution.

Data association. An identity (i.e., a track number) has
to be assigned to each object, by associating the new
observations to the existing tracks. This is the crucial step
for any tracking algorithm. The direction, the velocity and
the position of the objects are the features involved in
the association algorithm. We consider two moving tracked
objects having the same direction if the angle between their
trajectories is less than 10◦.

The data association step is further complicated by com-
plete and partial occlusions, which can occur when objects
are aligned with respect to the camera view or when they are
close to each other. Our solution is to consider the collapsing
tracks as a group, instead of tracking them separately. When
two or more tracks have their bounding boxes moving closer
to each other, the tracker saves their color histograms and
starts considering them as a group - the histograms are used
as models for re-identifying the objects when the occlusion
phase is over. A group evolves taking into account both the
estimated trajectory and the observations coming from the
detector. When an occluded object becomes visible again,
the stored histograms are used to re-assign the correct iden-
tification number, belonging to the corresponding previously
registered track.

IV. ACTIVITY FORECASTING FROM NOISY
VISUAL OBSERVATIONS

Our objective in activity forecasting is the task of esti-
mating future actions of moving agents from noisy visual



Fig. 3. Set of non-uniform grid representation of the environment. Dynamic
regions (in red) are mapped with a set of dense grids, while the ones having
few interactions (in green) are represented with sparse and small grids. The
goal is highlighted by a blue cell of the grid.

input. We address this using an IRL procedure which works
on the output of the PTracking approach. In a certain sense,
the problem formulation ought to acknowledge that states
are not known exactly, instead being estimated through
a visual tracking process. So, the temporal modelling of
activity may perhaps be described in the language of partially
observable models. However, such models are rarely easy
to work with, especially so when the goal is efficient real-
time implementation on resource constrained robots. So,
we proceed by making an assumption akin to ‘certainty
equivalence’, modelling the temporal dynamics in terms of
an MDP, which is fed the output of the PTracking algorithm
which acts as state estimator. To the extent that the tracker
maintains a fully probabilistic representation of objects and
their motion and that the set of possible goals estimated by
the IRL method can be incrementally grown, this is a useful
compromise that could be further relaxed in future work.

A finite discrete-time MDP is a tuple (S,A,Psa,R, γ)
where: S is a finite set of N states, A = {a1, a2, . . . , ak}
is a set of k actions (i.e., North, West, South, East), Psa(·)
are the state transition probabilities upon taking action a in
a state s, R : S × A 7→ R is the reinforcement function,
bounded in absolute value by Rmax and γ ∈ [0, 1) is the
discount factor. We adopt a standard IRL algorithm, due to
Russel et al. [13], in this work. Their work makes use of the
policy optimality theorem to derive a linear programming
formulation of IRL as follows:

min
∑N
i=1−xi + λ(r+i − r

−
i )

s.t.

xi ≤ (Pa∗ −Pa)(I− γPa∗)
−1R

∀ a ∈ A, i ∈ {1, . . . , N}
xi ≥ 0 i ∈ {1, . . . , N}

ri = r+i + r−i i ∈ {1, . . . , N}
|Ri| ≤ Rmax i ∈ {1, . . . , N}

(3)

Fig. 4. Trajectory-based model learnt by solving the IRL problem defined
in Eq. (3). The goal is represented by the function’s global maximum.

Here, Pa denotes a NxN matrix in which element (i, j)
gives the probability of transitioning to state j upon taking
action a in state i, Pa∗ denotes the current optimal policy,
obtained by combining the optimal policy at the previous
step and the output of the PTracking algorithm. In Eq. (3),
the non-linear 1-norm operator ‖R‖1 of the original problem
stated by Russel et al. has been linearised by adding two
more variables r+i and r−i for every ri variable with i ∈
{1, . . . , N}. The non-linear operator mina∈A, instead, has
been linearised by introducing N new variables xi where
i ∈ {1, . . . , N}. The linear programming problem defined
in Eq. (3) can be easily and efficiently solved using standard
techniques, such as the Simplex algorithm.

