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Introduction 

 

Erythrocytes are enucleated, terminally differentiated cells with a finite 

lifespan and an estimated turnover of 1% every day. In order to deal with stress, 

haemolysis and/or hypoxia, the production of erythrocytes can be substantially 

modulated. In vivo control of erythrocyte survival is affected by many factors 

including energy balance, maintenance of electrolyte gradients and control of reactive 

oxygen species. Alterations to erythrocyte membrane deformability has a major role 

in regulating cellular function and intravascular survival with reduced deformability 

resulting in splenic sequestration of abnormal cells, shortened half-life and the clinical 

presentation of hemolytic anemia [1]. 

The evolutionary conserved serine/threonine kinase AMP-activated protein 

kinase (AMPK) is a critical regulator of energy balance [2, 3]. AMPK is a 

heterotrimeric complex containing a catalytic alpha subunit paired with beta and 

gamma regulatory subunits. There are several isoforms for each subunit encoded by 

separate genes, two alpha (Prkaa1 and Prkaa2), two beta (Prkab1 and Prkab2) and 

three gamma (Prkag1, Prkag2 and Prkag3). Prkaa1 and Prkag1 can control oxidative 

stress, erythrocyte-intrinsic cellular metabolic stress and membrane elasticity, making 

them critical regulators of erythrocyte integrity and lifespan [4-7]. However, the 

specific role of beta subunit isoforms in the context of erythrocyte development has 

not been studied. 

Here we report that Prkab1 deficient mice present with splenomegaly, 

increased splenic iron deposits, microcytic anemia, compensatory extramedullary 

hematopoiesis, altered erythrocyte morphology and increased erythrocyte osmotic 

resistance.  
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Materials and method 

 

Mice 

Generation of Prkab1tm1b(KOMP)Wtsi  (hereafter referred to as Prkab1tm1b) mice 

was performed using ES cell clone EPD0033_3_C09. Genotyping carried out 

according to [8] with cre conversion as reported [9]. All experiments were performed 

in accordance with the UK Home Office regulations, UK Animals (Scientific 

Procedures) Act 1986 and approved by the Wellcome Trust Sanger Institute animal 

welfare and ethical review body. 

 

Gene expression analysis 

 RNA was extracted from spleens using Purelink® RNA mini kit (Ambion). 

Gene expression was assessed using FAM-conjugated TaqMan® assays as listed in the 

supplementary methods. Template RNA was added in duplex reactions in triplicate 

using B2m VIC primer limited probe (Mm00437762_m1) as the endogenous control 

using the EXPRESS One-Step Superscript® qRT-PCR Kit (Thermo Scientific) and an 

Applied Biosystems 7900HT analyser. Relative gene expression between endogenous 

control and target gene was analysed using the ΔΔCT method [10] with RQ manager 

(Life Technologies) applying automatic thresholds.  

 

Western blot analysis 

Protein lysates were prepared from spleens with protein quantification, 

electrophoresis, transfer and antibody incubations performed according to standard 

protocols. Blots were visualised using HRP-conjugated secondary antibodies and 

ECL reagents then imaged with a LAS 4000 (GE Healthcare). Primary antibodies 

used: AMPK beta 1 (1/1000, #12063), AMPK beta 2 (1/1000, #4148), AMPK pan 

alpha (all Cell Signalling Technology, 1/1000, F6 #2793) and vinculin (Sigma, 

1/5000, V284).  

 

Blood collection and analysis 

Retro-orbital or tail vein blood was collected into EDTA-coated tubes for 

haematology or heparinised tubes for plasma preparation. Complete blood counts 

were determined using a Scil Vetabc system. Plasma was analysed for bilirubin, iron, 
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and ferritin using an Olympus AU400 analyser (Beckman Coulter Ltd) with reagents 

supplied by Beckman Coulter or Randox. Erythropoietin was determined using a 

Meso Scale Discovery array. 

