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1. Introduction

The information in the world is becoming more and
more electronic. Due to the improvements in data
collection and storage during the past decades, huge
amounts of data can lead to the problem of infor-
mation overload [1] to many researchers in domains
such as engineering, economics and astronomy. The
increase of the number of dimensions associated with
each observation and growth of the sampling time
points are the main reasons of information overload. In
many cases, datasets contain not only useful messages
but also considerable trivial and redundant informa-
tion both in the dimensions (attributes) and samples.
How to remove the redundant information and main-
tain the important information is crucial in many ap-
plications. Two important methods are normally em-
ployed to solve this problem: dimensionality reduction
and clustering. The formal reduces trivial attributes,
maintaining the number of samples, while the later
eliminates the redundant samples without changing the
number of attributes.
There are various traditional and current state of the art
dimensionality reduction methods to solve the above
problem. Principal Component Analysis (PCA) was
invented in 1901 by Karl Pearson [2] and is mostly
used for dimensionality reduction in a dataset by re-
taining the characteristics of the dataset that con-
tribute most to its variance. It keeps lower-order prin-
cipal components and ignores higher-order ones. Such
lower-order components often contain the “most im-
portant" aspects. Like PCA, Factor analysis (FA) is
another second-order method [3]. FA becomes essen-

tially equivalent to PCA if the “errors" in the FA model
are all assumed to have the same variance. These
second-order methods require classical matrix ma-
nipulations and assumption that datasets are realiza-
tions from Gaussian distributions. For non-Gaussian
datasets, higher-order dimension reduction methods
such as Projection Pursuit (PP) [4] and Independent
Component Analysis (ICA) [5] are introduced. Ad-
ditionally, non-linear PCA can also deal with non-
Gaussian datasets using non-linear objective functions
to determine the optimal weights in principal [6]. Its
resulting components are still linear combinations of
the original variables, so it can be regarded as a spe-
cial case of ICA. Other non-linear methods such as
Principal Curves (PC) [7] and Self Organizing Maps
(SOM) [8] can be thought to be non-linear ICA [9]
in that they replace the linear transformation of ICA
with a real-valued non-linear vector function. Curvi-
linear Component Analysis (CCA) is a relatively new
non-linear mapping method, being improved from
Sammon’s mapping by Jeanny Heault and Pierre De-
martines [10]. It uses a new cost function able to
unfold strongly non-linear or even closed structures,
which significantly speeds up the calculation and in-
teractively helps users control the minimized function.
However, more parameters should be considered for
most of these high-order and non-linear dimensional-
ity reduction methods and their performances strongly
depend on complex adjustments of these parameters,
for instance there are three parameters in CCA: the
projection space dimension and the two time decreas-
ing parameters.
However, dimensionality reduction methods can not be
used during estimating data dependence structure, be-
cause dependence structure includes all the interrela-
tions of the attributes and high-order attributes are not
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supposed to be ignored. Clustering is the classification
of objects into clusters so that objects from the same
cluster are more similar to each other than objects from
different clusters. It can effectively reduce the number
of data samples, so it is suitable for reducing the re-
dundant information when estimating data dependence
structure. The most common algorithms include K-
means [11], fuzzy C-means [12], and fuzzy C-means-
derived clustering approaches such as fuzzy J-means
[13] and fuzzy SOM [14], which construct clusters
on the basis of pairwise distance between objects, so
that they are incapable of capturing non-linear relation-
ships and thereby fail to represent a dataset with non-
linear structure. Hierarchical clustering is another im-
portant approach but suffers from lack of robustness,
non-uniqueness, and inversion problems [15]. Gaus-
sian Mixture Model (GMM) is based on the assump-
tion that datasets are generated by a mixture of Gaus-
sian distributions with certain probability. But this as-
sumption is not always satisfied for general datasets
even after various transformations aimed at improving
the normality of the data distribution [16, 17].
Copula is a general way of formulating a multivari-
ate distribution with uniform marginal distributions in
such a way that various general types of dependence
can be presented. The copula of a multivariate dis-
tribution can be considered as the part describing its
dependence structure as opposed to the behaviour of
each of its margins [18]. It is a good way of study-
ing scale-free measures of dependences among vari-
ables and also a good starting point for constructing
families of bivariate distributions [19]. Sklar’s theorem
[20] elucidates that a multivariate distribution func-
tion can be represented by a copula function which
binds its univariate margins. Further, empirical copu-
las were introduced and first studied by Deheuvels in
1979 [21,22], which can be used to study the interrela-
tions of marginal variables with unknown underlying
distributions. The copula approach has many advan-
tages [23] and has been used widely in finance [24,25]
and econometrics [26, 27]. Kolesarova et al. [28] de-
fined a new copula called discrete copulas on a grid
of the unit square and showed that each discrete cop-
ula is naturally associated with a bistochastic matrix.
Baets and Meyer [29] also presented a general frame-
work for constructing copulas, which extended the di-
agonal construction to the orthogonal grid construc-
tion. Simultaneously, empirical copula has gained an
increasing amount of attention recently. Dempster et
al. [30] constructed an empirical copula for Collat-
eralized debt obligation tranche pricing and achieved

