
1 

 

An extended cohesive damage model with a length scale in fracture analysis of 

adhesively bonded joints  

 

J Chen 

Faculty of Technology, University of Portsmouth  

Portsmouth PO1 3AH, UK 

Tel: 02392842427 

Email: jiye.chen@port.ac.uk 

 

Abstract 

This paper introduced an extended cohesive damage model (ECDM) in fracture analysis of 

adhesively bonded joints. A length scale of pore size at joints was introduced in the accumulation of 

damages in the proposed ECDM. This micro damage scale based model was used to build up an 

extended cohesive finite element modelling of adhesively bonded joints at a macro level. An 

adhesive damage law (ADL) was used to simulate debonding at interfaces. A cohesive damage law 

(CDL) was proposed to simulate internal cohesive cracks. These two micro damage laws firstly 

considered the length scale influence from the interfacial pores and internal particles. These ECDM 

models were used to deal with the stress discontinue problems at interfaces or internal materials. As 

an example, an adhesively bonded bone-cement joint was investigated in this paper. The failure 

mechanism of bone-cement joint under tension, with different bonding qualities, was studied using 

the developed ECDM models. This investigation indicated that the effect of bonding quality on the 

loading capacity of bone-cement joint can be studied properly by the ECDM with a length scale of 

interfacial pore size. This ECDM based damage modelling technique supplied an effective and 

efficient approach in cohesive and adhesive damage analysis.    
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Nomenclature 

 

ECDM: Extended cohesive damage model 

ABJ: Adhesively bonded joints  

CZM: Cohesive zone model  

XFEM: Extended finite element method 

ADL: Adhesive damage law 

CDL: Cohesive damage law  

U: Enriched displacement field  

: A standard basis function ψj is the enriched function 

N: Shape function as the standard 

Hd: Heaveside function  

a:Standard degrees of freedom 

b: Enriched degrees of freedom 

: Volume of body  

σ: Cauchy stress tensor 
s

u : Standard part of displacement 
e

u : Enriched part of displacement 

B: Matrix of spatial derivatives of N in the geometric equation 

D: Tangent material stiffness matrix 

Kd: Tangent interface stiffness matrix 

fext and fint are the external and internal forces 

: Pore size at interface between adhesives and adherents 

K0(): Initial interface stiffness  

a(): Interface strength 

0(): Initial damage relative displacement  

: Particle size in adhesives 

E(): Cohesive module  

0(): Initial damage strain  

t(): Cohesive strength 

d: Damage scale  

: Damage coupling factor  

: Mixed damage  ratio is taken 

A: Interface property constant matrix 

Gc(/): Fracture toughness 
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1. Introduction 

The study of the fracture behaviour of adhesively bonded joints (ABJ) such as bone-cement joints is 

essential for the design of implant in biomedical engineering. Previous work investigated the failure 

mechanism of bone-cement joints with consideration of an averaged bonding quality at interface 

using a standard cohesive zone model (CZM) [1-3] to study the fracture at bone-cement interfaces. 

However, the effect of length scale of pore size at interface of joints has not been studied yet. The 

cohesive zone model was applied widely in the last decade, it has been successfully applied for 

simulation of many engineering material or structural problems such adhesives debonding, 

biomedical joint’s fractures [4-5], delamination in fibre composites [6-17], etc. CZM model is an 

interfacial traction-separation law based model to simulate crack propagation. The interfacial 

fracture toughness, strength and stiffness are used to form the cohesive damage law (CDL). It 

should be noticed that the bonding quality of ABJs is affected by the pores at the interface between 

adhesives and adherents. Thus interfacial fracture toughness, strength and stiffness should be 

influenced by the pore size at interfaces. It is hardly to be sure the standard CZM model can reflect 

such micro effects on interface damage behavour. Previous work [1-5] only supplied approaches to 

study over all behaviour of adhesively bonded interfaces using averaged interfacial parameters. It 

should be noticed that studying the detailed effects of micro pores at general ABJs on their damage 

mechanism is important in investigating a way to enhance their damage resilience. Therefore, a new 

damage model with the effects of length scale of micro pores is required to build up a macro 

modelling in progressive damage analysis of ABJs. In general, the behaviour of ABJs is not only 

affected by the bonding strength of interface but also affected by cohesive strength. A 

heterogeneous adhesive (Xu et al. 2003 and White et al., 2001) [1, 2] has been developed to 

improve bonding strength of ABJs. The heterogeneous adhesive usually contains micro particles to 

change material internal loading transferring and storing deformed energy [2]. However, the size of 

micro particles contained in adhesives certainly influences the adhesive strength in ABJs. Thus, a 

new damage model with the effects of length scale of micro particles is also required in simulation 

of progressive damages of ABJs.                          