 

Histological analysis 

Spleen, liver and leg bones were fixed in formalin, embedded in paraffin and 

sections stained with haematoxylin and eosin or Perls’ Prussian blue according to 

standard methods. These were assessed in a blinded manner for any pathological 

abnormalities. Scanning electron microscopy (SEM) was performed as previously 

described [11] with erythrocytes adhered to poly-l-lysine coated coverslips. 

 

Erythropoiesis analysis 

 Staining of single cell suspensions of spleen, bone marrow and whole blood 

with CD71, Ter119, CD45, Syto® 16 and Sytox® blue was performed as previously 

described [12] and analysed on a BD™ LSRII instrument (full details in 

supplementary methods). 

 

In vivo clearance of erythrocytes 

This was performed as described previously [4] with the exception that 

samples were labelled with either 10 μM Vybrant® CFDA (Prkab1+/+) or 1 μM 

CellTracker™ Deep red (Prkab1tm1b/tm1b, both Molecular Probes). Erythrocytes were 

counted and adjusted to 2x106 RBC/μl and the two genotypes pooled and injected via 

the tail vein into recipient mice (10 weeks old) to transfuse 2x108 RBC/genotype (full 

details in supplementary methods).  

 

Osmotic resistance assay 

This was performed essentially as described [4] with haematocrit adjusted to 

0.8% with 0.9% saline solution. 

  

Statistical analysis 

 All data was analysed in Prism v6 (Graph Pad) and analysed with an unpaired 

two-tailed students t test, Mann Whitney test or two way ANOVA as indicated in the 

figure legend. 
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Results and discussion 

 

Prkab1tm1b/tm1b mice showed greatly reduced expression of Prkab1 that was 

accompanied by a significant (possibly compensatory) increase in Prkaa1 and Prkag1 

(Supplementary Fig. 1A). This was confirmed by immunoblot analysis which 

supports observations from Prkag1 knockout mice [4] and another Prkab1 knockout 

mouse line [13] that genetic deletion of one part of the AMPK heterotrimeric complex 

results in protein dysregulation of other parts of the complex, as there was no 

detectable alpha protein (pan-AMPK alpha antibody) in Prkab1tm1b/tm1b spleen lysates 

(Supplementary Fig. 1B).  

At 16 weeks of age, Prkab1tm1b/tm1b mice had significantly reduced 

haemoglobin (Fig. 1A) and haematocrit (Fig. 1B). A reduction in erythrocyte number 

(Fig. 1C) and mean corpuscular haemoglobin concentration (Fig. 1D) was only 

observed in a sex-specific manner, however, erythrocytes in Prkab1tm1b/tm1b mice were 

significantly smaller (Fig. 1E) with an increased red blood cell distribution width 

(Fig. 1F) in both sexes. These altered erythrocyte indices indicate a microcytic anemia 

with anisocytosis, similar to that reported in mice deficient in Prkaa1 or Prkag1 [4-7]. 

The leukocyte lineage was unaffected by deletion of Prkab1 (Supplementary Fig. 1C) 

and there were no differences in the circulating platelet count (Supplementary Fig. 

1D). However, there was an increase in the size of the platelets in both sexes 

(Supplementary Fig. 1E). At 4 and 6 weeks of age the anemia was normocytic 

(Supplementary Fig. 2A-G and data not shown). 

Scanning electron microscopy confirmed anisocytosis with erythrocytes from 

Prkab1tm1b/tm1b mice showing variable appearances; features of acanthocytes, 

schistocytes, stomatocytes and echinocytes (Fig. 1G). We then determined the 

osmotic resistance with Prkab1-deficient erythrocytes having a left-shifted curve 

indicative of increased osmotic resistance (Fig. 1H) in agreement with the previously 

observed findings in Prkaa1 and Prkag1-deficient mice [4-7]. 