a better performance than the dominant base corre-
lation approach in pricing non-standard tranches. Ma
and Sun [31] proposed a Chow-Liu like method based
on a dependence measure via empirical copulas to esti-
mate maximum spanning product copula with only bi-
variate dependence relations, while Morettin et al. [32]
proposed wavelet estimators based on empirical copu-
las which can be used for independent, identically dis-
tributed time series data.
It is evident, however, that the efficiency of empirical
copula is outstandingly poor though it provides effec-
tive performance on data dependence structure estima-
tion. It is common that natural datasets are represented
by tremendous storage size, and it is impossible to pro-
cess them using empirical copula in most cases. In or-
der to overcome this problem, we propose an algorithm
named fuzzy empirical copula which integrates fuzzy
clustering with empirical copula. Fuzzy Clustering by
Local Approximation of Memberships (FLAME) [17]
is firstly extended into multi-dimensional space, then
the FLAME+ is utilized to reduce the number of sam-
pling data and maintaining the interrelations at the
same time before data dependence structure estima-
tion takes over. The remainder of the paper is orga-
nized as follows. Section 2 presents copula theory with
a focus on dependence structure estimation using em-
pirical copula. Section 3 proposes the Fuzzy empir-
ical copula algorithm. Section 4 presents the experi-
ments whose results demonstrate the effectiveness of
the proposed fuzzy empirical copula. Concluding re-
marks and future work are found in Section 5.

2. Dependence Structure Estimation via Empirical
Copula

As a general way of formulating a multivariate dis-
tribution, copula can be used to study various gen-
eral types of dependence between variables. Other
ways of formulating multivariate distributions include
conceptually-based approaches in which the real-
world meaning of the variables is used to imply what
types of relationships might occur. In contrast, the
approach via copulas might be considered as being
more raw, but it does allow much more general types
of dependencies to be included than would usually
be invoked by a conceptual approach. Nelsen [19]
has proven that these measures, such as Kendall’s
tau, Spearman’s rho and Gini’s gamma, can be re-
expressed only in terms of copula. Though their direct
calculation may have much less computational cost
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than when using copulas, copula summarizes all the
dependence relations and provides a natural way to
study and measure dependence between variables in
statistics. It is a very important approach since copula
properties are invariant under strictly increasing trans-
formations of the underlying random variables. Spear-
man’s rho and Gini’s gamma are considered in this
paper. In this section, we firstly revisit the theoretical
foundation of copula and empirical copula, then intro-
duce the theorem of calculating Spearman’s rho and
Gini’s gamma using bivariate empirical copula, finally
analyse the time complexity of the computation.

2.1. Copula

A n-dimensional copula is defined as a multivari-
ate joint distribution on the n-dimensional unit cube
[0, 1]n such that every marginal distribution is uniform
on the interval [0, 1].

Definition 2.1.1. A n-dimensional copula is a function
C from In to I with the following properties [19]:

1. C is grounded, i.e., for every u in In, C(u) = 0 if
at least one coordinate uj = 0, j = 1, · · · , n.

2. If all coordinates of u are 1 except for some uj ,
j = 1, · · · , n, then
C(u) = C(1, · · · , 1, uj , 1, · · · , 1) = uj .

3. C n-increasing, i.e., for each hyperrectangle
B = ×n

i=1[xi, yi] ⊆ [0, 1]n

Vc(B) =
∑

z∈×n
i=1{xi,yi}

(−1)N(z)C(z) ≥ 0 (1)

where the N(z) = card{k |zk = xk} . Vc(B) is the
so called C-volume of B.

Sklar’s Theorem [20] is central to the theory of copula
and underlies most applications of the copula. It eluci-
dates the role that copula plays in the relationship be-
tween multivariate distribution functions and their uni-
variate margins.

Sklar’s Theorem 2.1.1. Let H be a joint distribution
function with margins Fi(i = 1, 2, · · · , n). Then there
exists a copula C such that for all xi in R̄,

H(x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)) (2)

where C is a n-dimensional copula, Fi are marginal
distribution function of xi.