 

The standard finite element method (FEM) has an unavoidable difficulty in the simulation of 

damage / crack propagation as it requires re-meshing of the cracked geometry. Additionally, in order 

to capture the true stress and strain field around the crack tip, mesh refinement is mandatory. In the 

last decade, a fracture mechanics based standard CZM model was successfully used in the 

simulation of interfacial separation, for example delamination in composites. However, this model 
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is hardly to simulate the entire failure process because it relies on an already-known crack path. 

Therefore, either standard FEM technique or standard CZM model is not a feasible modelling tool 

for the prediction of multiple crack propagation in ABJs and composite structures.       

The publication of an initial extended finite element method (XFEM) for the automatic simulation 

of crack propagation of homogeneous materials [A Ahmed, et al. 2009] (20) and [T.P. Fries, 2011] 

(21) represented a significant breakthrough in the predictive computation for damage, fracture, 

fatigue, corrosion, erosion, diffusion, interaction, etc. Since 2009 the XFEM has draw a lot of 

attention in the academia of computational mechanics for solids and structures with significant 

discontinuities. The scientific innovation within XFEM is the potential to accurately consider 

damage evolution in heterogeneous materials with structural discontinuities, such as cracks, defects 

or imperfections using specific enrichment functions. These mathematical enrichment functions will 

extend the specific capability of standard FEM for addressing the problem of stress singularity at 

the crack tip, and for addressing existing cracks. The standard FEM supplies a numerical domain of 

object for a continuous analysis; the XFEM based on the FEM domain supplies an extended domain 

for a discontinuous analysis of the same object. The XFEM can set up the failure criteria to 

determine crack initiation and growth, automatically calculate the direction of crack growth. 

Simulated cracks can either go through any interfaces between elements or split elements. 

Therefore, the XFEM can simulate the real crack path in complex structures, thus corresponding 

damage tolerance can be predicted precisely. Currently, most published research of XFEM has 

focused on the simulation of fracture growth in homogeneous materials. It should be noticed that it 

is still a significant challenge for using XFEM in simulation of multiscale damage, multicrack 

propagation in ABJs and composite structures. Because a set of different enrichment functions and 

a set of different failure criteria are required to overcome the discontinue problems with different 

cracks in complex ABJs and composites. Also, determination of direction of crack propagation 

would vary according to different types of damage / crack including crack splitting.  

 

In this investigation, a new damage modelling technique ECDM combined XFEM with CZM, was 

introduced in this paper and used in the investigation of the length scale damage analysis of ABJs. 

This developed micro ECDM was used to build up a macro finite element modelling of ABJs. Both 

pores at interfaces and internal particles were included as length scale effects in ECDM. 

Corresponding adhesive damage law (ADL) and CDL firstly reflected the length scale. The coupled 

damage effects in three fracture modes were also accounted in the developed ECDM. Finally, a 

length scale damage analysis of a typical ABJ of bone-cement joint as an example was presented in 
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this paper. Previous experimental work [3] gave three different bonding qualities of bone-cement 

interface, which were represented by three different sizes of micro pores at adhesively bonded 

interface. The developed ECDM with length scale of pore size was used to investigate the effects of 

three different interface bonding qualities on the prediction of loading capacity of bone-cement joint 

under tension. 

 

2. Brief XFEM formulation 

In the XFEM, a discontinuous displacement enrichment based on a local partition of unity plays a 

key role to approximate the displacement field of the damage zone [20, 21]. A standard basis 

function i related to node i (1 ≤ i≤ n) forms a partition of unity, i.e. 