A. Inverse Reinforcement Learning Model

The result of solving the problem in Eq. (3) is the reward
function (for each goal), that captures both interactions and
movements of objects in the monitored environment. Future
actions may be forecasted and suspicious trajectories (i.e.,
anomalies from the model obtained via IRL) recognised in
advance. Since the problem defined by Eq. (3) is a discrete
optimisation problem, we need to discretise continuous vi-
sual observations coming from the PTracking algorithm (see
Section III). To this end, we propose a representation of the
monitored environment based on a set of non-uniform grids,
thus allowing for an effective and efficient representation
of the monitored environment. In this manner, portions of
the environment in which there are multiple interactions
are represented by a set of dense grids, while parts of
the environment that do not have particular interactions are
described by sparse grids.

Grid update. First, a uniform grid mapping the monitored
environment is constructed. Then, such a grid is periodically
updated based on the information provided by the PTracking
algorithm. High density locations are described richly by
increasing the granularity of the grid mapping around that
location, whereas parts of the environment having fewer
interactions are described sparsely. By adopting the non-
uniform grid representation, the proposed approach linearly
scales with respect to the size of the environment as well
as the computational resources required for solving the
optimisation problem. An example of the non-uniform grid



(a) Informatics Forum (b) HRI Laboratory (c) VIRAT

Fig. 5. Left: very dynamic environment representing the main entrance to our Informatics Forum. Center: a simulation of a small home environment in
our HRI laboratory with humans and robots. Right: VIRAT data set being also used by Ziebart et al. [1].

representation is depicted in Fig. 3, while a possible IRL
model associated with it is shown in Fig. 4, in which the
end goal is represented by the function’s global maximum.

B. Activity Forecasting and Anomaly Detection

Our approach can be summarised in terms of the following
key steps. The output of the optimisation process of Eq (3)
is a set of G reward function models, one for each goal,
MG

s per agent s, where s ∈ S. This allows us to generate a
policy πGi

s for each goal Gi ∈ G per agent s. We can now
build likelihoods over the set of goals G as follows.

Observed trajectory extraction. We gather object esti-
mates from the PTracking algorithm considering an arbitrary
temporal window (5s for our experimental evaluation). Hav-
ing acquired a set of trajectories U , we ground each trajectory
u ∈ U in every policy πGs .

Policy comparison. At this stage, we get the best fitting
policy by comparing the target trajectory against a set of
trajectories drawn from potential optimal policies. We do
this using a combination of Fréchet distance and cosine
similarity, to allow for the possibility that the target trajectory
is merely a fragment of the overall optimal policy so that this
notion of geometric similarity is one that better captures our
notion of activity membership.

Goal prediction. We are finally able to predict in real-
time the goal toward which each moving object is likely to
be headed, by executing the policy that best matches the
movement pattern of every object. It could happen that a
trajectory u ∈ U does not match any model. This can happen
for two main reasons. The first is that the trajectory fragment
u is anomalous and refers to a suspicious activity pattern.
The second, which we cannot always rule out, is that there
may be a multitude of optimal policies that represent the
activity class or that the environment has changed leading to
new types of motion. The latter, however, can be recognised
by analysing the foreground model provided by the detector
algorithm because it will hugely differ from the background
model learnt so far. All learnt models are discarded until new
models are available.

Goal sampling. In the general case, goals may not be
defined ahead of time. In a setting such as a home environ-
ment, goals could be associated with routine activity and,

say, tools or objects frequently used by a human user. Here,
static points of interest can be conjectured from a relatively
inexpensive scene analysis, providing much needed contex-
tual structure of the environment. However, in a dynamic
scenario like an airport, train station or even a fast changing
construction or rescue site, this process may be infeasible
and the set of potential goals identified from surface level
analysis may be very large. This problem is compounded
by the lack of clear and persistently identifiable structure
in these rapidly changing environments. In these cases, we
could generate potential goals by analysing the information
provided by a tracking system (i.e., analysing trajectories of
all moving agents), and work with respect to this set.

V. EXPERIMENTAL EVALUATION

The framework has been tested in three different environ-
ments: the main entrance to our Informatics Forum, our HRI
laboratory and the VIRAT data set (Fig. 5). A quantitative
comparison, depicted in Fig. 6, demonstrates how our pro-
posed framework outperforms alternatives in terms of NLL -
Eq. (4), including a state-of-the-art approach of Ziebart et al.,
a Maximum Entropy Markov Model algorithm and a random
walk baseline procedure.