If Fi(i = 1, · · · , n) are continuous, C is unique. If C
is a n-dimensional copula and Fi(i = 1, · · · , n) are
distribution functions, then the function H defined by
equation 2 is a joint distribution function with margins
Fi(i = 1, · · · , n). More details can be seen in [19,23].

2.2. Empirical Copula and Dependence Estimation

The empirical copula is a characterization of the de-
pendence function between variables based on obser-
vational data using order statistics theory and it can
reproduce any pattern found in the observed data. If
the marginal distributions are normalized, the empiri-
cal copula is the empirical distribution function for the
joint distribution. Priority has been given to bivariate
empirical copula due to computational cost. The rea-
son is twofold: one is that the interrelation between
every two attributes is the basic relationship in most
attributes, and it is practical to use bivariate empiri-
cal copula to construct the whole structure of every
two attributes’ dependence; the second is that the de-
pendence structure of dataset X including r attributes

would have
(
r

2

)
= 1

2r(r − 1) bivariate interrelations.

Bivariate empirical copula is given as follows.

Definition 2.2.1. Let {(xk, yk)}nk=1 denote a sample
of size n from a continuous bivariate distribution. The
empirical copula is the function Cn given by

Cn( i
n ,

j
n ) =

card{(x,y):x≤x(i),y≤y(j)}
n

(3)

where x(i) and y(j), 1 ≤ i, j ≤ n, denote order statis-
tics from the sample [19].
The empirical copula frequency cn is given by

cn( i
n ,

j
n ) ={

1
n , if (x(i), y(j)) is an element of the sample
0, otherwise

(4)

Note that Cn and cn are related via

Cn(
i

n
,
j

n
) =

i∑
p=1

j∑
q=1

cn(
p

n
,
q

n
) (5)

Theorem 2.2.1. Let Cn and cn denote, respectively,
the empirical copula and the empirical copula fre-
quency function for the sample {(xk, yk)}nk=1. If ρ and
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γ denote, respectively, the sample versions of Spear-
man’s rho, and Gini’s gamma [33, 34], then

ρ = 12
n2−1

n∑
i=1

n∑
j=1

[
Cn

(
i
n ·

j
n

)
− i

n ·
j
n

]
(6)

and

γ = 2n
bn2/2c

{
n−1∑
i=1

Cn

(
i
n , 1−

i
n

)
−

n∑
i=1

[
i
n − Cn

(
i
n ,

i
n

)]}
(7)

Spearman’s rho and Gini’s gamma are two ways of
measuring two variables’ association [19]. According
to the definition and theorem, we can estimate corre-
lations between variables using empirical copula and
Spearman’s rho & Gini’s gamma. Suppose the num-
ber of objects is n and number of attributes is r. For
r << n, according to the equations 3, 6 and 7, the
time complexity of Spearman’s rho or Gini’s gamma is
O(n3).

3. Fuzzy Empirical Copula

In this section Fuzzy clustering by Local Approxima-
tion of Memberships (FLAME) is extended first in
terms of dimension and distance functions, then is in-
tegrated into empirical copula to enhance its compu-
tational efficiency. FLAME was proposed to cluster
DNA microarraydata [17]. It defines clusters in the rel-
atively dense regions of a dataset and performs clus-
ter assignment solely based on the neighbourhood re-
lationships among objects. One of the FLAME algo-
rithm features is that the memberships of neighbouring
objects in the fuzzy membership space are set accord-
ing to the neighbourhood relationships among neigh-
bouring objects in the feature space. FLAME has been
extended in terms of dimension and distance func-
tion (i.e., FLAME+), which still consists of three main
steps of FLAME algorithm: initialization, approxima-
tion and assignment.

3.1. Initialization

The first step, initialization, is to classify three types
of objects: Cluster Supporting Object (CSO), cluster
outliers and the rest which are named Normal Points
(NPs).

Let X be a r-dimensional dataset with n objects. The
r-dimensional distance between two instances is

dp(x, y) = (
r∑

i=1

|xi − yi|p)(1/p) (8)

where x, y ∈ X; 1 ≤ p ≤ ∞; d1 is the Manhattan
distance, d2 is the familiar Euclidean distance, and d∞
corresponds to the maximum distance in any dimen-
sion. Then the similarity of these two objects is calcu-
lated as:

sxy = 1
dp(x,y) (9)

Similarity is the degree of resemblance between two or
more objects. There are different ways to calculate the
similarity. Since “the density of each object is calcu-
lated as one over the average distance to the k-nearest
neighbors" in the FLAME clustering algorithm [17], to
make the relation between similarity and density more
direct and simple, we choose Eq. 9 to calculate the sim-
ilarity in the paper.
The K-Nearest Neighbours (KNNs) for each object are
defined as the k objects (k ≤ n) with the k highest
similarity. The density of object x with KNNs can be
obtained