 

                                                                                                 (1) 

 

The enriched displacement field u in the damaged zone can be interpolated as  

 

   

                                                                                                 (2) 

 

 

 

Where, n is the number of the nodes of element enriched, and ψj is the enriched function with m 

terms. x is the position of a material point, ai is the standard degrees of freedom and bij is the 

enriched degrees of freedom representing the magnitude of the jth term of ψj at node i. Considering 

that the usual element shape function Ni as the standard basis function to replace i and also using 

Heaveside function Hd to replace ψj in approximating discontinuity, the displacement filed u at 

damaged zone given in equ. 2 can be changed as  

    

                                                                                               (3) 

 

Where, the first item is equ. 3 is a standard displacement, the second item is an enriched 

displacement. Figure 1 shows a body with volume     , which has a boundary condition for  

both tractions and displacement. The Heaveside function Hd can be defined as  
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In the Figure 1, the boundary Γu is restrained by given displacements u, Γt is loaded by the external 

traction t with the exterior normal vector n. t is the traction at discontinuity Γd with the normal m 

directing from Ω
− 

to Ω
+
. The equilibrium equation on the body without body forces and the 

corresponding boundary conditions are given as  
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Where, u is the displacement vector, σ denotes the Cauchy stress tensor. Using the Bubnov-

Galerkin approach, the weak form of the equilibrium equation can be obtained by introducing 

admissible displacement variations δu, as 

 

 0)( 


Ωσδu d                                                                   (6)                

 

In equ. 6, the u is chosen from the same shape function used for constructing the displacement 

field u given in equ. 7.  
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Where, s
u and e

u are the standard and enriched part of displacement respectively. Bring equ.7 into 

equ. 6 results 
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The governing equation of the XFEM can be obtained integrating by parts and applying the 

Gaussian divergence theorem as shown in equ. 9 [23].  
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In the equ. 9, the CDL was used together with additional equations to express the mechanical 

behavior of the interface Γd. The strain field in an element can be obtained after using equ. 3 

differentiation as 

 

BbBauε
d

Hs

                                                                       (10) 

 

Where, the matrix B contains the spatial derivatives of N in the geometric equation and 
s
 means 

the symmetric part only in terms of the small-deformation assumption. The constitutive relationship 

between the stress increment and the strain increment can be expressed as  
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Where, D is the tangent material stiffness matrix, the traction at Γd can be written as a function of 

the discontinuity u
e
. In the cohesive zone, the CDL can be generally expressed as 

a nonlinear function of separation u
e
, i.e.  = (u

e
). Its differentiation results 
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In equ. 12, Kd=/u
e
 is the tangent stiffness matrix between the increment of the traction and the 

increment of the separation at Γd. Using equs. 10 and 11, the governing equation for the XFEM 

given in equ. 9 can be written by inserting the discredited form of the variation of the displacement 

field as  
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The Newton-Raphson scheme was used solve independent unknowns a and b independently since a 

set of nonlinear equations after discretisation. Considering equs. 11 to 13, the incremental finite 

element equations are given in the form as below.  
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Where, the definition of terms is given below. 
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Where, fext and fint are the external and internal forces, respectively. a and b denote the 

incremental displacements at node. Equs. 1 to 15 were used to form the XFEM formulation in 

implementation.  

 

It should be noticed that the first item in equ. 3 as standard displacement approximation was used in 

the whole domain of body, the second item was only applied on the selected elements or nodes 

which require enrichments to reflect discontinues. Therefore, the second item appears only in the 

case when some elements have been damaged. The ECDM was used as criteria to judge the damage 

propagation based on the continue displacement field with first item in the equ. 3, when ECDM is 

satisfied by some elements then the second item will be applied to penalize damage elements in 

reflecting discontinuity using the Heaveside function.    
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3. Adhesive and cohesive damage laws 