Comparison metric. In each experiment, we have one
demonstrated path, a sequence of states st and actions at,
generated by all agents for a specific configuration of a scene.
We compare the demonstrated path with the probabilistic
distribution over paths generated by our IRL algorithm using
the Negative Log-Loss (NLL) of a trajectory, as in [1], defined
as follows:

NLL(s) = Eπ(a | s)

[
− log

∏
t
π(at | st)

]
(4)

The NLL represents the expectation of the log-likelihood of
a trajectory s under a policy π(a | s). This metric measures
the probability of drawing the demonstrated trajectory from
the learnt distribution over all possible trajectories.

Experimental setup. We compare our framework against
the method proposed by Ziebart et al. in [1], a Maximum
Entropy Markov Model based algorithm and a random walk
baseline procedure in all scenarios. We use the same input
data and the same state representation for the random walk
baseline, the MEMM method and the proposed approach in
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all the chosen scenarios and for the Ziebart et al. approach
on the HRI laboratory and Informatics Forum scenarios. We
report, instead, the result taken from the corresponding paper
of Ziebart et al. for the VIRAT data set.

HRI laboratory. This scenario simulates a small home
environment (up to 5 moving agents) in which points of
interest are extracted by analysing the tracking data. Robot
and people’s position and velocity estimates are provided
by the distributed tracker using two overhead cameras,
facing opposite directions but with overlapping fields of
view over the environment. In high density scenarios, the
activity forecasting task is made challenging by the limited
collision-free space in proportion to the physical size of the
agents involved. Such a constraint could force an agent to
dramatically change bearing to avoid a dynamic obstacle
while still approaching one’s target goal.

Informatics forum. We evaluate our approach according
to its performance in real-time tracking and activity fore-
casting in a natural human environment (up to 25 moving
agents). This is challenging due to numerous aspects, such
as the presence of agents with changing intentions, or
agents that are navigating with other latent constraints (e.g.,
maintaining a spatial formation with respect to other agents).
For this scenario, possible goals have been conjectured by
analysing the information provided by the tracking algorithm.
Our results show that, our activity forecasting algorithm
provides accurate beliefs over the possible set of goals.

VIRAT. The data set is designed to be realistic, natural
and challenging for video surveillance domains in terms of its
resolution, background clutter, diversity in scenes and human
activity/event categories. In order to fairly compare our IRL
approach against the state-of-the-art method of Ziebart et al.,
we choose goals as done in [1].

Discussion. In this work, we have access to trajectories of
normal behaviours that are used for the initial generation of
an MDP model through IRL, for each agent. Such a model
describes the preferred paths of an agent moving toward a
certain goal. The generated model is independent in terms of
agent’s velocity, hence a prediction of future agent motions,
having an arbitrary velocity with respect to the observed
one, is still possible by applying the IRL model. In the case
of dramatic changes in the environment dynamics, the IRL
model becomes essentially unusable due to this considerable
variation in the structure of the environment. Therefore, an

updated IRL model, taking into account these new changes,
is needed before forecasting agent intentions. This suggests
that the foregoing description is to be viewed as a template
of a framework that can be further enhanced with lifelong
and continual learning towards efficient activity forecasting
for a practical social robot.

VI. CONCLUSIONS

We presented a novel framework for estimating the future
movement intentions of goal-oriented agents in an inter-
active multi-agent setting. We achieve this by combining
Inverse Reinforcement Learning with a Markov Decision
Process model of motion, and a distributed multi-camera
tracking algorithm. The resulting reward functions represent
the agent’s set of possible future activities, on which forecasts
are made through a probability distribution function via
comparison with real-time observed agent behaviour. This
method is evaluated for accuracy and robustness in dense and
dynamic environments with autonomously planning robots
and pedestrians. Our results show that this is an effective and
computationally efficient alternative to models that depend
either on offline training of pedestrian trajectory models or
on physical scene features and prior knowledge of goals.
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