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Optimization in High
Dimensions via Accelerated, Parallel,
and Proximal Coordinate Descent∗

Olivier Fercoq†

Peter Richtárik‡

Abstract. We propose a new randomized coordinate descent method for minimizing the sum of convex
functions, each of which depends on a small number of coordinates only. Our method
(APPROX) is simultaneously Accelerated, Parallel, and PROXimal; this is the first time
such a method has been proposed. In the special case when the number of processors is
equal to the number of coordinates, the method converges at the rate 2ω̄L̄R2/(k + 1)2,
where k is the iteration counter, ω̄ is a data-weighted average degree of separability of
the loss function, L̄ is the average of Lipschitz constants associated with the coordinates
and individual functions in the sum, and R is the distance of the initial point from the
minimizer. We show that the method can be implemented without the need to perform
full-dimensional vector operations, which is the major bottleneck of accelerated coordinate
descent, rendering it impractical. The fact that the method depends on the average degree
of separability, and not on the maximum degree, can be attributed to the use of new safe
large stepsizes, leading to improved expected separable overapproximation (ESO). These
are of independent interest and can be utilized in all existing parallel randomized coordinate
descent algorithms based on the concept of ESO. In special cases, our method recovers
several classical and recent algorithms such as simple and accelerated proximal gradient
descent, as well as serial, parallel, and distributed versions of randomized block coordinate
descent. Due to this flexibility, APPROX had been used successfully by the authors in a
graduate class setting as a modern introduction to deterministic and randomized proximal
gradient methods. Our bounds match or improve upon the best known bounds for each
of the methods APPROX specializes to. Our method has applications in a number of
areas, including machine learning, submodular optimization, and linear and semidefinite
programming.

Key words. randomized coordinate descent, acceleration, parallel methods, proximal methods, com-
plexity, partial separability, convex optimization, big data

AMS subject classifications. 65K05, 90C25, 49M27, 68Q25, 68W10, 68W20, 65Y20

DOI. 10.1137/16M1085905

1. Introduction. Developments in computing technology and the ubiquity of dig-
ital devices have resulted in an increased interest in solving optimization problems of
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2 OLIVIER FERCOQ AND PETER RICHTÁRIK

extremely big sizes. Applications can be found in all areas of human endeavor where
data is available, including the Internet, machine learning, data science, and scientific
computing. The size of these problems is so large that it is necessary to decompose
the problem into smaller, more manageable pieces. Traditional approaches, where it
is possible to rely on full-vector operations in the design of an iterative scheme, must
be revisited. Coordinate descent methods [23, 32] appear as a very popular class of
algorithms for such problems as they can break down the problem into smaller pieces
and can take advantage of sparsity patterns in the data. With big data problems
it is necessary to design algorithms capable of utilizing modern parallel computing
architectures. This resulted in an interest in parallel [33, 44, 18, 11, 29, 19, 26] and
distributed [30, 17] coordinate descent methods.

In this work we focus on the solution of convex optimization problems with a
huge number of variables of the form

(1) min
x∈RN

f(x) + ψ(x).

Here x = (x(1), . . . , x(n)) ∈ RN is a decision vector composed of n blocks with x(i) ∈
RNi , and N =

∑
iNi. We assume that f : RN → R is of the form

(2) f(x) =

m∑
j=1

fj(x),

where fj are smooth convex functions, with ψ : RN → R ∪ {+∞} being a convex
(and lower semicontinuous) block separable regularizer (e.g., the L1 norm).

We now summarize the main contributions of this work.

1.1. Combination of Good Features. We design and analyze the first random-
ized block coordinate descent method (APPROX) which is simultaneously accelerated,
parallel, and proximal. In fact, we are not aware of any published results on accel-
erated coordinate descent which would be either proximal or parallel. Our method
is accelerated in the sense that it achieves an O(1/k2) convergence rate, where k is
the iteration counter. The first gradient method with this convergence rate is due to
Nesterov [21]; see also [47, 3]. An accelerated randomized coordinate descent method,
for convex minimization without constraints, was originally proposed in 2010 by Nes-
terov [23].

Several variants of proximal and parallel (but nonaccelerated) randomized coordi-
nate descent methods have been proposed [5, 33, 11, 30]. In Table 1 we provide a list1

of some recent research papers proposing and analyzing randomized coordinate de-
scent methods. The table substantiates our observation that while the block (“Blck”
column) and proximal (“Prx” column) setup is relatively common in the literature,
parallel methods (“Par” column) are much less studied, and there is just a handful of
papers dealing with accelerated variants (“Acc” column). Moreover, existing acceler-
ated methods are not efficient (“Eff” column)—with the exception of [13]—a point of
crucial importance we will discuss next.

1.2. Efficient Iterations. We identify a large subclass of problems of the form (1)
for which the full-vector operations inherent in accelerated methods can be eliminated.
This contrasts with Nesterov’s accelerated coordinate descent scheme [23], which is

1This list is necessarily incomplete; it was not our goal to be comprehensive. For a somewhat
more substantial review of these and other works, we refer the reader to [33, 11].
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Table 1 An overview of selected recent papers proposing and analyzing the iteration complexity of
randomized coordinate descent methods. The years correspond to the time the papers were
first posted online (e.g., onto arXiv), and not the eventual publication time. “Eff” = the
cost of each iteration is low (in particular, independent of the problem dimension N);
“Blck” = works with blocks of coordinates; “Prx” = can handle proximal setup (has ψ
term); “Par” = can update more blocks per iteration; “Acc” = accelerated, i.e., achieving
the optimal O(1/k2) rate for nonstrongly convex objectives. Our algorithm has all these
desirable properties. In the last column we highlight a single notable feature, necessarily
chosen subjectively, of each work.

Paper Eff Blck Prx Par Acc Notable feature
Leventhal and Lewis ’08 [14] ✓ × × × × quadratic f

Shalev-Shwartz and Tewari ’09 [38] ✓ × �1 × × 1st �1-regularized
Nesterov ’10 [23] × ✓ × × ✓ 1st blck and 1st acc

Richtárik and Takáč ’11 [32] ✓ ✓ ✓ × × 1st proximal
Bradley et al. ’12 [5] ✓ × �1 ✓ × �1-regularized parallel

Richtárik and Takáč ’12 [33] ✓ ✓ ✓ ✓ × 1st general parallel
Shalev-Shwartz and Zhang ’12 [39] ✓ ✓ ✓ × × 1st primal-dual

Necoara et al. ’12 [20] ✓ ✓ × × × 2-coordinate descent
Takáč et al. ’13 [44] ✓ × × ✓ × 1st primal-d. and parallel

Tappenden et al. ’13 [45] ✓ ✓ ✓ × × 1st inexact
Necoara and Clipici ’13 [18] ✓ ✓ ✓ × × coupled constraints

Xiao and Lin ’13 [51] × ✓ × × ✓ improvements on [23, 32]
Fercoq and Richtárik ’13 [11] ✓ ✓ ✓ ✓ × 1st nonsmooth f

Lee and Sidford ’13 [13] ✓ × × × ✓ 1st efficient accelerated
Richtárik and Takáč ’13 [30] ✓ × ✓ ✓ × 1st distributed

Liu et al. ’13 [16] ✓ × × ✓ × 1st asynchronous
Shalev-Shwartz and Zhang ’13 [41] ✓ × ✓ × ✓ acceleration in the primal

Richtárik and Takáč ’13 [29] ✓ × × ✓ × 1st arbitrary sampling
This paper ’13 ✓ ✓ ✓ ✓ ✓ 5 times ✓

impractical due to this bottleneck. Having established his convergence result, Nes-
terov made the following observation [23]:

However, for some applications . . . the complexity of one iteration of the
accelerated scheme is rather high since for computing yk it needs to operate
with full-dimensional vectors.

Subsequently, in part due to these issues, the work of the community focused
on simple methods as opposed to accelerated variants. For instance, Richtárik and
Takáč [32] use Nesterov’s observation to justify their focus on nonaccelerated methods
in their work on coordinate descent methods in the proximal/composite setting.

Recently by a careful modification of Nesterov’s method Lee and Sidford [13] were
able to avoid full-dimensional operations in the case of minimizing a convex quadratic
without constraints. This was achieved by introducing an extra sequence of iterates
and observing that for quadratic functions it is possible to compute partial derivative
of f evaluated at a linear combination of full-dimensional vectors without ever forming
the combination. We extend the ideas of Lee and Sidford [13] to our general setting
(1) in the case when fj(x) = φj(a

T
j x), where φj are scalar convex functions with

Lipschitz derivative and the vectors aj are block-sparse.

1.3. Flexibility. APPROX is a remarkably versatile method, encoding several
classical, recently developed, and new optimization methods as special cases. These
variants are achieved by combinations of four design elements (see Table 2). In partic-
ular, by choosing to group all coordinates into a single block (n = 1), the only sensible
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Table 2 The methods in this table all arise as special cases of APPROX by varying four elements:
the presence and form of the proximal term ψ in the problem formulation (“Prx”), the
number of blocks n we decide to split the variable x ∈ RN into (“Blck”), the choice of the

block samplings Ŝ, and the choice of the stepsize parameter θk. (GD = gradient descent;
BCD = block coordinate descent.)

Method Prx ψ Blck n Sampling Ŝ θk

GD 0 1 Ŝ = {1} wp 1 constant

Projected GD set indicator 1 Ŝ = {1} wp 1 constant

Proximal GD any 1 Ŝ = {1} wp 1 constant

Acc Proximal GD [47, 3] any 1 Ŝ = {1} wp 1 as in APPROX
Serial BCD [32] separable any serial uniform constant
Parallel BCD [33] separable any any uniform constant

Distributed BCD [30] separable any distributed constant
Acc Distr BCD [10] separable any distributed as in APPROX

sampling is to pick this block with probability 1, which makes the method determin-
istic. This corresponds to the first four methods in Table 2. To obtain the first three,
we need to modify the stepsizes in APPROX (Algorithm 2) so that θk = θ0 for all k.
Doing this, we obtain simple (i.e., nonaccelerated) gradient descent in three varieties,
depending on the choice of the proximal term: gradient descent (GD, no proximal
term), projected GD (indicator function of a convex constraint set), and proximal
GD. If we decrease the stepsizes as prescribed by APPROX, we recover Tseng’s ac-
celerated proximal gradient method. Let us now look at the last four methods in the
table, all of which correspond to a setting with a nontrivial block decomposition and
a general (but block-separable) proximal term. If we set θk = θ0 for all k, we recover
existing (nonaccelerated) serial (UCDC [32]), parallel (PCDM [33]), and distributed
(Hydra [30]) coordinate descent methods, depending on the choice of the sampling.
Finally, a follow-up paper to our work looks at APPROX specialized to a distributed
sampling (Hydra2 [10]). This last method was applied to solving a problem involving
50 billion variables.