 At necropsy, Prkab1tm1b/tm1b mice presented with splenomegaly (Fig. 2A-B), 

although not to the same degree as Prkag1-/- and Prkaa1-/- mice [4-7]. We determined 

the level of total bilirubin in the plasma, an indicator for erythrocyte destruction, and 

although increased in Prkab1tm1b/tm1b mice this did not reach significance in any of the 

cohorts tested (Fig. 2C). Prkab1tm1b/tm1b spleens showed an expansion of the 



6 

peripheral red pulp due to increased extramedullary hematopoiesis and increased red 

cell breakdown with haemosiderin in the red pulp (Fig. 2D). Hemolytic anemia often 

results in changes in tissue iron deposits and we found a significant increase in splenic 

iron deposits in Prkab1tm1b/tm1b mice (Fig. 2E) with a concomitant increase in 

circulating levels of ferritin (Supplementary Fig. 3A) and decrease in iron 

concentration (Supplementary Fig. 3B). Circulating erythropoietin was significantly 

increased in Prkab1tm1b/tm1b mice (Fig. 2F), as was the percentage of reticulocytes 

(Fig. 2G). 

There was an increase in the ratio of Ter119+ to CD45+ cells in the spleen 

(Fig. 2H) as well as an increase in percentage of erythroblasts (Fig. 2I) and 

reticulocytes, with a concomitant decrease in mature erythrocytes (Fig. 2J). The bone 

marrow showed a reduction in adipocytes of the marrow stroma and a mild 

hematopoietic hyperplasia with a mild increase in the erythroid subsets 

(Supplementary Fig. 3C-E). These observations would suggest a reactive increase in 

erythroid hematopoiesis in both bone marrow and spleen in response to the observed 

hemolytic anemia. A similar hemolytic anemia with compensatory extramedullary 

hematopoiesis has been found in Prkaa1 and Prkag1-deficient mice [4-7]. 

 Previous studies on Prkag1-/- and Prkaa1-/- mice have demonstrated that 

deficiency in either gene results in a decreased half-life in vivo [4, 5, 7]. Via adoptive 

transfer of fluorescently labelled erythrocytes we observed no difference in the half-

life of Prkab1tm1b/tm1b erythrocytes when transferred into wild type mice compared to 

the co-transferred wild type erythrocytes (Supplementary Fig. 3F) or when transferred 

into Prkab1tm1b/tm1b mice (Supplementary Fig. 3G). However, we cannot rule out the 

possibility that the method employed skews the analysis if the ex vivo fluorescent 

labelling preferentially occurs in “normal” erythrocytes given the heterogeneous 

morphological alterations to the erythrocytes in Prkab1tm1b/tm1b mice. 

In summary we report a key role for the AMPK beta 1 subunit in erythrocyte 

development similar to that observed for alpha 1 and gamma 1 subunits. Deletion of 

Prkab1 resulted in regenerative hemolytic anemia, splenomegaly and splenic iron 

deposition with enhanced erythropoiesis in the spleen and to a lesser extent bone 

marrow. Erythrocytes from deficient mice presented with multiple morphological 

alterations and an increased osmotic resistance. 
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Figure legends 

 

Figure 1 Prkab1 deficient mice present with anemia, erythrocyte morphological 

abnormalities and increased erythrocyte osmotic resistance 

A) hemoglobin, B) hematocrit, C) red blood cell count, D) mean corpuscular 

hemoglobin concentration, E) mean corpuscular volume and F) red blood cell 

distribution width of 16 week old Prkab1+/+ and Prkab1tm1b/tm1b mice * P<0.05, ** 

P<0.01, *** P<0.001 and **** P<0.0001 unpaired two-tailed students t test; G) 

representative SEM images of erythrocytes from Prkab1+/+  and Prkab1tm1b/tm1b mice; 

H) osmotic resistance of Prkab1+/+ and Prkab1tm1b/tm1b erythrocytes (combined males 

and females), ****P<0.0001 as determined by a repeated measures 2-way ANOVA 

with Sidak’s multiple comparisons test adjusting for multiple testing, insert derived % 

of NaCl for 50% hemolysis of erythrocytes **** P<0.0001 unpaired two-tailed 

students t test. All data representative of three independent experiments or two mice 

for SEM analysis, each symbol represents an individual mouse with the line at the 

mean except for H) where n = 10 for Prkab1+/+ and n = 9 for Prkab1tm1b/tm1b with 

mean ± standard error of the mean. 