A bilinear material softening law is one of standard cohesive damage laws was introduced by 

previous researchers [4-17] and pasted below as shown in equ. 16 for extending its capacity in this 

investigation. 
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Where, I, II and III regard three individual damage modes respectively. The initial interfacial 

stiffness Kj0 (j=I,II,III) in equ. 16 is determined by the interfacial strength ja and initial damage 

relative displacement j0 as Kj0 = ja /j0 (j=I,II,III). When equ. 16 is used to simulate interfacial 

damage at adhesive joint with pores at bonded interfaces shown in Figure 2, the pores effect should 

be accounted into a modified equation called ADL shown in equ. 17. Note the Kjo and j in equ .17 

are equivalent to Kd and u
e
 in equ. 12. 
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Where, the pore size  at interface between adhesives and adherents was included as the length 

scale in the ADL, which consists of functions for initial stiffness K()j0, initial damage relative 

displacement 0j, critical damage relative displacement cj and interfacial damage scale d()j. The 

subscript j varies in terms of three fracture mode I, II and III.   

 

When equ. 16 is used to simulate internal damage within cohesive with particles shown in Figure 2, 

the particle effect should be accounted into an extended equation called CDL shown in equ. 18.  
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It is similar to the equ. 17 that the particle size  cohesive was included as the length scale in the 

CDL, which is part of functions for cohesive module E()j, initial damage strain j0() as E()j = 

jy() /j0() (j=I,II,III), critical damage strain ()jc and damage scale d()cj. jy() is cohesive 

strength.  

Obviously, equs. 17 and 18 describe two discontinue stresses fields from material inner domain to 

boundaries. There is no singularity problem when using these two equations to approximate the 

stress field in the whole domain of materials or structures even there are existing cracks. Therefore, 

these proposed ADL and CDL play a similar role of enrichment functions for enriching the 

elements containing the discontinuity of stress field. The standard Heaveside function is required to 

enrich the elements which are damaged, and to enrich some elements in the area with existing 

cracks. Damaged elements are assessed by both ADL and CDL.       

 

In the general mixed damage mode case, two quadratic formulas given in previous work [18-19] are 

employed to determine the initial damage stage and final crack stage. The damage scale given in 

equs. 17 and 18 is proposed to be expressed by a quadratic relationship in equ. 19.  

 

                                                                                                                         (19) 

 

Each individual damage scale dj (j=I, II, III) in equ. 19 is used to measure the reduction of stiffness 

by equ. 17 and 18 in the material softening stage (j > j0). Each dj in equ. 19 can be defined by equ. 

20. 
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Where, Q is a material coefficient expressed as jc /(jc-j0). Damage coupling factor j in equ. 19 is 

determined as                                        
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                                                                                                               (21)  

Where, three damage coupling factors I, II and III would not be same in the general mixed damage 

case in reflecting different contribution from each damage mode in the total damage scale. However, 

I , II and III are simply treated to have a same value as I = II = III =  to simplify the problem in this 

investigation, and assume the mixed damage  ratio is taken as  = dII / dI and  = dIII / dI. Using equ. 

21,  can be worked out by equ. 22. 

 

                                   (22)                                                                          

 

The coupled effects in mixed damage mode case can be explored in a numerical iteration process. 

Considering a 2D mixed mode case dIII=0, taking the first order differential of equ. 21 gives the 

total damage rate expressed by equ. 23 

 

 

                                                                                                            (23) 

 

Where, A and B are two material constants given by equ. 24.  
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The total mixed mode damage rate in current incremental step can be expressed as 
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Where, the relative displacement rate in current incremental step can be obtained by equ. 26. 
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                                                                                                              (27)                                                              

                                                                    

Thus equ. 20 for accounting current individual damage can be rewritten as equ. 28.   
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Equ. 25 is a formula to account the current total damage rate in mixed mode damage case, which 

indicated that current damage rate of mixed damage case relates to two individual relative 

displacement rates in current step, two individual relative displacements and two individual damage 

scales in previous step. Material constants, I0, Ic and  give a proportional value as a coefficient to 

mixed total damage rate. In single damage mode I case, dIIi= IIi =0, and I = 1.0, equ. 25 can be 

changed as  
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It can be seen from equ. 29 that current damage rate in single damage mode is relevant only to 

current relative displacement rate and previous relative displacement. It should be noticed that 

although dIii = IIi = 0 for pure mode I damage case in equ. 25, however, the mode II related relative 

displacement rate )(' tII  may not be zero. Thus, nonzero mode II related relative displacement rate 

would change the state of pure mode I damage to be a mixed damage case in the next step of 

numerical integration. Similarly, current damage rate in single damage mode II case can be given 

by equ. 30.  
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In numerical integration, the total damage can be accounted by equ. 31 using the damage rate. 
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4. Length scale damage analysis 