1.4. New Stepsizes. We propose new stepsizes for parallel coordinate descent
methods, based on a new expected separable overapproximation (ESO). These step-
sizes can for some classes of problems (e.g., fj = quadratics) be much larger than
the stepsizes proposed for the (nonaccelerated) parallel coordinate descent method
(PCDM) in [33]. Let ωj be the number of blocks function fj depends on. The
stepsizes, and hence the resulting complexity, of PCDM depend on the quantity
ω = maxj ωj. However, our stepsizes take all the values ωj into consideration, and the
result of this is a complexity that depends on a data-weighted average ω̄ of the values
ωj . Since ω̄ can be much smaller than ω, our stepsizes result in dramatic acceleration
for our method and other methods whose analysis is based on an ESO [33, 11, 30].

1.5. Contents. The rest of the paper is organized as follows. In section 2 we
outline a number of notable applications our method has found since it was first
published [12]. We then describe new long stepsizes for parallel coordinate descent
methods (applying more widely than to APPROX), based on novel assumptions, and
compare them with existing stepsizes (section 3). The APPROX algorithm and the
main complexity result are described in section 4. Subsequently, we give a proof of
the result (section 5). We then describe an efficient implementation of our method,
one that does not require the computation of full-vector operations (section 6), and
finally comment on our numerical experiments (section 7).
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1.6. Notation. It will be convenient to define natural operators acting between
the spaces RN and RNi. In particular, we will often wish to lift a block x(i) from
RNi to RN , filling the coordinates corresponding to the remaining blocks with ze-
ros. Likewise, we will project x ∈ RN back into RNi . We will now formalize these
operations.

Let U be the N × N identity matrix, and let U = [U1, U2, . . . , Un] be its de-
composition into column submatrices Ui ∈ RN×Ni. For x ∈ RN , let x(i) be the
block of variables corresponding to the columns of Ui, that is, x(i) = UT

i x ∈ RNi ,
i = 1, 2, . . . , n. Any vector x ∈ RN can be written, uniquely, as x =

∑n
i=1 Uix

(i). For

h ∈ RN and ∅ �= S ⊆ [n]
def
= {1, 2, . . . , n}, we write

(3) h[S] =
∑
i∈S

Uih
(i).

In other words, h[S] is a vector in RN obtained from h ∈ RN by zeroing out the
blocks that do not belong to S. For convenience, we will also write

(4) ∇if(x)
def
= (∇f(x))(i) = UT

i ∇f(x) ∈ RNi

for the vector of partial derivatives with respect to coordinates belonging to block i.
With each block i ∈ [n] we associate a positive definite matrix Bi ∈ RNi×Ni and

a scalar vi > 0, and equip RNi and RN with the norms

(5) ‖x(i)‖(i) def
= 〈Bix

(i), x(i)〉1/2, ‖x‖v def
=

(
n∑

i=1

vi‖x(i)‖2(i)
)1/2

.

The corresponding conjugate norms (defined by ‖s‖∗ = max{〈s, x〉 : ‖x‖ ≤ 1}) are

(6) ‖x(i)‖∗(i) def
= 〈B−1

i x(i), x(i)〉1/2, ‖x‖∗v =

(
n∑

i=1

v−1
i (‖x(i)‖∗(i))2

)1/2

.

We also write ‖v‖1 =
∑

i |vi|.
Example 1 (blocks). We now illustrate the above notation in two extreme situ-

ations:
1. Blocks correspond to coordinates. That is, n = N , and hence Ni = 1 for all i.

In this case, Ui = ei is the ith unit coordinate vector, and hence x(i) = eTi x is
the ith coordinate of x. For h ∈ RN , the vector h[S] ∈ RN has ith coordinate

equal to h(i) if i ∈ S and to 0 otherwise. The vector ∇if(x) = (∇f(x))(i) =
eTi ∇f(x) is the ith partial derivative of f at x. Primal block norm ‖x(i)‖(i)
reduces to B

1/2
i |x(i)| for some positive scalar Bi, and the primal norm in RN

is a weighted Euclidean norm: ‖x‖v = (
∑n

i=1 vi(x
(i))2)1/2. The dual norms

have an analogous meaning.
2. All coordinates belong to a single block. That is, n = 1, and hence N1 = N .

In this case, U1 = I is the identity matrix, and hence x(1) = x. Further,
h[S] = h if S = {1} and h[S] = 0 if S = ∅. The vector ∇1f(x) is the gradient

of f at x. The primal block norm ‖x(1)‖(1) is simply equal to 〈B1x, x〉1/2, and
the primal norm in RN is a weighted version thereof: ‖x‖v =

√
v1〈B1x, x〉1/2.
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Table 3 Selected applications of APPROX, developed by others after the publication of [12].

Application Paper Section
Empirical risk minimization [10, 15] 2.1
Submodular optimization Ene and Nguyen [9] 2.2

Packing and covering linear programs Allen-Zhu and Orecchia [1] 2.3
Least-squares semidefinite programming Sun, Toh, and Yang [43] 2.4

2. Applications. In this section we describe four applications areas for the AP-
PROX algorithm, all motivated and building on the developments in the earlier version
of this paper where the APPROX method was first developed [12] (see Table 3). This
section therefore contains new material not present in [12]. It is not necessary for the
reader at this point to know any details about APPROX beyond what was mentioned
in the introduction; the purpose here is to stress that the method has a wide array of
applications.

2.1. Empirical Risk Minimization. Empirical risk minimization (ERM) is a pow-
erful and immensely popular paradigm for training statistical (machine) learning mod-
els [37]. In statistical learning, one wishes to “learn” an unknown function h∗ : X → Y,
where X (set of samples) and Y (set of labels) are arbitrary domains. Roughly
speaking, the goal of statistical learning is to find a function (predictor, hypothe-
sis) h : X → Y from some predefined set (hypothesis class) H of predictors which in
some statistical sense is the best approximation of h∗. In particular, we assume that
there is an unknown distribution D over ξ ∈ X . Given a loss function � : Y ×Y → R,
we define the risk (generalization error) associated with predictor h ∈ H to be

(7) LD(h) = Eξ∼D �(h(ξ), h∗(ξ)).

The goal of statistical learning is to find h ∈ H of minimal risk:

(8) min
h∈H

LD(h).

A natural, albeit in general intractable, choice of a loss function in some applications
is �(y, y′) = 0 if y = y′ and �(y, y′) = 1 otherwise.

Let X be a collection of images, let Y = {−1, 1}, and let h∗(ξ) be 1 if image ξ
contains an image of a cat, and h∗(ξ) = −1 otherwise. If we are able to learn h∗, we
will be able to detect images of cats. Problems where Y consist of two elements are
called classification problems. The domain set can instead represent a video collection,
a text corporus, a collection of emails, or any other collection of objects which we can
represent mathematically. If Y is a finite set consisting of more than two elements,
we speak of multiclass classification. If Y = R, we speak of regression.

One of the fundamental issues making (8) difficult to solve is the fact that the
distribution D is not known. ERM is a paradigm for overcoming this obstacle, assum-
ing that we have access to independent samples from D. In ERM, we first collect a
training set of independent and identically distributed samples and their labels; that
is, S = {(ξj , yj) ∈ X × Y : j = 1, 2, . . . ,m}, where yj = h∗(ξj). Subsequently, we
replace the expectation in (7) defining the risk by a sample average approximation,
which defines the empirical risk:

LS(h) =
1

m

m∑
j=1

�(h(ξj), yj).
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The ERM paradigm is to solve the empirical risk minimization problem

(9) min
h∈H

LS(h)

instead of the harder risk minimization problem (8). In practice, H is often chosen
to be a parametric class of functions described by a parameter x ∈ Rd. For instance,
let X ⊆ Rd (d = number of features) and Y = R, and consider the class of linear
predictors H = {h : h(ξ) = x�ξ}. Clearly, h is uniquely defined by x ∈ Rd. Defining
�j : R→ R via �j(t) =

1
m�(t, yj), and setting fj(x) = �j(ξ

T
j x), we have

f(x)
def
=

m∑
j=1

fj(x) =

m∑
j=1

�j(ξ
T
j x) = LS(h).

Hence, the ERM problem fits our framework (1)+(2), with ψ ≡ 0. However, in
practice one often uses nonzero ψ, which is interpreted as a regularizer, and is included
in order to prevent overfitting and hence allow the estimator to generalize to future,
unobserved samples.

If the number of features is larger than the number of examples (d � m), ran-
domized coordinate descent is an efficient algorithm for solving (1) [32, 33, 40]. If the
training set S is so large that it does not fit the memory (or disk space) of a single
machine, one needs to employ a distributed computing system and solve ERM via a
distributed optimization algorithm. One option is the use of distributed coordinate
descent [31, 17], known as Hydra. APPROX has been successfully applied in the dis-
tributed setting, leading to the Hydra2 method [10]. In this work, the authors solve
an ERM problem involving a training set of several terabytes in size, and 50 billion
features.