Denp(x) = k∑
y∈knn(x)

dp(x,y) (10)

where knn(x) stands for the set of KNNs of the object
x.
Subsequently, the set of CSOs is defined as the set of
objects with local maximum density, i.e., with a den-
sity higher than that of every object in their KNNs. The
higher k is, the less CSOs will be identified, then less
clusters will be generated. A density threshold needs
defining to find possible cluster outliers, so objects
with densities below the threshold are defined as pos-
sible outliers.
Each object x is associated with a membership vector
p(x), in which each element pi(x) indicates the mem-
bership degree of x in cluster i

p(x) = (p1(x), ..., pm(x)), (11)

where 0 ≤ pi(x) ≤ 1;
∑m

i=1 pi(x) = 1; m is the total
number of CSOs and the outlier cluster, i.e.,m = c+1
where c is the number of CSOs; Each element of mem-
bership vector takes value between 0 and 1, indicating
how much percentage an object belonging to a cluster,
or being an outlier.
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Based on the density estimation, each CSO is assigned
with fixed and full membership to itself to represent
one cluster, for example p(x) = (0, 1, ...0) indicates
that object x is the second CSO . Each outlier is as-
signed with fixed and full membership to the outlier
group, p(x) = (0, · · · , 0, 1), and the NP is assigned
with equal memberships to all clusters and the outlier
group, p(x) = (1/m, · · · , 1/m).

3.2. Approximation

The second step is named local/neighbourhood ap-
proximation of fuzzy memberships, in which each
NP’s fuzzy membership is updated by a linear combi-
nation of the fuzzy memberships of its KNNs, while
CSOs and outliers maintain the fixed and full member-
ships to themselves respectively.
The weights defining how much each neighbour will
contribute to approximation of the fuzzy membership
of that neighbour are estimated in equation 12, based
on the fact that the neighbours that have higher simi-
larities must have higher weights.

wxy =
sxy∑

z∈knn(x)

sxz (12)

where y ∈ knn(x). The membership vector of each
NP is approximated according to equation 13, min-
imizing the overall difference between membership
vectors and their approximations.

pt+1(x) =
∑

y∈knn(x)
wxyp

t(y) (13)

The overall local/neighbourhood approximation error
is calculated by:

E({p}) =
∑
x∈X

∥∥∥∥∥p(x)−
∑

y∈knn(x)
wxyp(y)

∥∥∥∥∥
2

(14)

The iteration of equation 13 breaks under the condition
that E({p}) is less than a predetermined threshold.

3.3. Assignment

Finally, it is to assign each object to the cluster based
on its fuzzy membership. Usually, one cluster contains
the objects that have higher membership degrees in this
cluster than other clusters.
An example of FLAME+ is provided in Fig. 1, where
a dataset with 600 objects is randomly generated from

a 3 dimensional distribution. FLAME+ is applied to
this dataset and three groups of objects are clustered as
outliers, CSOs and NPs.
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Colormap of the clusters

Fig. 1. Clustering random 3D Euclidean positions using FLAME+.
The star points in black are the centres of the clusters (CSO); points
labeled with triangles are the outliers; the colour range of NPs rep-
resents their membership degrees.

Accurately calculating the entire time complexity of
FLAME+ is very challenging in that each iteration of
local/neighbourhood approximation depends on the er-
ror threshold. However, it is necessary to analyse the
complexity of the first step of the algorithm. Suppose
the number of objects is n, number of attributes is r, its
CSOs’ number is c and number of nearest neighbours
is k. For r << n and k << n, the time complexity of
the initialization is O(n2). An empirical study of the
time complexity of FLAME+ compared with other al-
gorithms is performed to illustrate that FLAME+ has
significant computational advantage over hierarchical
clustering, fuzzy C-means and fuzzy SOM, an excep-
tion is K-means [17]. In section 4, FLAME+ and K-
means are compared in the context of fuzzy empirical
copula.
We aim at developing an algorithm which can effi-
ciently reduce the computational cost of empirical cop-
ula by filtering out redundant information in the sam-
ple. In addition, this algorithm should also be capa-
ble of dealing with arbitrary-distributed datasets in or-
der to inherit the main advantage of empirical copula
for data structure estimation. FLAME algorithm is se-
lected for this purpose in that it not only fulfills the
above requirements but also possesses the merit of few
parameters, i.e., the number of nearest neighbours and
the value of the outlier’s threshold.
It is evident that samples with higher densities are
more reliable when used to represent whole samples
in such a way that the main feature of the whole sam-
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ple is maintained. The FLAME algorithms have the ca-
pability of identifying those “special" sampling points
based on the objects’ density analysis. The “special"
points are represented by the CSOs with the highest
densities in all clusters. Therefore, the fuzzy empirical
copula algorithm is proposed for achieving the follow-
ing: high dimension FLAME algorithm is employed to
identify characteristic feature points, and dependence
structure, on the other hand, it is estimated via empiri-
cal copula.
Let X be r-dimensional dataset with n objects:

X =

x11 · · · x1n...
. . .