In this investigation, different micro interfacial pore sizes represented the different bonded qualities 

of bone-cement interface, which were determined by the physically scanned images. Figure 2 shows 

an image of bone-cement interface, which contains a number of pores with different sizes. Figure 2 

also shows three groups of pore size at interfaces, which were catalysed as small, medium and 

large, and used in this investigation. These three groups of pore size were measured by XCT 

scanning images and their related bonding interface properties were given in Table 1. A schematic 

of adhesively bonded interface with particles and pores was given in Figure 3. The resin used in this 

investigated adhesively bonded joint is non-particles contained. The bone material usually has 

multiple pores. Because previous experimental work lacked the information of detailed micro 

construction of bone materials
 
[3], therefore, both cement and bone were treated as non-particles 

contained materials in this investigation. Figure 4 shows a macroscale FEA model of bone-cement 

joint. The tension load was investigated in this paper. The interface between cement and bone is an 

adhesive layer, which was modelled by a 2D ECDM model shown in Figure 5. A micro ADL 

shown in Figure 6 was used in this ECDM based damage modelling. It should be noticed that three 

main interface properties, fracture toughness Gc, strength  and initial damage relative displacement 

0, are the functions of length scale of pore size  to reflect the effects of pores on the interface 

behavior. The final damage relative displacement c determined by three main interface properties 

in this micro ADL is also relevant to the length scale of pore size . Therefore, a group of interface 

properties with length scale of pore size played a role linking the micro ADL with the macro 

ECDM based FEA damage model. Interface fracture toughness Gc(), strength t() and initial 

damage relative displacement 0() were determined by experimental work in which three groups of 

pore size (small, medium and large) were investigated [3]. These varied interface properties against 

the length scale of pore size shown in Figure 7 were interpolated using the basic data from previous 

test work [3]. It should noted that the initial damage relative displacement 0() in Figure 7 was 

replaced by the interface initial stiffness K0() given by t()/0().        

 

It can been seen from the Figure 7 that both t() and K0() are decrease when length scale  

increases from 200m to 600m. Gc() increase at small lengths from 200m and reaches the 

highest point at length scale 400m, then decreases at larger lengths. Comparing to t() and K0(), 

Gc() is less influenced by the length scale. Analytically, the functions of interface properties to 

length scale of pore size are given in the equ. 32.   
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The equ. 32 established a relationship between the interface properties and length scale []. The [A] 

is the material constant matrix determined by experimental data presented in Figure 7, which can be 

seen from equ. 33.  

 

 

                                                                                                             (33) 

 

 

Using equ. 17, the material constitutive matrix of a 2D interface model given in equ. 15 can be 

given by equ.34.  
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In the basic bone-cement FEA model, four-noded quadrilateral plane strain elements CPE4I from 

ABAQUS were employed for both bone and cement, and an ECDM based user extended cohesive 

element in ABAQUS was used to simulate the interfacial behavior between bone and cement in this 

investigation. The data for geometry and materials used in this investigation were taken from the 

previous work [3]. A 2D mesh with dimension 1010 mm
2
 and unit thickness given in Figure 4 is 

used for both bone and cement region, which are connected by the interface. This mesh was refined 

with 0.2mm elemental length along the interface, which was calculated according to a critical crack 

length [10, 18, 19] to enable the modelling to has a convergent solution. Elastic modulus of 2 GPa 

and 768 MPa for the cement and the bone, respectively. A Poisson’s ratio of 0.3 was used for both 

materials. It should be noticed that the behavior of adhesive layer between bone and cement was 

simulated by the ECDM model with zero thickness using interface fracture toughness Gc(), initial 

stiffness K0() and strength c(), which vary with length scale of pore size related bonding 

qualities at interface. Table 1 presents the properties of bone-cement interface under tension which 

were conducted by authors of reference 3. 
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5. Results and comparison 

The modelling was running using ABAQUS/standard code with nonlinear displacement control. 