 

Figure 2 Prkab1 deficient mice have splenomegaly, extramedullary hematopoiesis 

and splenic iron deposits 

A) spleen weight B) spleen/body weight ratio (mg/g); C) plasma bilirubin 

concentration; D) H and E stained sections of spleen (100x magnification); E) Perls’ 

stained sections of spleen (100x magnification); F) plasma erythropoietin; G) 

circulating reticulocyte %; H) splenic erythroid (Ter119)/Leukocyte (CD45) ratio; I) 

splenic erythroblast %; J) splenic reticulocyte and erythrocyte %. For all * P<0.05, ** 

P<0.01, *** P<0.001 and **** P<0.0001 unpaired two-tailed students t test except for 

spleen/body weight ratio and Ter119/CD45 ratio which were analysed with a Mann 

Whitney test. All data is representative of three independent experiments or four mice 

for histology analysis, each symbol represents an individual mouse with the line at the 

mean. 
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Supplementary Figure 1 molecular and phenotypic characterisation of Prkab1 

deficient mice 

A) mean gene expression of AMPK subunits in Prkab1+/+ and Prkab1tm1b/tm1b spleen 

RNA n = 5 per genotype with error bars illustrating standard error of the mean; B) 

Immunoblot analysis of AMPK subunits in Prkab1+/+ and Prkab1tm1b/tm1b spleen 

protein lysates * IgG heavy chain; C) platelet count, D) mean platelet volume, E) 

white blood cell count of 16 week old Prkab1+/+  and Prkab1tm1b/tm1b mice * P<0.05, 

** P<0.01, *** P<0.001 and **** P<0.0001 students t test, haematology data is 

representative data of 3 independent experiments each symbol represents an 

individual mouse with the line at the mean. 

 

Supplementary Figure 2 Prkab1tm1b/tm1b mice have altered hematological parameters at 

4 weeks of age 

A) hemoglobin, B) hematocrit, C) red blood cell count, D) mean corpuscular 

hemoglobin concentration, E) red blood cell distribution width,  F) mean corpuscular 

volume and G) mean platelet volume of 4 week old Prkab1+/+ and Prkab1tm1b/tm1b 

mice * P<0.05, ** P<0.01, *** P<0.001 and **** P<0.0001 unpaired two-tailed 

students t test representative data of 2 independent experiments each symbol 

represents an individual mouse with the line at the mean. 

 

Supplementary Figure 3 characterisation of circulating iron, bone marrow 

erythropoiesis and erythrocyte half-life of Prkab1 deficient mice 

A) plasma ferritin concentration; B) plasma iron concentration; C) representative 

H&E stained bone marrow sections from Prkab1+/+ and Prkab1tm1b/tm1b mice (400x 

magnification); D) erythroid (Ter119)/Leukocyte (CD45) ratio on bone marrow from 

Prkab1+/+ and Prkab1tm1b/tm1b mice; E) characterisation of erythropoiesis in the bone 

marrow of Prkab1+/+ and Prkab1tm1b/tm1b mice; in vivo half-life of erythrocytes 

transferred into Prkab1+/+ F) or Prkab1tm1b/tm1b G) mice. For all * P<0.05, ** P<0.01, 

*** P<0.001 and **** P<0.0001 unpaired two-tailed students t test except for 

Ter119/CD45 ratio which was analysed with a Mann Whitney test, representative data 

of 2 independent experiments or four mice for histology analysis, each symbol 

represents an individual mouse with the line at the mean except for F and G) where n 

= 5 with mean ± standard error of the mean. 