If the number of examples in the training set is larger than the number of features
(m � d), it is typically not efficient to employ randomized coordinate descent, or
APPROX, to the ERM problem directly. Instead, the state-of-the-art methods are
variants of randomized coordinate descent applied to the dual problem.2

The (Fenchel) dual of the regularized ERM problem for linear predictors consid-
ered above has the form

min
y∈Rm

ψ∗

⎛
⎝ 1

m

m∑
j=1

yjξj

⎞
⎠+

1

m

m∑
j=1

�∗j(−yj),

where ψ∗ (resp., �∗j ) is the Fenchel conjugate of ψ (resp., �j). The function y �→
ψ∗( 1

m

∑
j yjξj) has Lipschitz gradient if we assume that ψ is strongly convex, and

y �→ 1
m

∑m
j=1 �

∗
j(−yj) is separable. This also fits the framework (1)+(2), f corre-

sponding to the first part of the objective (and consisting of a single summand), and
ψ corresponding to the second part of the objective (block separability is implied by
separability).

We developed APPROX with ERM as an application in mind, and hence our nu-
merical experiments in section 7 consider two key ERM problems: the Lasso problem
and the support vector machine (SVM) problem.

2For a detailed comparison of the application of coordinate descent to the primal vs. dual problem,
we refer the reader to the work of Csiba and Richtárik [7]. One of the conclusions of that work is that
in the case of dense training data and L2 regularizer, primal coordinate descent is better than dual
coordinate descent, in theory, precisely when d > m. For sparse and structured data, the answer is
more intricate.
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Following our paper, Lin, Lu, and Xiao [15] proposed a version of APPROX
designed for strongly convex problems. Their motivation was that practitioners often
choose regularizers that are at the same time separable and strongly convex. This
leads to problems for which we have a good lower bound on the strong convexity
parameter. With this additional knowledge, they showed that the rate of convergence
of a properly modified APPROX algorithm, applied to the dual problem, leads to
state-of-the-art complexity for a class of ERM problems.

2.2. Submodular Optimization. Ene and Nguyen [9] showed how the APPROX
algorithm leads to a state-of-the-art method for minimizing decomposable submodular
functions. Submodular minimization has a vast and growing array of applications,
including image segmentation [36, 9], graphical model structure learning, experimental
design, Bayesian variable selection, and minimizing matroid rank functions [2].

We now briefly introduce the notion of submodularity. Let V = {1, 2, . . . , d} be a
finite ground set. A real-valued set function φ : 2V → R is called modular if φ(∅) = 0
and there exists a vector w ∈ Rd such that φ(A) =

∑
i∈A wi for all ∅ �= A ⊆ V . It is

called submodular if φ(A)+φ(B) ≥ φ(A∩B)+φ(A∪B) for any two sets A,B ⊆ V . An
equivalent and often more intuitive characterization of submodularity is the following
“diminishing returns property”: φ is submodular if and only if for all A ⊆ B ⊆ V and
k ∈ V such that k /∈ B we have φ(A ∪ {k})− φ(A) ≥ φ(B ∪ {k})− φ(B).

Ene and Nguyen [9] consider the decomposable submodular minimization problem

(10) min
A⊆V

n∑
i=1

φi(A),

where φi : 2
V → R are simple submodular functions (simplicity refers to the assump-

tion that it is simple to minimize φi plus a modular function). Instead of solving (10)
directly, one can focus on solving the unconstrained convex minimization problem

(11) min
z∈Rd

n∑
i=1

(
φ̂i(z) +

1

2n
‖z‖2

)
,

where ‖ · ‖ is the standard Euclidean norm, and φ̂i : R
d → R is the Lovász extension

of φi (i.e., the support function of the base polytope Pi ⊂ Rd of φi). Given a solution
z, once recovers the solution of (10) by setting

(12) A = A(z) = {k ∈ V : zk ≥ 0}.
Further, instead of solving (11), one focuses on its (Fenchel) dual:

(13) min
x(1)∈P1,...,x(n)∈Pn

f(x)
def
=

1

2

∥∥∥∥∥
n∑

i=1

x(i)

∥∥∥∥∥
2

.

It can be shown that if x = (x(1), . . . , x(n)) ∈ Rnd def
= RN solves (13), then

(14) z = −
n∑

i=1

x(i)

solves (11). Note that f is a convex quadratic function. If we let ψ be the indicator

function of the set P
def
= P1 × · · · × Pn ⊆ RN , i.e., ψ(x) = 0 if x ∈ P and ψ(x) = +∞

otherwise, then (13) is of the form (1), where Ni = d for all i. It remains to apply
the APPROX method to this problem and transform the solution back via (14) and
then (12) to obtain solution of the original problem (10).
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2.3. Packing and Covering Linear Programs. Packing and covering problems
are a pair of mutually dual linear programming problems of the form

Packing LP: max
x≥0
{1Tx : Ax ≤ 1},

Covering LP: min
y≥0
{1Ty : AT y ≤ 1},

where A is a real matrix, and 1 denotes the vector of appropriate dimension with all
entries equal to 1. These problems become more difficult as the size of A grows since
each iteration of interior-point solvers becomes more expensive.

Allen-Zhu and Orecchia [1] developed algorithms for these problems whose com-
plexity is O(NA log(NA) log(ε

−1)/ε) for packing and O(NA log(NA) log(ε
−1)ε−1.5) for

covering LP, respectively. This complexity is nearly linear in the size of the problem
NA = nnz(A) (number of nonzero entries in A), does not depend on the magnitude of
the elements of A, and has a better dependence on the accuracy ε than other nearly
linear time approaches. The improvement in the complexity is due to the use of accel-
erated proximal coordinate descent techniques such as those developed in our paper,
combined with extra techniques, such as the use of an exponential penalty.

2.4. Least Squares Semidefinite Programming. Semidefinite programming has
a very important role in optimization due to its ability to model and efficiently solve
a wide array of problems appearing in fields such as control, network science, signal
processing, and computer science [48, 46, 4, 49]. In semidefinite programming, one
aims to minimize a linear function in a matrix variable, subject to linear equality
and inequality constraints and the additional requirement that the matrix variable be
positive semidefinite.

Sun, Toh, and Yang [43] consider the canonical semidefinite program (SDP)

min
X∈Sn

+, s∈RmI
〈C,X〉

subject to AE(X) = bE , AI(X) = s, L ≤ X ≤ U, l ≤ s ≤ u,
where 〈C,X〉 is the trace inner product, Sn+ is the cone of n × n symmetric positive
semidefinite matrices, AE : Sn+ → RmE and AI : Sn+ → RmI are linear maps, L ≤ U
are given positive semidefinite matrices, and l ≤ u are given vectors in RmI .

The above SDP can be solved by a proximal point algorithm (PPA) of Rockafellar
[34, 35]. In each iteration of PPA, one needs to solve a least-squares semidefinite
program (LS-SDP) of the form

(Xk+1, sk+1) = arg min
X∈Sn

+,s∈R
mI

〈C,X〉+ 1

2σk
(‖X −Xk‖2 + ‖s− sk‖2)

subject to AE(X) = bE , AI(X) = s, L ≤ X ≤ U, l ≤ s ≤ u,

where (Xk, sk) is the previous iterate, and σk > 0 a regularization parameter. Sun,
Toh, and Yang [43] observe that the dual of LS-SDP has block-separable constraints
and can hence be written in the form (1), with either 2 or 4 blocks (n = 2 or n = 4).
They used this observation as a starting point to propose new algorithms for LS-
SDP that combine advanced linear algebra techniques, a fine study of the errors
made by each inner solver, and coordinate descent ideas. They consider APPROX
and block coordinate descent as natural competitors to their specialized methods.
They implemented the methods using 4 blocks, each equipped with a nontrivial norm
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defined by a well-chosen positive semidefinite matrix Bi ∈ RNi×Ni and approximate
solutions to the proximity operators. Finally, Sun, Toh, and Yang conducted extensive
experiments on 616 SDP instances coming from relaxations of combinatorial problems.
It is worth noting that on these instances, APPROX is vastly faster than standard
(nonaccelerated) block coordinate descent.

3. Stepsizes for Parallel Coordinate Descent Methods. The framework for de-
signing and analyzing (nonaccelerated) PCDMs, developed by Richtárik and Takáč
[33], is based on the notions of block sampling and expected separable overapproxima-
tion (ESO). We now briefly review this framework, as our accelerated method is cast
in it, too. Informally, a block sampling is the random law describing the selection
of blocks in each iteration. An ESO is an inequality, involving f and Ŝ, defining
stepsize/ESO constants v1, . . . .vn, which are in turn used to compute updates to se-
lected blocks. The complexity analysis in our paper is based on the following generic
assumption.

Assumption 1 (expected separable overapproximation [33, 11]).
1. f is convex and differentiable.
2. Ŝ is a uniform block sampling. That is, Ŝ is a random subset of [n] =
{1, 2, . . . , n} with the property3 that P(i ∈ Ŝ) = P(j ∈ Ŝ) for all i, j ∈ [n].

Let τ
def
= E[|Ŝ|].

3. There are computable constants v = (v1, . . . , vn) > 0 for which the pair (f, Ŝ)
admits the ESO

(15) E
[
f(x+ h[Ŝ])

]
≤ f(x) + τ

n

(
〈∇f(x), h〉+ 1

2
‖h‖2v

)
, x, h ∈ RN .

If the above inequality holds, for brevity we will write4 (f, Ŝ) ∼ ESO(v), indicating
that v depends both on f and Ŝ.

In the context of PCDMs, and for uniform samplings, the ESO inequality (15)
was introduced and systematically studied by Richtárik and Takáč [33]. An ESO
inequality for distributed sampling was developed in [30] and further refined in [10].
A PCDM with a nonuniform sampling, and the associated nonuniform ESO inequality,
was proposed in [29].

Note that part 1 of the above assumption involves f only; that is, it is an as-
sumption on the smooth part of the objective function describing the problem. On
the other hand, part 2 of the assumption is fully in the hands of the practitioner—
and is in principle independent of the problem itself. That is, Ŝ is a parameter of
the method, and hence one can decide how to choose this parameter. Note that we
restrict our attention to uniform samplings. However, the results of this paper were
extended after the publication of [12], and, in particular, the uniformity assumption
was lifted. This also necessitated a change in definition of the ESO inequality (15),
and in the APPROX algorithm (the extended algorithm is referred to by the name
ALPHA [26]). A detailed explanation of why (15) is a reasonable assumption is given

3It is easy to see that if Ŝ is a uniform sampling, then, necessarily, P(i ∈ Ŝ) = E[|Ŝ|]
n

for all
i ∈ [n].