Figure 8 shows the simulated fractures of bone-cement joint under tension. The interface failure 

was presented by the extended cohesive user element between the bone and cement. Figure 9 shows 

predicted failure response together with test solution of bone-cement interface with length scale of 

pore size. Basically, modelling predictions had good agreement with test work in all three cases of 

bonding qualities. Both prediction and test show brittle failure characteristics of interface with small 

pore, presented by a sharp drop from the peak value in the load-separation curve. The interface with 

medium or large pores behaved some extent of ductility. Obviously, the interface with small pore 

case reached the highest value of failure load, and the large pore case had the lowest value of load 

capacity. The difference between predicted failure loads and tested ones in both small and medium 

pore cases is less than 5%, but it was about 16% in large pore case due to possible errors in data 

collection. It should be noticed that except the difference between predicted failure loads and tested 

loading capacities, the predicted initial stiffness of interface under tension is lower than the 

measured value in all three bonding quality cases. This is possibly because the values of interface 

fracture energy criteria were estimated by the line fittings using the data for traction and separation  

which were obtained from experimental work, and the accuracy of measured interface initial 

damage for separation was hardly to be controlled using general mechanical measurement 

equipments. This error certainly affected the calculation of the interface initial stiffness used in the 

ECDM. This error, however, can be usually improved by standard fracture tests to obtain the better 

fracture energy criteria and interface strength [6]. An additional case with averaged pore was also 

investigated in this paper and the predicted failure response together with the test and prediction of 

medium pore case can be seen from Figure 10. It can be seen from Figure 10 that the prediction of 

averaged pore case is better than the medium pore case comparing the failure loads and initial 

stiffness with test solutions.    

6. Conclusions and future work 

An extended cohesive damage model (ECDM) was developed in this paper, and was used 

successfully in a length scale damage modelling of a bone-cement joint. In the developed ECDM, 

two extended damage laws were used to overcome the singularity at crack tip in stress filed. The 

Heaveside function was used to describe existing damages together with the standard unit partition 

in XFEM. The direction of damage propagation was predicted by the maximum principal stresses. 

The failure mechanism of bone-cement joint was investigated well comparing to experimental 
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work. The effects of length scale of interfacial pores on loading capacities of bone-cement joint 

were successfully predicted in this investigation. The length scale of pore size at bonded interfaces 

played a role to link the micro damage law with macro FEA modelling. This ECDM technique 

supplied a potential approach to solve discontinue problems in complex materials such as 

adhesively bonded joints, heterogeneous adhesives and fibre composites. Future work includes 

length scale damage modelling of cohesive and adhesive crack propagation in ABJs under shearing 

and mixed mode loading, and multicrack propagation in fibre composites. During the evolution of 

damage propagation, the pore size would change. Future work will also consider this changing 

effect on the fracture behaviour of ABJs. A more general interface fracture problem with curved 

cracks and mixed modes to show the power of proposed ECDM will be considered in the future 

applications. 
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Table 1, Properties of bone-cement interface under tension 

 

Pore 

size  
Interface strength t  

(MPa)  

Fracture energy Gc  

(N/mm)  

Initial stiffness K0 

(MPa/mm)  

small  3.42  0.50  12.18  

medium  1.99  0.86  10.75  

large  1.05 0.34 8.57 
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Figure 1, A body with a cohesive crack 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2, a. An image of bone-cement interface, b. Three groups of pore size at interface   

 

 

 

 

 

 

 

 

Figure 3, A schematic of adhesively bonded interface with particles (blue) and pores (white) 
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Figure 4, A macro FEA model of bone-cement joint under tension  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 5, A linear 2D ECDM model                         Figure 6, A micro ADL with a length scale 
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Figure 7, Interface properties against length scale of pore size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8, A bone-cement model under tension, deformed model with a. failed interface, b. removed 

failed interface 
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Figure 9, Failure response of interface with varied pores under tension 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10, Failure response of interface with averaged and medium pores under tension 

 