...
xr1 · · · xrn


so the ith object is represented by the ith column
in matrix X: xi = [x1i, x2i, · · · , xri]T and the jth
attribute of X is defined as the jth row: x(j) =
[xj1, xj2, · · · , xjn]. The dependence structure in this
paper is defined as the whole structure of every two
attributes’ dependence which can be calculated by bi-
variate empirical copula, because the interrelation be-
tween every two attributes is the most basic relation-
ship in several attributes. Given interrelations between
every two attributes, relations of three or more at-
tributes would be derived from their dependence struc-

ture which would have
(
r

2

)
= 1

2r(r−1) interrelations

(r is the number of attributes).
In fuzzy empirical copula, firstly FLAME+ reduces
the samples from n objects to c CSOs, and then empir-
ical copula analyses the dependence of every two at-
tributes in the derived CSO matrix. The first step can
be considered as the operation on the column and the
later on the row. For ideal performance of the proposed
algorithm, one of outputs of FLAME+, CSOs, is com-
puted leading to efficient computation. That is to say
we only have to implement the first step in the FLAME
algorithm which has less time complexity than em-
pirical copula and only one parameter, the number of
neighbours, is required since the threshold works only
for outliers. The Spearman’s rho and Gini’s gamma of
the CSOs would be

ρ(u, v) = 12
c2−1

c∑
i=1

c∑
j=1

[
C

(uv)
c

(
i
c ,

j
c

)
− i

c ·
j
c

]
(15)

and

γ(u, v) =
2n

bn2/2c

{
c−1∑
i=1

C(uv)
c

(
i

c
, 1− i

c

)
−

c∑
i=1

[
i

c
− C(uv)

c

(
i

c
,
i

c

)]}
(16)

where u ∈ [1, · · · , r) and v ∈ (u, · · · , r]; C(uv)
c is the

bivariate empirical copula of the uth and vth attributes
with c objects, and C(uv)

c = C
(vu)
c .

The optimization is designed to automatically iden-
tify the optimized number of neighbours with accept-
able errors. The number of nearest neighbours is in-
creased by one at every step during the optimization
until proper number of neighbours is identified. The
optimization stops when the overall error of Spear-
man’s rho or Ginis gamma in equation is under the pre-
set error threshold. The pseudo-code of fuzzy empir-
ical copula is presented in algorithmic form 1 and its
‘EmpSG’ function is in algorithm form 2.

4. Experiment and Discussions

Experiments are conducted in this section, and results
and discussions are provided for evaluating the effec-
tiveness and efficiency of fuzzy empirical copula. Af-
ter a brief explanation of the datasets, empirical copula
and fuzzy empirical copula are employed respectively
to estimate the dependence structures of the datasets.
The section is concluded with the roles that clustering
algorithms play in fuzzy empirical copula.

4.1. Data

Abalone [35] and yeast [36] datasets from UCI ma-
chine learning repository [37] were selected to evalu-
ate the proposed algorithm in this paper. The abalone
dataset was used to predict the age of abalone from
the physical measurements such as weight and length,
and it is not a trivial task to get their ages by count-
ing the number of rings in their bodies through a mi-
croscope. 4177 abalone are sampled with 9 attributes
in this dataset. Fig. 2 shows interrelations of length,
diameter, whole weight and shell weight. This dataset
could be regarded as 9 dimensional data with 4177
samples in which some measurements are intrinsically
interrelated. The yeast dataset was constructed for pre-
dicting the cellular localization sites of proteins. It
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Algorithm 1 Fuzzy Empirical Copula algorithm
Require: X = {x1, x2, ..., xn} {X is a r dimensional

dataset with n objects and r << n}
Require: [ρall, γall] {the Spearman’s rho and Gini’s

gamma of the original data X}
1: for all i such that 1 ≤ i ≤ n do
2: for all j such that 1 ≤ j ≤ n do
3: d2(xi, xj) ← eqution8 {calculate the Eu-

clidean distance between two objects using
equation 8}

4: end for
5: end for
6: K = 0 {K is the number of nearest neighbours

under consideration}
7: repeat
8: K = K + 1
9: for all i such that 1 ≤ i ≤ n do

10: Den2(xi)← equation10 {get the density of
every object}

11: end for
12: c = 0 {the number of CSOs}
13: for all i such that 1 ≤ i ≤ n do
14: if Den2(xi) ≥ max(Den2(yi)) where yi ∈

knn(xi) then
15: c = c+ 1
16: CSOc ← xi {get CSOs which have the

local maximum densities}
17: end if
18: end for
19: for all u such that 1 ≤ u ≤ r do
20: for all v such that (u+ 1) ≤ v ≤ r do
21: [ρ(u, v), γ(u, v)] ←