4In [33], the authors write β
2
‖h‖2w instead of 1

2
‖h‖2v. This is because they study families of

samplings Ŝ, parameterized by τ , for which w is fixed and all changes are captured in the constant
β. Clearly, the two definitions are interchangeable, as one can choose v = βw. Here we will need to
compare weights which are not linearly dependent, hence the simplified notation.
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in [33, 11]; here we shall only provide a brief commentary. Recall that the modeler
can choose how the space RN is decomposed into n blocks. If we choose n = 1, then
all coordinates belong to a single block, all randomness is removed from (15), and
APPROX specializes to one of the variants of gradient descent from Table 2. The
ESO inequality then simply requires the gradient of f to be Lipschitz with constant v
with respect to the norm ‖ · ‖(1) (compare this with Theorem 1(ii)). Inequality (15) is
the natural extension of this to the case when it is only allowed to move in a random
subspace of RN . Note that this assumption is always satisfied if the gradient of f is
Lipschitz, for instance, for large-enough constants {vi}. These constants determine
the stepsizes in our method, and hence we need to have easy-to-compute formulas for
{vi}. It turns out that the complexity bound of APPROX improves as these constants
get smaller, which means that tighter bounds are preferable.

Fercoq and Richtárik [11, Theorem 10] observed that inequality (15) is equivalent
to requiring that the gradients of the functions

f̂x : h �→ E
[
f(x+ h[Ŝ])

]
, x ∈ RN ,

be Lipschitz at h = 0, uniformly in x, with constant τ/n, with respect to the norm

‖ ·‖v. Equivalently, the Lipschitz constant is Lf̂ with respect to the norm ‖ ·‖ṽ, where

Lf̂ = τ‖v‖1/n2, ṽ
def
= nv/‖v‖1.

The change of norms is done so as to enforce the weights in the norm to add up to

n, which would roughly enable us to compare different ESOs via constants Lf̂ . The
above observations are useful in understanding what the ESO inequality encodes: By
moving from x to x+ = x + h[Ŝ], one is taking a step in a random subspace of RN

spanned by the blocks belonging to Ŝ. If τ � n, which is often the case in big data
problems,5 the step is confined to a low-dimensional subspace of RN . It turns out
that for many classes of functions arising in applications, for instance, for functions
exhibiting certain sparsity or partial separability patterns, it is the case that the
gradient of f varies much more slowly in such subspaces, on average, than it does in
RN . This in turn would imply that updates h based on minimizing the right-hand
side of (15) would produce larger steps and eventually lead to faster convergence.

3.1. New Model. Consider f of the form (2), i.e., f(x) =
∑m

j=1 fj(x), and let

Cj �= ∅ be the set of blocks function fj depends on. Define ωj
def
= |Cj |, and ω

def
=

maxj ωj . Clearly, any function f is of this form: it suffices to choose m = 1 and
C1 = {1, 2, . . . , n}. However, many functions appearing in applications, notably in
machine learning and statistics, have a natural representation of this form with m
being large and ωj � n for some, most, or all j.

Assumption 2. The functions {fj} have block-Lipschitz gradient with constants
Lji ≥ 0. That is, for all j = 1, 2, . . . ,m and i = 1, 2, . . . , n,

(16) ‖∇ifj(x + Uit)−∇ifj(x)‖∗(i) ≤ Lji‖t‖(i), x ∈ RN , t ∈ RNi .

Note that, under the above assumption, we necessarily have

(17) Lji = 0 whenever i /∈ Cj .

5In fact, one may define a “big data” problem by requiring that the number of parallel processors
τ available for optimization be much smaller than the dimension n of the problem.
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Assumption 2 is stronger than the assumption considered in [33]. Indeed, in [33]
the authors only assumed that the sum, f , as opposed to the individual functions fj ,
has a block-Lipschitz gradient, with constants L1, . . . , Ln:

‖∇if(x+ Uit)−∇if(x)‖∗(i) ≤ Li‖t‖(i), x ∈ RN , t ∈ RNi.

It is easy to see that if the stronger condition is satisfied, then the weaker one is also
satisfied with Li ≤

∑m
j=1 Lji.

3.2. New ESO. The main result of this section is Theorem 1, in which we derive
an ESO inequality for functions satisfying Assumption 2 and the τ -nice sampling (for
some τ ∈ [n]). A sampling is called τ -nice if it picks a set of size τ uniformly at
random from all subsets of size τ . It is, however, possible to derive similar bounds for
all uniform samplings considered in [33] using the same approach. For an alternative
approach to deriving ESO inequalities, one relying on a different assumption on f and
capable of handling arbitrary samplings, we refer the reader to [27].6

In the proof we will refer to two identities established in [33]. First, for the τ -nice
sampling and any set J ⊆ [n], we have the identity

(18) E[|J ∩ Ŝ|2] = |J |τ
n

(
1 +

(|J | − 1)(τ − 1)

max{1, n− 1}
)
.

If, moreover, θ1, . . . , θn are arbitrary real scalars and P(|J ∩ Ŝ| = k) > 0, then

(19) E

⎡
⎣ ∑
i∈J∩Ŝ

θi | |J ∩ Ŝ| = k

⎤
⎦ =

k

|J |
∑
i∈J

θi.

We are now ready to state and prove our result.

Theorem 1. Let f satisfy Assumption 2.
(i) If Ŝ is a τ-nice sampling, then for all x, h ∈ RN ,

(20) E
[
f(x+ h[Ŝ])

]
≤ f(x) + τ

n

(
〈∇f(x), h〉+ 1

2
‖h‖2v

)
,

where

(21) vi
def
=

m∑
j=1

βjLji =
∑

j:i∈Cj

βjLji, i = 1, 2, . . . , n,

βj
def
= 1 +

(ωj − 1)(τ − 1)

max{1, n− 1} , j = 1, 2, . . . ,m.

That is, (f, Ŝ) ∼ ESO(v).
(ii) As a corollary to part (i), for all x, h ∈ RN we have

(22) f(x+h) ≤ f(x)+ 〈∇f(x), h〉+ 1

2
‖h‖2v′ = f(x)+ 〈∇f(x), h〉+ ω̄L̄

2
‖h‖2w,

where v′i =
∑

j ωjLji, and ω̄, L̄, and w = (w1, . . . , wn) are defined by

(23) ω̄
def
=

m∑
j=1

ωj

∑
i Lji∑

k,i Lki
, L̄

def
=

∑
ji Lji

n
, wi

def
=

n∑
j,i ωjLji

m∑
j=1

ωjLji.

6This paper appeared after [12].
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Note that v′ = ω̄L̄w,
∑
wi = n, and that ω̄ is a data-weighted average of the

values {ωj}.
Proof. Statement (ii) is a special case of (i) for τ = n (notice that for n-nice

sampling we have v = v′ and ω̄L̄w = v). We hence only need to prove (i). A
well-known consequence of (16) is

(24) fj(x+ Uit) ≤ fj(x) + 〈∇ifj(x), t〉 + Lji

2
‖t‖2(i), x ∈ RN , t ∈ RNi .

We first claim that for all j,

(25) E
[
fj(x+ h[Ŝ])

]
≤ fj(x) + τ

n

(
〈∇fj(x), h〉+ βj

2
‖h‖2Lj:

)
,

where Lj: = (Lj1, . . . , Ljn) ∈ Rn. That is, (fj, Ŝ) ∼ ESO(βjLj:). Inequality (20)
then follows by adding up7 the inequalities (25) for all j. Let us now prove the claim.8

We fix x and define

(26) f̂j(h)
def
= fj(x+ h)− fj(x)− 〈∇fj(x), h〉.

Since E[f̂j(h[Ŝ])]
(26)
= E[fj(x + h[Ŝ])] − fj(x) − τ

n 〈∇fj(x), h〉, it now only remains to
show that

(27) E
[
f̂j(h[Ŝ])

]
≤ τβj

2n
‖h‖2Lj:

.

We adopt the convention that expectation conditional on an event which happens

with probability 0 is equal to 0. Letting ηj
def
= |Cj ∩ Ŝ|, we can now write

(28) E
[
f̂j(h[Ŝ])

]
=

n∑
k=0

P(ηj = k)E
[
f̂j(h[Ŝ]) | ηj = k

]
.

For any k ≥ 1 for which P(ηj = k) > 0, we now use convexity of f̂j to write

E
[
f̂j(h[Ŝ]) | ηj = k

]
= E

⎡
⎣ f̂j

⎛
⎝1

k

∑
i∈Cj∩Ŝ

kUih
(i)

⎞
⎠ | ηj = k

⎤
⎦

≤ E

⎡
⎣ 1

k

∑
i∈Cj∩Ŝ

f̂j

(
kUih

(i)
)
| ηj = k

⎤
⎦

(19)
=

1

ωj

∑
i∈Cj

f̂j

(
kUih

(i)
)

(24)+(26)

≤ 1

ωj

∑
i∈Cj

Lji

2
‖kh(i)‖2(i) =

k2

2ωj
‖h‖2Lj:

.(29)

7At this step we could have also simply applied Theorem 10 from [33], which gives the formula
for an ESO for a conic combination of functions given ESOs for the individual functions. The proof,
however, also amounts to simply adding up the inequalities.

8This claim is a special case of Theorem 14 in [33], which gives an ESO bound for a sum of
functions fj (here we only have a single function). We include the proof, since in this special case it
is more straightforward.
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Finally, combining (28) and (29), we get (27):

E
[
f̂j(h[Ŝ])

] (29)+(28)

≤
∑
k

P(ηj = k)
k2

2ωj
‖h‖2Lj:

=
1

2ωj
‖h‖2Lj:

E[|Cj∩Ŝ|2] (18)=
τβj
2n
‖h‖2Lj:

,

which concludes the proof.

Note that (23) says that the gradient of f is Lipschitz with respect to the norm
‖·‖w with constant ω̄L̄. We write (23) in terms of the norm ‖·‖w since the weights wi

add up to n, and hence the norm is in some sense comparable in scale to the standard
Euclidean norm. The quantities βj have a natural interpretation. It can be inferred

from the identities established in [33, section 4] that βj = E[|Cj ∩ Ŝ|2]/E[|Cj ∩ Ŝ|].
Alternatively, it can be seen that βj is the expected size of |Cj ∩ Ŝ| conditioned on
the event that the intersection is nonempty.

