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Abstract. We propose a model for learning representations of time de-

pendent data with a population of spiking neurons. Encoding is based on

a standard spiking neuron model, and the spike timings of the neurons

represent the stimulus. Learning is based on the sole principle of max-

imization of representation accuracy: the stimulus can be decoded from

the spike timings with minimum error. Since the encoding is causal, we

propose two different representation strategies: The spike timings repre-

sent the stimulus either in a predictive manner or by reconstructing past

input. We apply the model to speech data and discuss differences between

the emergent representations.

1 Introduction
How are sensory stimuli represented in the neural system? How is the neural
system adapted to the structure in natural stimuli? A theoretical approach to
these questions for the early stages of the neural system consists in modeling
neural representation by a data representation loop: A neural encoding system
transforms the stimuli into neural activity, and a hypothetical decoder indicates
how to “read” the input stimuli from the activity.

Previous work has often used rather abstract models for the neural encoding.
Linear transforms [1], or transforms that issue from statistical estimation the-
ory [2], or mathematically efficient algorithms for function decomposition such
as matching pursuit were used [3, 4]. The transforms were adapted to the stimuli
space in order to maximize representation accuracy alone [3, 4], or, additionally,
sparseness of the neural response [2] or its temporal coherence [1].

Recently, we have proposed a data representation method where the encoding
transform is given by a standard spiking neuron model, and decoding is based
on the spike timings alone [5]. This single neuron data representation method
was applied to artificial stimuli.

In this paper, we propose data representation by means of a population of
spiking neurons. The learning principle is representation accuracy: the encoding
of the stimulus is such that a hypothetical homunculus can accurately decode the
stimulus from the spike timings (see e.g [6] for the concept of the homunculus).
Further, we distinguish between decoding as reconstruction of the input, and
decoding as prediction, see Figure 1.

∗This work was funded by the Academy of Finland (NEURO program and the Algodan
Centre of Excellence)
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Fig. 1: Proposed data representation method in this paper: The input x(t) is
represented by the spike timings tfm of a population of spiking neurons. Spike
generation for each neuron m is based on the neuron model SRM0 [7]. Because
of the explicit presence of time and the causality of the spike generation process,
we can distinguish between two different decoding strategies: (a) reconstruction
of the input at time t from spikes which come later (setting Tb = 0 and Ta = Td,
where Td is the reconstruction delay) or (b) prediction of the input at time t
from spikes which occur beforehand (setting Ta = 0 and Tb = Tp, where Tp

is the prediction horizon). For both cases, we derive here learning rules for
the encoding filters wm and the decoding filters hm. Note: to simplify the
presentation, the figure has been drawn for scalar data as e.g. speech.

2 Model for the encoder and decoder

For sake of generality, we present the theory for vector-valued input x(t) so
that the spike timings of the neuron population may represent multiple input
channels.

The input, which is time dependent, is encoded into spike timings tfm based
on the SRM0 neuron model [7] : The equation for the membrane voltage um(t)
of neuron m is

um(t) = η0 exp

[

−
t− t̂m

τ

]

︸ ︷︷ ︸

ur
m(t)

+

∫ min{t,Tw}

0

wm(s)T x(t− s)ds

︸ ︷︷ ︸

ui
m(t)

+un
m(t), (1)

where t̂m is the last spike timing of neuron m before time t, and wm(s) the
unknown causal encoding filter, to be learned, of length Tw. The remaining
constants are the refractory time constant τ of the suppressive refractory voltage
ur

m(t) and the reset amount η0 < 0. Convolution and scalar product of the input
x(t) with the encoding filter wm(s) defines the voltage ui

m(t). The term un
m(t)

models voltage that is not related to the input. Spike timings {tfm; f = 1, . . .}
are defined by um(tfm) = θ, where θ > 0 is a fixed threshold. After a spike, the
refractory voltage ur

m(t) leads to a reset and suppression of the voltage.
The approximation x̂(t) is obtained from the spike timings of a neuron pop-



ulation of size M as sum of partial approximations x̂m(t),

x̂(t) =
M∑

m=1

x̂m(t) x̂m(t) =
∑

f :t−Tb≤t
f
m≤t+Ta

hm(t− tfm), (2)

For the reconstruction-based representation, we set Ta = Td and Tb = 0, which
means that a data point is reconstructed from spikes that come later. This
introduces a delay Td in the approximation. For the prediction-based represen-
tation, we set Ta = 0 and Tb = Tp, where Tp is the prediction horizon. Here, a
data point is predicted from spikes which occur beforehand. The vector valued
decoding filters hm(s) are unknown and to be learned. They are acausal and of
length Td for the reconstruction-based representation, while they are causal and
of length Tp for the prediction-based representation.

3 Learning rules

Cost functional. We measure the accuracy of the representation via

J (h1(s), . . . ,hM (s),w1(s), . . . ,wM (s)) =
1

2T

∫ T

0

||x̂(t)− x(t)||2dt, (3)

where the approximation x̂(t) was defined in Equation (2). Iterative minimiza-
tion of J provides a learning rule for the vector valued encoding filters wm(s)
and decoding filters hm(s). We work with a stochastic gradient descent algo-
rithm so that finding the functional derivatives δJ/δwm(s) and δJ/δhm(s) leads
to the learning rules.