EmpSG(CSO(u), CSO(v)) {CSO(i)
is the ith attribution of CSO, EmpSG is
a function to calculate the data’s Spear-
man’s rho and Gini’s gamma as showed
in algorithm 2, ρr×r is the matrix of
Spearman’s rho and γr×r is the matrix of
Gini’s gamma}

22: end for
23: end for
24: error = ‖[ρall, γall]− [ρr×r, γr×r]‖ {take the

Euclidean distance of the ρ and γ as the overall
error}

25: until error ≥ threshold {threshold is the
threshold of overall error decided according to the
original dataset}

Algorithm 2 Function of EmpSG for Spearman’s rho
and Gini’s gamma
Require: CSO(u), CSO(v) {two attributes in CSO}
Ensure: SP,GI {Spearman’s rho and Gini’s gamma

of above two attributes}
1: x = CSO(u); y = CSO(v) {x and y are two

vectors with c elememts}
2: x′ = sort(x); y′ = sort(y) {x′ and y′ are the

order statistics of x and y}
3: for all i such that 1 ≤ i ≤ c do
4: for all j such that 1 ≤ j ≤ c do
5: num← 0 {initialization}
6: for all t such that 1 ≤ t ≤ c do
7: if x(t) ≤ x′(i) and y(t) ≤ y′(j) then
8: num← num+ 1
9: end if

10: end for
11: EC(i, j)← num/c
12: end for
13: end for
14: SP ← 0 {the return value of Spearman’s rho}
15: GI ← 0 {the return value of Gini’s gamma}
16: for all i such that 1 ≤ i ≤ c do
17: for all j such that 1 ≤ j ≤ c do
18: SP ← SP + EC(i, j)− (j ∗ i)/(c ∗ c)
19: end for
20: if i 6= b then
21: GI ← GI + EC(i, c− i)− i/c+ EC(i, i)
22: end if
23: end for
24: SP ← SP ∗ 12/(c ∗ c− 1)
25: GI ← 2 ∗ c/(c ∗ c/2) ∗ (GI − 1 + EC(c, c))
26: return SP and GI

contains 1484 instances with 8 attributes for each in-
stance. Both of these two datasets contain strong non-
linear dependences between attributes. Priority herein
is given to the sampling density and the interrelations
among attributes. Supposing one dataset contains s at-

tributes, its dependence structure includes
(
s

2

)
inter-

relations of every two attributes among this dataset,
which means the abalone and yeast datasets have two
dependence structures of 36 and 28 interrelations to be
analysed respectively.

4.2. Dependence Structure Estimation via Empirical
Copula

Spearman’s rhos and Gini’s gammas are calculated ac-
cording to equations 6 and 7 via empirical copula using
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Fig. 2. The interrelations of length, diameter, whole weight and shell
weight of abalone dataset

the two above datasets. The results of abalone’s depen-
dences of 36 correlations for 9 attributes are listed in
the Fig. 3, and yeast dataset of 28 correlations for 8 at-
tributes in the Fig. 4. The whole computation time for
abalone is 27226 seconds, which is unrealistic for re-
lated applications. On the other hand, though the yeast
dataset has fewer instances its computational time is
still high, at 2813 seconds. It should be noted that it has
to carefully handle the tradeoff between efficiency and
accuracy of fuzzy empirical copula. The more near-
est neighbours are considered (e.g., Fig.3), the fewer
CSOs will appear, the more efficient the algorithm is.
It also, however, leads to larger error.
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Fig. 3. The result of dependences of 36 correlations of the original
abalone dataset

4.3. Dependence Structure Estimation via Fuzzy
Empirical Copula

The proposed fuzzy empirical copula is employed in
this section to reduce computation time for depen-
dence structure analysis of these two datasets. The
more nearest neighbours are considered, the fewer
CSOs will appear. It indicates that the calculation of
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Fig. 4. The result of dependences of 28 correlations of the original
yeast dataset

fuzzy empirical copula will be more efficient at the
cost of lower accuracy. The proposed fuzzy empirical
copula has the ability to identify the proper number of
nearest neighbours which guarantees the fast compu-
tation with the overall error under the preset threshold.
The threshold for Spearman’s rho from equation 15 is
predefined as,

threshold = p×
(
s

2

)
= ps(s−1)