3.3. Computation of Lji. We now give a formula for the constants Lji in the
case when fj arises as a composition of a scalar function φj , whose derivative has a
known Lipschitz constant (this is often easy to compute), and a linear functional. Let
A be an m×N real matrix, and for j ∈ {1, 2, . . . ,m} and i ∈ [n] define

(30) Aji
def
= eTj AUi ∈ R1×Ni .

That is, Aji is a row vector composed of the elements of row j of A corresponding to
block i.

Theorem 2. Let fj(x) = φj(e
T
j Ax), where φj : R → R is a function with Lφj -

Lipschitz derivative:

(31) |φ′j(s)− φ′j(s′)| ≤ Lφj |s− s′|, s, s′ ∈ R.

Then fj has a block-Lipschitz gradient with constants

(32) Lji = Lφj

(
‖AT

ji‖∗(i)
)2
, i = 1, 2, . . . , n.

In other words, fj satisfies (16) with constants Lji given above.

Proof. For any x ∈ RN , t ∈ RNi, and i we have

‖∇ifj(x+ Uit)−∇ifj(x)‖∗(i)
(4)
= ‖UT

i (eTj A)
T
(
φ′j(e

T
j A(x + Uit))− φ′j(eTj Ax)

) ‖∗(i)
(30)
= ‖AT

jiφ
′
j(e

T
j A(x+ Uit))−AT

jiφ
′
j(e

T
j Ax)‖∗(i)

≤ ‖AT
ji‖∗(i)|φ′j(eTj A(x + Uit))− φ′j(eTj Ax)|

(31)+(30)

≤ ‖AT
ji‖∗(i)Lφj |Ajit| ≤ ‖AT

ji‖∗(i)Lφj‖AT
ji‖∗(i)‖t‖(i),

where the last step follows by applying the Cauchy–Schwarz inequality.

Example 2 (quadratics). Consider the quadratic function

f(x) =
1

2
‖Ax− b‖2 = 1

2

m∑
j=1

(eTj Ax− bj)2.

Then fj(x) = φj(e
T
j Ax), where φj(s) =

1
2 (s− bj)2 and Lφj = 1.
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Table 4 Lipschitz constants of the derivative of selected scalar loss functions.

Loss φ(s) Lφ

Square loss s2/2 1
Logistic loss log(1 + es) 1/4

Table 5 ESO stepsizes for coordinate descent methods suggested in the literature in the case of a
quadratic f(x) = 1

2
‖Ax− b‖2. For simplicity, we consider the setup with elementary block

sizes (Ni = 1) and the absolute value norm (this corresponds to Bi = 1).

Paper vi

Richtárik and Takáč [33] vrti =
∑m

j=1

(
1 +

(ω−1)(τ−1)
max{1,n−1}

)
A2

ji

Necoara and Clipici [19] vnci =
∑

j:i∈Cj

∑n
k=1A

2
jk

This paper vfri =
∑m

j=1

(
1 +

(ωj−1)(τ−1)

max{1,n−1}
)
A2

ji

(i) Choose n = 1; that is, all coordinates belong to a single block only. Further, let
B1 (recall that Bi is the positive definite matrix defining the norm associated
with block i) be the N × N identity matrix. Then Lj1 = Lφj (‖AT

j:‖∗(1))2 =∑n
i=1A

2
ji.

(ii) Consider the block setup with Ni = 1 (all blocks are of size 1) and Bi = 1 for
all i ∈ [n]. Then Lji = Lφj(‖AT

ji‖∗(i))2 = A2
ji.

(iii) Choose nontrivial block sizes and define data-driven block norms with Bi =
AT

i Ai, where Ai = AUi, assuming that the matrices AT
i Ai are positive definite

(necessarily, Ni ≤ m). The idea here is that data-driven norms better capture
the curvature of the function in the subspaces spanned by the blocks. Then

Lji = Lφj(‖AT
ji‖∗(i))2

(6)
= 〈(AT

i Ai)
−1AT

ji, A
T
ji〉

(30)
= eTj Miej ,

where Mi
def
= Ai(A

T
i Ai)

−1AT
i ∈ Rm×m. Since Mi is a projection matrix, all

its eigenvalues are either 0 or 1, and tr(Mi) = rank(Ai) = Ni. In particular,
its diagonal elements, Lji, satisfy 0 ≤ Lji ≤ 1 and

∑
j Lji = Ni.

Table 4 lists constants Lφ for selected scalar loss functions φ popular in machine
learning. In Table 5 we list stepsizes for coordinate descent methods proposed in the
literature. For simplicity of comparison, this is done for the setup described in case (i)
in the above example. It can be seen that our stepsizes are better than those proposed
by Richtárik and Takáč [33] and those proposed by Necoara and Clipici [19]. Indeed,
vrti ≥ vfri for all i. The difference grows as τ grows, and there is equality for τ = 1.
We also have ‖vnc‖1 ≥ ‖vfr‖1, but here the difference decreases with τ , and there is
equality for τ = n.

4. Accelerated Parallel and Proximal Coordinate Descent. We are interested
in solving the regularized optimization problem

(33)
minimize F (x)

def
= f(x) + ψ(x)

subject to x = (x(1), . . . , x(n)) ∈ RN1 × · · · ×RNn = RN ,
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where ψ : RN → R ∪ {+∞} is a (possibly nonsmooth) convex regularizer that is
separable in the blocks x(i):

(34) ψ(x) =

n∑
i=1

ψi(x
(i)).

The functions ψi : R
Ni → R∪{+∞} are assumed to be convex and closed (i.e., lower

semicontinuous).

4.1. The Algorithm. We now describe our method (Algorithm 1). It is presented
here in a form that facilitates analysis and comparison with existing methods. In
section 6 we rewrite the method in a different (equivalent) form—one that is geared
toward practical efficiency.

Algorithm 1 APPROX: Accelerated Parallel and Proximal Coordinate Descent

1: Choose x0 ∈ RN and set z0 = x0 and θ0 = τ
n

2: for k ≥ 0 do
3: yk = (1 − θk)xk + θkzk
4: Generate a random set of blocks Sk ∼ Ŝ
5: zk+1 = zk
6: for i ∈ Sk do

7: z
(i)
k+1 = argminz∈RNi

{
〈∇if(yk), z − y(i)k 〉+ nθkvi

2τ ‖z − z(i)k ‖2(i) + ψi(z)
}

8: end for
9: xk+1 = yk +

n
τ θk(zk+1 − zk)

10: θk+1 =

√
θ4
k+4θ2

k−θ2
k

2
11: end for

The method starts with x0 ∈ RN and generates three vector sequences denoted
{xk, yk, zk}k≥0. In step 3, yk is defined as a convex combination of xk and zk, which
may in general be full-dimensional vectors. This is not efficient, but we will ignore
this issue for now. In section 6 we show that it is possible to implement the method
in such a way that it not necessary to ever form yk. In step 4 we generate a random
block sampling Sk and then perform steps 5–9 in parallel. The assignment zk+1 ← zk
is not necessary in practice; the vector zk should be overwritten in place. Instead,
steps 5–8 should be seen as saying that we update blocks i ∈ Sk of zk by solving |Sk|
proximal problems in parallel, and we call the resulting vector zk+1. Note in step
9, xk+1 should also be computed in parallel. Indeed, xk+1 is obtained from yk by
changing the blocks of yk that belong to Sk; this is because zk+1 and zk differ in those
blocks only. Note that gradients are evaluated only at yk. We show in section 6 how
this can be done efficiently for some problems, without the need to form yk.

We now formulate the main result of this paper; its proof is in section 5.

Theorem 3. Let Assumption 1 be satisfied, with (f, Ŝ) ∼ ESO(v), where τ =
E[|Ŝ|] > 0. Let x0 ∈ domψ, and assume that the random sets Sk in Algorithm 1 are
chosen independently, following the distribution of Ŝ. Let x∗ be any optimal point of
problem (33). Then the iterates {xk}k≥1 of APPROX satisfy

E[F (xk)− F (x∗)] ≤ 4n2C∗
((k − 1)τ + 2n)2

,(35)
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where

C∗
def
=
(
1− τ

n

)
(F (x0)− F (x∗)) + 1

2
‖x0 − x∗‖2v.(36)

In other words, for any 0 < ε ≤ C∗, the number of iterations for obtaining an ε-
solution in expectation does not exceed

k =

⌈
2n

τ

(√
C∗
ε
− 1

)
+ 1

⌉
.(37)

Let us now comment on the result.

Assumptions. For the complexity result to hold, we do not assume that f is of
the form (1)—all that is needed is Assumption 1.

All Coordinates Belong to a Single Block. If we choose n = 1 (single block),
then the only reasonable sampling is to pick this block with probability 1 (P(Ŝ =
{1}) = 1). The method becomes deterministic. Let B1 be the N ×N identity matrix,
so that ‖ ·‖(1) is the standard Euclidean norm (and hence ‖x‖2v = v‖x‖2). In this case
we recover Tseng’s accelerated proximal gradient descent [47], and the complexity
bound (35) takes the form

(38) F (xk)− F (x∗) ≤ 2v‖x0 − x∗‖2
(k + 1)2

,

where v is the Lipschitz constant of the gradient of f (this is what the assumption
(f, Ŝ) ∼ ESO(v) means for this sampling). Note that Theorem 1 gives a bound on
the Lipschitz constant for f of the form (2) satisfying Assumption 2.