Learning encoding filters wm. For δJ/δwm(s), we note that there is no
coupling among the membrane voltages um(t) in Equation (1). Hence, the spike

timings tfm do not depend on other spike timings tfi (i 6= m). That is why the
functional derivative δJ/δwm(s) can be calculated as in the single neuron case.
Generalizing the results from [5] to the vector-valued case, we have

δJ

δwm(s)
= −

1

T

∑

f

ēm(tfm)ym(s, f), (4)

where

ēm(tfm) =

∫ tf
m+Tb

t
f
m−Ta

e(t)T ḣm(t− tfm)dt (5)

for e(t) = x̂(t)− x(t). The term ym(s, f) is calculated via

ym(s, f) =
−x(tfm − s)

u̇m(tfm)
+

−η0

τu̇m(tfm)
exp

[

−
tfm − tf−1

m

τ

]

ym(s, f − 1). (6)

The initial values in this recursion are ym(s, 0) = 0. Using the stochastic gradi-
ent for Equation (4), we obtain the following online rule: If neuron m emits at
tfm its f-th spike, update wm(s) by

wm(s)← wm(s) + µw ēm(tfm)ym(s, f), (7)



where µw is the step size.

Learning decoding filters hm. Straightforward calculation of δJ/δhm(s) leads
to

δJ

δhm(s)
=

1

T

∑

f

1[−Ta,Tb](s)1[−t
f
m,T−t

f
m](s)e(s + tfm), (8)

where 1[−Ta,Tb](s) is the indicator function that is one if the argument s is within
the interval [−Ta, Tb], and zero else. Using the stochastic gradient, the following
least mean square like learning rule is obtained

hm(s)← hm(s)− µhe(s + tfm)1[−Ta,Tb](s)1[−t
f
m,T−t

f
m](s) (9)

The step size is given by µh, and the update takes place after each spike tfm.

4 Simulations with speech data

We learned a reconstruction-based and a prediction-based representation of
speech1 for a population of M = 15 neurons. The input x(t) is here one-
dimensional, and denoted by x(t). The accuracy of the representation is mea-
sured by the Signal to Noise Ratio (SNR = 10 log10 ||x||

2/||e||2.)
In the reconstruction-based representation scheme, speech segments are rep-

resented with an average accuracy of 13.2dB (std 2.17dB) by the population of
spiking neurons. In the prediction-based representation scheme, the speech seg-
ments are represented with an average accuracy of 4.5dB (std 1.2dB). Figure 2
shows selected examples to illustrate the representation performance for the two
cases. It can be seen that speech segments that have small values over a long
time interval are hard to represent. Further, the examples show that important
parts of the stimuli can be predicted from the spike timings.

Not all the neurons contribute equally to the representation of the stimuli.
For each neuron, one can calculate how much the total error increases when
the neuron is omitted from the representation. The neurons can be ordered
according to this increase of the error.

In Figures 3a to 3c, we show the encoding and decoding filters of the three
most contributing neurons for the reconstruction-based representation scheme:
For each neuron m, we see that the decoding filter hm(s) and the time inverted
encoding filter wm(−s) are similarly shaped. This means that the filtering pro-
cess is here much like matching feature templates to the input, and the firing
event of each neuron encodes the presence of the feature in the input.

In Figures 3d to 3f, we show the encoding and decoding filters of the three
most contributing neurons for the prediction-based representation scheme. Here,
the encoding and decoding filters do not show a similar shape. However, each
decoding filter hm(s) seems to be a continuation of the corresponding wm(−s).
The encoding filters serve here to compute an appropriate guess about the future
input, and the guess is expressed by the decoding filters. Neuron 2 in Figure 3d

1Data is freely available for download at http://festvox.org/dbs/dbs kdt.html.
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Fig. 2: Examples for average approximation performance.

detects a fast growth of the input stimulus (much like taking a derivative), and
its firing represents further growth of the future input with a subsequent decay
to the baseline. Neuron 15 in Figure 3f works similarly, but it is additionally
tuned to oscillations in the input. Neuron 3 in Figure 3e detects the end of
bumps in the stimulus, and represents the guess that the future input goes down
before returning back to positive values.

5 Conclusions

We proposed here a model for the representation of time dependent data with
a population of spiking neurons. Specifically, we distinguished between recon-
struction and prediction-based representations. We derived learning rules for
both representation strategies and applied them to natural speech data. The
two representation strategies result in encoder-decoder pairs with distinct prop-
erties: For the reconstruction-based representation, the encoder-decoder pairs
decompose the input into feature templates while for the prediction-based repre-
sentation, the emergent encoder-decoder pairs compute a guess about the future
input.

Previous attempts to learn spike timings-based representations include [3, 4].
A major difference to their method is the encoding because in our method,
encoding is based on neurons that are modeled with a standard spiking neuron
model. We note further that because of the causality of the encoding process, we
were able to make the difference between reconstruction-based and prediction-
based representation strategies, which cannot be done with the approach of [3, 4].
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