2 (17)

where
(
s

2

)
is the number of interrelations, combining

2 attributes out of s attributes; p is the average error
percentage for each interrelation. Different threshold
results in different computational time, and p is defined
to take a value in the range from 0.5% to 1% according
to the different features of datasets. From the above
results of the two datasets using empirical copula, p
is predefined as 0.6% and 1% for abalone and yeast
datasets respectively, which indicates that abalone and
yeast datasets have the thresholds of 0.228 and 0.28.

4.3.1. Abalone dataset
Under the overall error threshold of 0.228 for Spear-
man’s rho, fuzzy empirical copula with 12 nearest
neighbours has the lowest computation time. Thanks to
the FLAME+’s density sampling, when the number of
nearest neighbours is 12, the number of data instances
is reduced to 100 from 4177 depicted in Fig. 5. The 36
interrelations of the 9 attributes of these 100 CSOs are
estimated as shown in red line in Fig. 6, where the blue
lines are results generated from empirical copula. It il-
lustrates that fuzzy empirical copula with 12 nearest
neighbours does not cause unacceptable error to Spear-
man’s rho and Gini’s gamma compared to empirical
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copula. However, the computation time of fuzzy em-
pirical copula algorithm is 68 seconds, which is only
0.25 percent of the computational time conducted by
empirical copula algorithm.
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Fig. 5. Result of sampled abalone data using
12-neighbour-FLAME+
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Fig. 6. Comparison of Spearman’s rhos and Gini’s gammas. Blue
lines are the correlations of Empirical Copula algorithm while red
lines are of Fuzzy Empirical Copula algorithm

In order to have a better understanding of the perfor-
mance of fuzzy empirical copula, Fig. 7 displays the
change of CSO’s number with the growing number of
nearest neighbours from 1 to 20. It shows that the num-
bers of abalone’s CSOs drops exponentially with the
growth of the number of nearest neighbours. With the
growing nearest neighbours, Fig. 8 shows the overall
error changes of Spearmans rho and Ginis gamma and
Fig. 9 presents the time change. The error threshold lo-
cates the place between 12 and 13 nearest neighbours.
Given a threshold, the error and the computational time
can easily be decided from Figs. 8 and 9.
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Fig. 7. The relationship between number of nearest neighbours and
number of abalone’s CSOs
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Fig. 8. Change of overall errors of Spearman’s rhos and Gini’s gam-
mas with the growth of number of nearest neighbours in FLAME+

Fig. 9. Change of time costed by Fuzzy Empirical Copula with the
growth of number of nearest neighbours in FLAME+

4.3.2. Yeast dataset
Similar data processing in above section was employed
on yeast dataset. If the threshold of Spearman’s rho
overall error is set to be 0.28, 2 nearest neighbours
would make the estimation perform well because of
the relatively small error which is under the threshold
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and fast computation. The result with 2 nearest neigh-
bours is shown in red in Fig. 10, compared with the
result in blue from Empirical Copula, which demon-
strates that the dependence structure of yeast dataset
is maintained. The errors are only 0.28 for Spearman’s
rho and 0.24 for Gini’s gamma in Fig. 10, and compu-
tation time is 26.3 seconds which is only 0.93 percent
of the time cost by Empirical Copula.
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Fig. 10. Comparison of Spearman’s rhos and Gini’s gammas. Blue
lines are the correlations of Empirical Copula algorithm while red
lines are of Fuzzy Empirical Copula algorithm

The number of yeast’s CSOs also drops exponentially
with the growth of the number of nearest neighbours
from 1 to 20 shown in Fig. 11. Fig. 12 shows the
changes of errors of Spearman’s rho and Gini’s gamma
grows with the number of nearest neighbours, while
Fig. 13 displays the changes of cost time.
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Fig. 11. The relationship between number of nearest neighbours and
number of yeast’s CSOs

However, for 5 or more nearest neighbours, the number
of sampling data is reduced to less than 70 instances in
Fig. 11, which are so few that the result becomes unac-
ceptable with huge errors since the sampling data can
not cover the main feature area of the whole dataset.
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Fig. 12. Change of overall errors of Spearman’s rhos and Gini’s gam-
mas with the growth of number of nearest neighbours in FLAME+

Fig. 13. Change of time cost by Fuzzy Empirical Copula with the
growth of number of nearest neighbours in FLAME+