Updating All Blocks. In the case when we update all blocks in one iteration
(τ = n), the method is deterministic, and the bound (35) simplifies to

(39) F (xk)− F (x∗) ≤ 2‖x0 − x∗‖2v
(k + 1)2

=
2 ‖v‖1

n ‖x0 − x∗‖2ṽ
(k + 1)2

,

where, as before, ṽ = nv/‖v‖1. Note that ‖ · ‖ṽ is a weighted norm with weights
adding up to n; which means it is “comparable” to the standard Euclidean norm (all
weights of which are equal to 1 and hence sum up to n). If we use stepsize v proposed
in Theorem 1, then in view of part (ii) of that theorem, bound (39) takes the form

(40) F (xk)− F (x∗) ≤ 2ω̄L̄‖x0 − x∗‖2w
(k + 1)2

,

as advertised in the abstract. Recall that ω̄ is a data-weighted average of the values
{ωj} and that

∑
iwi = n. In contrast, using the stepsizes proposed by Richtárik and

Takáč [33] (see Table 5), we get

(41) F (xk)− F (x∗) ≤
2ω

∑
i Li

n ‖x0 − x∗‖2ṽ
(k + 1)2

.

Note that in the case when the functions fj are convex quadratics (fj(x) =
1
2 (a

T
j x−

bj)
2), for instance, we have Li =

∑
j Lji, and hence the new stepsizes lead to a vast

improvement in the complexity in cases when ω̄ � ω. On the other hand, in cases
where Li �

∑
j Lji (which can happen with logistic regression, for instance), the

result based on the Richtárik–Takáč stepsizes [33] may be better.
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LASSO. We now illustrate our complexity results on the LASSO (L1 regularized
least-squares) problem, which is of the form (1) with

f(x) =
1

2
‖Ax− b‖2, ψ(x) = λ‖x‖1, fj(x) =

1

2
(Aj:x− bj)2,

where A ∈ Rm×N , b ∈ Rm, and λ > 0. If N � m, the state-of-the-art method for
solving LASSO is (nonaccelerated) coordinate descent [38, 32]. As we have seen,
the existing accelerated coordinate descent method of Nesterov [23] requires full-
dimensional operations in each iteration, which makes the method much less efficient
than standard coordinate descent. However, APPROX does not suffer from this issue;
we will show in section 6 that the average cost of a single iteration of APPROX (for
n = N) is proportional to nnz(A)τ/N .

In APPROX we have certain design parameters to decide on. First, we can choose
the number of blocks (n), then we decide how to partition the N coordinates into these
blocks, and, finally, we decide how many (τ) of these blocks we update in a single
iteration. Let K(n, τ) be the total complexity of APPROX specialized to n blocks
and τ block updates per iteration for obtaining an ε-solution. For simplicity, assume
x0 = 0. By setting n = 1 (and hence τ = 1), APPROX specializes to accelerated
(proximal) gradient descent (see Table 6), the cost of a single iteration is proportional
to the number of nonzeros in A (nnz(A)), and we have

K(1, 1)
(38)
=

4nnz(A)
√
v‖x∗‖√

ε
=

4nnz(A)

√∑N
i=1 v(x

i∗)2√
ε

,

where v is the Lipschitz constant of the gradient of f and hence can be chosen
to be λmax(A

TA) or
∑m

j=1 ωj

∑N
i=1A

2
ji (an efficiently computable upper bound on

λmax(A
TA) which we obtain in Theorem 1(ii)). The former bound is better than the

latter, but requires more preprocessing work for the computation of v (which affects
the stepsizes of the method).

Let us now compare these bounds with what we obtain for APPROX with the
setting n = N and τ = N (see Table 6):

(42) K(N,N) =
4 nnz(A)‖x∗‖v√

ε
=

4nnz(A)
√∑N

i=1 vi(x
i∗)2√

ε
,

where vi =
∑m

j=1 ωjA
2
ji. Notice that K(N,N) can be much better than K(1, 1).

Indeed, if the data is sufficiently sparse (parameters ωj being sufficiently small), and
if the largest eigenvalue of ATA is close to its trace, then

m∑
j=1

ωjA
2
ji �

N∑
i=1

m∑
j=1

A2
ji = tr(ATA) ≈ λmax(A

TA),

whence K(N,N)� K(1, 1).
Finally, let us compare APPROX with n = N and τ = 1 with standard coordinate

descent (again, see Table 6). We can observe that APPROX will be better as soon as
k ≥ 8N . Indeed, after k iterations of APPROX, coordinate descent has done twice as
many iterations and the worst-case complexity bounds Bapprox and Bcd compare as

Bapprox ≈ 4N2C∗
k2

=
8N

k
× NC∗

2k
≈ 8N

k
Bcd.
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Table 6 Complexity of coordinate descent, accelerated stochastic dual coordinate ascent (SDCA) and
selected variants of APPROX, when applied to the LASSO problem: minx∈RN

1
2
‖Ax −

b‖2 + λ‖x‖1, where A ∈ Rm×N . APPROX is superior to both coordinate descent and
accelerated SDCA. For simplicity, we assume the starting point is x0 = 0 and define
C∗ = 2(1− τ

n
)(F (0)−F (x∗))+‖x∗‖2v as in Theorem 3. The complexity bounds for APPROX

are exact; we omit constant terms in the complexity bounds for standard coordinate descent,
accelerated SDCA, and in the formulas for cost of 1 iteration. The notation ‖ · ‖v means
a weighted Euclidean norm with weights defined by the vector v = (v1, . . . , vn). Each
algorithm depends on a norm defined in the last column. Note that the norms can differ a
lot.

Method
Cost of

1 iteration
Complexity vi

Coord. descent [32]
nnz(A)

N

NC∗
ε

∑m
j=1 A

2
ji

APPROX (n = N, τ = 1)
2 nnz(A)

N

2N
√
C∗√
ε

∑m
j=1 A

2
ji

Accelerated SDCA [41]
(n = N, τ = 1)

nnz(A) log
(

v‖x∗‖2
ε

) 4
√
2v‖x∗‖√
ε

log
(

v‖x∗‖2
ε

)
maxi

∑m
j=1A

2
ji

APPROX (n = 1, τ = 1)
= Acc. Gradient Descent

2 nnz(A)
2
√
v‖x∗‖√
ε

λmax(ATA)
or∑N

i=1

∑m
j=1 ωjA2

ji

APPROX (n = N, τ = N) 2 nnz(A)
2‖x∗‖v√

ε

∑m
j=1 ωjA2

ji

Less Aggressive Choice of θk. Instead of θk, one may consider any sequence
such that (1− θ′k+1)/(θ

′
k+1)

2 ≤ 1/(θ′k)
2 and θ′0 ≤ τ/n; see [47]. Note that in this case,

one should replace θ2k by (θ′0)
2
∏k

l=1(1− θ′l) in Algorithm 2.

5. Complexity Analysis. In this section we prove Theorem 3.

5.1. Four Lemmas. In the first lemma we summarize well-known properties of
the sequence θk used in Algorithm 1.

Lemma 1 (Tseng [47]). The sequence {θk}k≥0 defined in Algorithm 1 is decreas-
ing and satisfies 0 < θk ≤ 2

k+2n/τ ≤ τ
n ≤ 1 and

(43)
1− θk+1

θ2k+1

=
1

θ2k
.

We now give an explicit characterization of xk as a convex combination of the
vectors z0, . . . , zk.

Lemma 2. Let {xk, zk}k≥0 be the iterates of Algorithm 1. Then, for all k ≥ 0,

(44) xk =
k∑

l=0

γlkzl,

where the coefficients γ0k, γ
1
k, . . . , γ

k
k are nonnegative and sum to 1. That is, xk is

a convex combination of the vectors z0, z1, . . . , zk. In particular, the constants are
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defined recursively in k by setting γ00 = 1, γ01 = 0, γ11 = 1 and for k ≥ 1,

(45) γlk+1 =

⎧⎪⎨
⎪⎩
(1− θk)γlk, l = 0, . . . , k − 1,

θk(1− n
τ θk−1) +

n
τ (θk−1 − θk), l = k,

n
τ θk, l = k + 1.

Moreover, for all k ≥ 0, the following identity holds:

(46) γkk+1 +
n− τ
τ

θk = (1 − θk)γkk .

Proof. We proceed by induction. First, notice that x0 = z0 = γ00z0. This implies
that y0 = z0, which in turn, together with θ0 = τ

n , gives x1 = y0 +
n
τ θ0(z1 − z0) =

z1 = γ01z0 + γ11z1. Assuming now that (44) holds for some k ≥ 1, we obtain

xk+1
(Alg 1, step 9)

= yk +
n

τ
θk(zk+1 − zk)

(Alg 1, step 3)
= (1− θk)xk + θkzk − n

τ
θkzk +

n

τ
θkzk+1(47)

=

k−1∑
l=0

(1− θk)γlk︸ ︷︷ ︸
γl
k+1

zl +
(
(1 − θk)γkk + θk − n

τ
θk

)
︸ ︷︷ ︸

γk
k+1

zk +
(n
τ
θk

)
︸ ︷︷ ︸
γk+1
k+1

zk+1.

By applying Lemma 1, together with the inductive assumption that γlk ≥ 0 for all l,
we observe that γlk+1 ≥ 0 for all l. It remains to show that the constants sum to 1.
This is true since xk is a convex combination of z1, . . . , zk, and by (47), xk+1 is an
affine combination of xk, zk, and zk+1.

Define

z̃k+1
def
= arg min

z∈RN

{
ψ(z) + 〈∇f(yk), z − yk〉+ nθk

2τ
‖z − zk‖2v

}
(5)+(34)

= arg min
z=(z(1),...,z(n))∈RN

n∑
i=1

{
ψi(z

(i)) + 〈∇if(yk), z
(i) − y(i)k 〉+

nθkvi
2τ
‖z(i) − z(i)k ‖2(i)

}
.

From this and the definition of zk+1 we see that

(48) z
(i)
k+1 =

{
z̃
(i)
k+1, i ∈ Sk,

z
(i)
k , i �∈ Sk.

The next lemma is an application to a specific function of a well-known result
that can be found, for instance, in [47, Property 1]. The result was used by Tseng to
construct a simplified complexity proof for a proximal gradient descent method.

Lemma 3 (see [47]). Let ξ(u)
def
= f(yk) + 〈∇f(yk), u− yk〉+ nθk

2τ ‖u− zk‖2v. Then

(49) ψ(z̃k+1) + ξ(z̃k+1) ≤ ψ(x∗) + ξ(x∗)− nθk
2τ
‖x∗ − z̃k+1‖2v.

Our next lemma is a technical result connecting the gradient mapping (producing
z̃k+1) and the randomized block gradient mapping (producing the random vector
zk+1). The lemma reduces to a trivial identity in the case when of a single block
(n = 1). From now on, by Ek we denote the expectation with respect to Sk, keeping
everything else fixed.
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Lemma 4. For any x ∈ RN and k ≥ 0,

(50) Ek

[‖zk+1 − x‖2v − ‖zk − x‖2v
]
=
τ

n

(‖z̃k+1 − x‖2v − ‖zk − x‖2v
)
.

Moreover,

(51) Ek [ψ(zk+1)] =
(
1− τ

n

)
ψ(zk) +

τ

n
ψ(z̃k+1).

Proof. Let Ŝ be any uniform sampling and a, h ∈ RN . By Theorem 4 in [33],

E[‖h[Ŝ]‖2v] =
τ

n
‖h‖2v, E[〈a, h[Ŝ]〉v] =

τ

n
〈a, h〉v,

E[ψ(a+ h[Ŝ])] =
(
1− τ

n

)
ψ(a) +

τ

n
ψ(a+ h),

(52)

where 〈a, h〉v def
=
∑n

i=1 vi〈a(i), h(i)〉. Let h = z̃k+1 − zk. In view of (3) and (48), we
can write zk+1 − zk = h[Sk]. Applying the first two identities in (52) with a = zk − x
and Ŝ = Sk, we get

(53) Ek

[‖zk+1 − x‖2v − ‖zk − x‖2v
]
= Ek

[‖h[Sk]‖2v + 2〈zk − x, h[Sk]〉v
]

(52)
=

τ

n

(‖h‖2v + 2〈zk − x, h〉v
)
=
τ

n

(‖z̃k+1 − x‖2v − ‖zk − x‖2v
)
.

The remaining statement follows from the last identity in (52) used with a = zk.

5.2. Proof of Theorem 3. Using Lemma 2 and convexity of ψ,

(54) ψ(xk)
(44)
= ψ

(
k∑

l=0

γlkzl

)
(convexity)

≤
k∑

l=0

γlkψ(zl)
def
= ψ̂k,

which holds for all k ≥ 0. From this we get

Ek[ψ̂k+1]
(54)+(45)

=

k∑
l=0

γlk+1ψ(zl) +
n

τ
θkEk [ψ(zk+1)]

(51)
=

k∑
l=0

γlk+1ψ(zl) +
n

τ
θk

((
1− τ

n

)
ψ(zk) +

τ

n
ψ(z̃k+1)

)

=

k∑
l=0

γlk+1ψ(zl) +
(n
τ
− 1
)
θkψ(zk) + θkψ(z̃k+1).(55)

Since xk+1 = yk + h[Sk] with h = n
τ θk(z̃k+1 − zk), we can use ESO to bound

Ek[f(xk+1)]
(15)

≤ f(yk) + θk〈∇f(yk), z̃k+1 − zk〉+ nθ2k
2τ
‖z̃k+1 − zk‖2v

= (1− θk)f(yk)− θk〈∇f(yk), zk − yk〉
+ θk

(
f(yk) + 〈∇f(yk), z̃k+1 − yk〉+ nθk

2τ
‖z̃k+1 − zk‖2v

)
.(56)

Note that from the definition of yk in the algorithm, we have

(57) θk(yk − zk) = ((1− θk)xk − yk) + θkyk = (1− θk)(xk − yk).
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For all k ≥ 0 we define an upper bound on F (xk),

(58) F̂k
def
= ψ̂k + f(xk)

(54)

≥ F (xk),

and bound the expectation of F̂k+1 in Sk as follows:

Ek[F̂k+1] = Ek[ψ̂k+1] +Ek[f(xk+1)]

(55)+(56)

≤
k∑

l=0

γlk+1ψ(zl)+
n− τ
τ

θkψ(zk)+(1− θk)f(yk)−θk〈∇f(yk), zk − yk〉

+ θk

(
ψ(z̃k+1) + f(yk) + 〈∇f(yk), z̃k+1 − yk〉+ nθk

2τ
‖z̃k+1 − zk‖2v

)
(49)

≤
k∑

l=0

γlk+1ψ(zl)+
n− τ
τ

θkψ(zk)+(1− θk)f(yk)−θk〈∇f(yk), zk − yk〉

+ θk

(
ψ(x∗) + f(yk) + 〈∇f(yk), x∗ − yk〉

+
nθk
2τ

(‖x∗ − zk‖2v − ‖x∗ − z̃k+1‖2v)
)
.(59)

Using (57), we can now further bound (59) as follows:

Ek[F̂k+1]
(59)+(57)

≤
k−1∑
l=0

γlk+1︸︷︷︸
(45)
= (1−θk)γl

k

ψ(zl) +

(
γkk+1 +

n− τ
τ

θk

)
︸ ︷︷ ︸

(46)
= (1−θk)γk

k

ψ(zk)

+ (1− θk)f(yk) + (1 − θk)〈∇f(yk), xk − yk〉︸ ︷︷ ︸
≤(1−θk)f(xk)

+ θk

(
ψ(x∗) + f(yk) + 〈∇f(yk), x∗ − yk〉︸ ︷︷ ︸

≤F (x∗)

)

+
nθ2k
2τ
‖x∗ − zk‖2v −

nθ2k
2τ
‖x∗ − z̃k+1‖2v

(54)+(58)

≤ (1 − θk)F̂k + θkF (x∗) +
nθ2k
2τ

(‖x∗ − zk‖2v − ‖x∗ − z̃k+1‖2v
)

(50)
= (1 − θk)F̂k + θkF (x∗) +

n2θ2k
2τ2

(‖x∗ − zk‖2v −Ek

[‖x∗ − zk+1‖2v
])
.

Dividing both sides in the last inequality by θ2k, using (43), and rearranging the terms,
we obtain

1− θk+1

θ2k+1

Ek[F̂k+1−F (x∗)]+ n2

2τ2
Ek[‖x∗−zk+1‖2v] ≤

1− θk
θ2k

(F̂k−F (x∗))+ n2

2τ2
‖x∗−zk‖2v.

We now apply expectation to the above inequality and unroll the recurrence, obtaining

(60)
1− θk
θ2k

E[F̂k−F (x∗)]+ n2

2τ2
E[‖x∗−zk‖2v] ≤

1− θ0
θ20

(F̂0−F (x∗))+ n2

2τ2
‖x∗−z0‖2v,
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from which we finally get, for k ≥ 1,

E[F (xk)− F (x∗)]
(58)

≤ E[F̂k − F (x∗)]
(60)

≤ θ2k−1

θ20
(1− θ0)(F̂0 − F (x∗)) +

n2θ2k−1

2τ2
‖x∗ − z0‖2v

≤ 4n2

((k − 1)τ + 2n)2

((
1− τ

n

)
(F (x0)− F (x∗)) + 1

2
‖x0 − x∗‖2v

)
,

where in the last step we have used the facts that F̂0 = F (x0), x0 = z0, θ0 = τ
n and

the estimate θk−1 ≤ 2
k−1+2n/τ from Lemma 1.

6. Implementation without Full-Dimensional Vector Operations. Algor-
ithm 1, as presented, performs full-dimensional vector operations. Indeed, yk is de-
fined as a convex combination of xk and zk. Also, xk+1 is obtained from yk by
changing |Sk| coordinates; however, if |Sk| is small, the latter operation is not costly.
In any case, vectors xk and zk will in general be dense, and hence computation of yk
may cost O(N) arithmetic operations. However, simple (i.e., nonaccelerated) coor-
dinate descent methods are successful and popular precisely because they can avoid
such operations. Adapting ideas from Lee and Sidford [13], we rewrite9 Algorithm 1
into a new form, incarnated as Algorithm 2.

Algorithm 2 APPROX (written in a form facilitating efficient implementation)

1: Pick z̃0 ∈ RN and set θ0 = τ
n , u0 = 0

2: for k ≥ 0 do
3: Generate a random set of blocks Sk ∼ Ŝ
4: uk+1 ← uk, z̃k+1 ← z̃k
5: for i ∈ Sk do

6: t
(i)
k = argmint∈RNi

{
〈∇if(θ

2
kuk + z̃k), t〉+ nθkvi

2τ ‖t‖2(i) + ψi(z̃
(i)
k + t)

}
7: z̃

(i)
k+1 ← z̃

(i)
k + t

(i)
k

8: u
(i)
k+1 ← u

(i)
k − 1−n

τ θk
θ2
k

t
(i)
k

9: end for

10: θk+1 =

√
θ4
k
+4θ2

k
−θ2

k

2
11: end for
12: OUTPUT: θ2kuk+1 + z̃k+1

Note that if instead of updating the constants θk as in line 10 we keep them con-
stant throughout, θk = τ

n , then uk = 0 for all k. The resulting method is precisely the
PCDM algorithm (nonaccelerated parallel block coordinate descent method) proposed
and analyzed in [33].

As it is not immediately obvious that the two methods (Algorithms 1 and 2) are
equivalent, we include the following result. Its proof can be found in the appendix.

Proposition 1 (equivalence). Algorithms 1 and 2 are equivalent. In particular,
if we run Algorithm 2 with z̃0 = x0, where x0 ∈ domψ is the starting point of

9Note that we override the notation z̃k here—it now has a different meaning from that in section 5.
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Algorithm 1, and define

(61) x̃k
def
=

{
z̃0, k = 0,

θ2k−1uk + z̃k, k ≥ 1,

(62) ỹk
def
= θ2kuk + z̃k, k ≥ 0,

then xk = x̃k, yk = ỹk, and zk = z̃k for all k ≥ 0.

In Algorithm 2 we never need to form xk throughout the iterations. The only
time this is needed is when producing the output: xk+1 = θ2kuk+1 + zk+1. More
importantly, the method does need to explicitly compute yk. Instead, we introduce a
new vector, uk, and express yk as yk = θ2kuk + z̃k. The method accesses yk only via
the block gradients ∇if(yk) for i ∈ Sk. Hence, if it is possible to cheaply compute
these gradients without actually forming yk, we can avoid full-dimensional operations.