4.4. Comparison of FLAME+ and K-means in Fuzzy
Empirical Copula

The reason to choose FLAME+ as the fuzzy clus-
tering algorithm instead of other algorithms (e.g., K-
menas) in Fuzzy Empirical Copula is on the basis
of FLAME+’s four main advantages. First it has the
ability to capture non-linear relationships and non-
globular clusters; secondly it can automatically define
the number of clusters and identify cluster outliers;
thirdly, compared with K-means and fuzzy C-means,
the centres of FLAME+ are real instances in the orig-
inal dataset instead of the centroids of clusters with
different traits which probably result in wrong depen-
dence measures. Finally, FLAME+ is also capable of
dealing with a free-distributed dataset, which is not al-
ways true for algorithms like Gussian Mixture Models.
In order to demonstrate the effectiveness of the pro-
posed fuzzy empirical copula, we constructed K-
means based Empirical Copula which employs the
K-means algorithm to cluster the original dataset into
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numbers of subsets and uses centroids as the new
dataset. Both of these two methods were applied to the
abalone dataset. The comparison is based on the fact
that cluster number of K-means is set to be the same
as the abalone’s CSOs number of FLAME+ as listed
in the table 1.
Fig. 14 demonstrates the comparison of computational
cost by the proposed fuzzy empirical copula and K-
means based empirical copula, where red curves are
the changes of cost time by K-means based Empirical
Copula while blue curves are by the proposed fuzzy
empirical copula. It presents that both of the two algo-
rithms achieve almost the same performance in saving
the computational time.
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Fig. 14. Change of time cost when comparing the proposed Fuzzy
Empirical Copula (FEC) and K-means based Empirical Copula
(KEC)

In Fig. 15, with the decreasing number of clusters,
the errors caused by K-means based Empirical Copula
fluctuate violently and keep much higher than those
by proposed fuzzy empirical copula. It illustrates that
FLAME+ outperforms K-means in maintaining the
dependence structure though both of them have the al-
most same performance in reducing the cost time, and
FLAME+ is more suitable to be used in fuzzy empir-
ical copula. One reason for the above results is that
FLAME+ is capable in dealing with non-linear rela-
tionships while K-means is not. Another reason is that
FLAME+ considers the real objects CSOs which are
the samples in the datasets while K-means considers
centroids which are virtual objects beyond the datasets.
Centroids not belonging to the datasets may have dif-
ferent traits which probably result in wrong depen-
dence measures.
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Fig. 15. Changes of overall errors of Spearman’s rhos and Gini’s
gammas when comparing the proposed Fuzzy Empirical Copula
(FEC) and K-means based Empirical Copula (KEC)

5. Concluding Remarks

Fuzzy empirical copula has been proposed to alleviate
the computational burden of empirical copula. A high-
dimensional FLAME+ has been developed to iden-
tify the important objects containing the main features
of the entire dataset, then empirical copula has been
implemented to estimate the dependence structure of
the objects. Abalone and yeast datasets from UCI ma-
chine learning repository are employed to evaluate the
proposed method. The number of nearest neighbours
is the tradeoff factor for handling accuracy and effi-
ciency of data processing. With the preselected error
threshold, fuzzy empirical copula has the capability
of automatically identifying the optimized number of
neighbours, which could be used to fast analyse similar
datasets. Additionally nearest neighbours at the range
of 0 − 20 have been used to demonstrate the overall
error changes of Spearman’s rho and Gini’s gamma,
and the change of computational time. The experimen-
tal results have shown that fuzzy empirical copula can
substantially reduce the computation cost while fea-
tures of the data are maintained with the preselected er-
ror threshold. In addition, we compare FLAME+ with
K-means to evaluate the clustering role in fuzzy empir-
ical copula and the result has illustrated that FLAME+

outperforms K-means in maintaining the dependence
structure of the datasets.
Further work will be concerned with releasing the lim-
itation of calculating the true value of original dataset
and making the method more applicable.Though Cop-
ula has been widely applied to finance problems in the
past decades, some areas such as intelligent robotics,
artificial intelligence and automation require empiri-
cal copula and its variants being both effective ap-
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Table 1
Number of clusters corresponding to number of nearest neighbors

Neighbors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Clusters 1574 525 377 287 243 211 185 165 142 128 109 100 94 89 88 81 74 69 67 63

proaches, and practical and efficient algorithms. Fuzzy
Empirical Copula has succeeded in overcoming the
problem of computation cost of dependence structure
estimation via Empirical Copula. The algorithm will
be evaluated in more real-time or near real-time ap-
plications, priority will be given to human hand ges-
ture recognition and object manipulation using robotic
hands [38–40].
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