We now show that this can be done for functions f of the form (2), where fj is
as in Theorem 2:

(63) f(x) =

m∑
j=1

φj(e
T
j Ax).

Let Di be the set of such j for which Aji �= 0. If we write ruk
= Auk and rz̃k = Az̃k,

then, using (63), we can write

(64) ∇if(θ
2
kuk + z̃k) =

∑
j∈Di

AT
jiφ

′
j(θ

2
kr

j
uk

+ rjz̃k).

Assuming we store and maintain the residuals ruk
and rz̃k , the computation of

the product AT
jiφ

′
j(·) costs O(Ni) (we assume that the evaluation of the univariate

derivative φ′j takes O(1) time), and hence the computation of the block derivative
(64) requires O(|Di|Ni) arithmetic operations. Hence on average, computing all block
gradients for i ∈ Sk will cost

C = E

⎡
⎣∑
i∈Ŝ

O(|Di|Ni)

⎤
⎦ =

τ

n

n∑
i=1

O(|Di|Ni).

This will be small if |Di| are small and τ is small. For simplicity, assume all blocks
are of equal size, Ni = b = N/n. Then

C =
bτ

n
×O

(
n∑

i=1

|Di|
)

=
bτ

n
×O

⎛
⎝ m∑

j=1

ωj

⎞
⎠ =

bτm

n
O(ω̃) = τ ×O

(
bmω̃

n

)
,

where ω̃ = 1
m

∑
j ωj . It can be easily shown that the maintenance of the residual

vectors ruk
and rz̃k takes the same amount of time (C), and hence the total work per

iteration is C. In many practical situations, m ≤ n, and often m � n (we focus on
this case in the paper since usually this corresponds to f not being strongly convex)
and ω̄ = O(1). This then means that C = τ ×O(b). That is, each of the τ processors
do work proportional to the size of a single block per iteration.
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The favorable situation described above is the consequence of the block sparsity
of the data matrix A and does not depend on φj insofar as the evaluation of its
derivative takes O(1) work. Hence, it applies to convex quadratics (φj(s) = s2), to
logistic regression (φj(r) = log(1 + exp(s))), and also to the smooth approximation
fμ(x) of f(x) = ‖Ax− b‖1, defined by

fμ(x) =

m∑
j=1

‖eTj A‖∗w∗ψμ

(
|eTj Ax− bj |
‖eTj A‖∗v

)
, ψμ(t) =

{
t2

2μ , 0 ≤ t ≤ μ,
t− μ

2 , μ ≤ t,

with smoothing parameter μ > 0, as considered in [22, 11]. Vector w∗ is as defined in
[11]; ‖ · ‖v is a weighted norm in Rm.

7. Numerical Experiments. In all tests we used a shared-memory workstation
with 4 Intel Xeon X5670 processors (24 cores in total) at 2.93 GHz and 192 GB RAM.
In the experiments, we have departed from the theory in two ways:

(i) Our implementation of APPROX is asynchronous in order to limit commu-
nication costs. For example, on the problem of section 7.2, the asynchronous
implementation is about 5 times faster than the synchronous implementa-
tion, where each processor waits until the others terminate their update of
the variable before proceeding.

(ii) We approximated the τ -nice sampling by a τ -independent sampling as in [33]
(the latter is very easy to generate in parallel; please note that our analysis
can be very easily extended to cover the τ -independent sampling).

For simplicity, in all tests we assume all blocks are of size 1 (Ni = 1 for all i).
However, further speedups can be obtained by working with larger block sizes as then
each processor is better utilized. For the problems we consider, coordinate descent
methods are the state of the art. Hence, all methods we compare are coordinate
descent methods of some variety. These methods share many similar components
(e.g., computation of partial derivative, update of a coordinate, sampling); wherever
possible, in our comparisons we have built all methods using identical components.
Hence, while we often report runtime in the experiments, all differences are a genuine
reflection of differences of the algorithms.

7.1. The Effect of New Stepsizes. In this experiment, we compare the perfor-
mance of the new stepsizes (introduced in section 3.2) with those proposed in [33]
(see Table 5). We generated random LASSO (L1-regularized least-squares) instances

f(x) =
1

2
‖Ax− b‖2, ψ(x) = λ‖x‖1,

with various distributions of the separability degrees ωj (= number of nonzero el-
ements on the jth row of A) and studied the weighted distance to the optimum
‖x∗ − x0‖v for the initial point x0 = 0. This quantity appears in the complexity esti-
mate (37) and depends on τ (the number of processors). We chose a random matrix
of small size, N = m = 1000, as this is sufficient to make our point, and consider
τ ∈ {10, 100, 1000}. In particular, we consider three different distributions of {ωj}:
uniform, intermediate, and extreme. The results are summarized in Table 7. First,
we generated a uniformly sparse matrix with ωj = 30 for all j. In this case, vfr = vrt,
and hence the results are the same. We then generated an intermediate instance, with
ωj = 1 + �30j2/m2�. The matrix has many rows with a few nonzero elements and
some rows with up to 30 nonzero elements. Looking at the table, clearly, the new
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Table 7 Comparison of ESOs in the uniform case.

Uniform Intermediate Extreme
τ ‖x∗‖vfr ‖x∗‖vrt ‖x∗‖vfr ‖x∗‖vrt ‖x∗‖vfr ‖x∗‖vrt

10 10.82 10.82 6.12 6.43 2.78 5.43
100 19.00 19.00 9.30 11.38 4.31 16.08

1000 52.49 52.49 24.00 31.78 11.32 50.52
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−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0
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Fig. 1 Comparison of new (dash-dotted line) and old (dashed line) stepsizes for the dual SVM
problem on the rcv1 dataset. We used only τ = 8 processors and the new stepsizes already
lead to a two times speedup.

stepsizes are better. The improvement is moderate when there are a few processors,
but for τ = 1000, the complexity is 25% better. Finally, we generated a rather ex-
treme matrix with ω1 = 500 and ωj = 3 for j > 1. We can see that the new stepsizes
are much better, even with few processors, and can lead to a 5× speedup.

In the experiments above, we have first fixed a sparsity pattern and then generated
a random matrix A based on it. However, much larger differences can be seen for
special matrices A. Consider the case τ = n. In view of (39), the complexity of
APPROX is proportional to ‖v‖1. Fix ω and ω1, . . . , ωj and let us ask the question,
for what data matrix A will the ratio θ = ‖vrt‖1/‖vfr‖1 be maximized? Since ‖vrt‖1 =
ω
∑

j ‖Aj:‖2 and ‖vfr‖1 =
∑

j ωj‖Aj:‖2, the maximal ratio is given by

max
A

θ
def
= max

α≥0

⎧⎨
⎩ω

m∑
j=1

αj :
m∑
j=1

ωjαj ≤ 1

⎫⎬
⎭ = max

j

ω

ωj
.

The extreme case is attained for some matrix with at least one dense row (ωj) and one
maximally sparse row (ωj = 1), leading to θ = n. So, there are instances for which
the new stepsizes can lead to an up to n× speedup for APPROX when compared to
the stepsizes vrt. Needless to say, these extreme instances are artificially constructed.

In Figure 1, we give the value of the SVM dual objective when minimized by
serial randomized coordinate descent [32] (see section 7.4 for details on this problem).
A similar plot would be obtained with APPROX. The dataset is rcv1 [24]. It consists
of a matrix A with m = 47,236 and N = 20,242 and a vector b. The new stepsizes
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Fig. 2 Comparison of four algorithms for L1-regularized L1 regression on the dorothea dataset:
gradient method (dotted black line), accelerated gradient method ([22], dash-dotted red line),
smoothed parallel coordinate descent method (SPCDM [11], dashed green line) with stepsizes
vfr and APPROX with stepsizes vfr (solid blue line).

are very useful for this problem since ω = maxj ωj = 8,551 and ω̄ ≈ 488 < ω/17 (see
Theorem 1 for the definition of ω̄). In all subsequent experiments we consider these
new stepsizes, be it for accelerated or nonaccelerated parallel coordinate descent.

7.2. L1-Regularized L1 Regression. We wish to find x ∈ R
N that minimizes

‖Ax− b‖1 + λ‖x‖1
with λ = 1. Because the objective is nonsmooth and nonseparable, we apply the
smoothing technique presented in [22] for the first part of the objective and use the
smoothed parallel coordinate descent method (SPCDM) proposed in [11]. The level of
smoothing depends on the expected accuracy: we chose ε = 0.1 (0.0125% of the initial
value obtained at x0 = 0), so the smoothing parameter defined in [11] is μ = 4.2×10−6.

We consider the dorothea dataset [24]. It is a sparse moderate-sized feature
matrix A with m = 800, N = 100,000, ω = 6,061, ω̄ ≈ 1,104.1, and a vector b ∈ Rm.

We compared 4 algorithms (see Figure 2), all run with 4 processors (τ = 4).
As one can see, coordinate descent methods are much more efficient on this problem
than both gradient descent and accelerated gradient descent. Also, APPROX is better
than SPCDM. As the problem is of small size, we could compute the optimal solution
using an interior point method for linear programming and compare the value at each
iteration to the optimal value (Table 8). Each line of the table gives the time needed
by APPROX and PCDM to reach a given accuracy target. In the beginning (until
F (xk) − F (x∗) < 6.4), the algorithms are in a transitional phase. Then, when one
runs the algorithm twice as long, F (xk) − F (x∗) is divided by 2 for SPCDM and
by 4 for APPROX. This highlights the difference in the convergence speeds: O(1/k)
compared to O(1/k2). As a result, APPROX gives an ε-solution in 186.5 seconds,
while SPCDM has not finished yet after 2,000 seconds.

7.3. LASSO. We now consider L1-regularized least-squares regression on the
KDDB dataset [42]. It consists of a large sparse matrixA ∈ Rm×N withm = 29,890,095,
N = 19,264,097 (with ω = 75 and ω̄ ≈ 31.87), and a vector b ∈ Rm. As is standard
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Table 8 Comparison of objective decreases for APPROX and smoothed parallel coordinate descent
(SPCDM) on a problem with F (x) = ‖Ax− b‖1 + λ‖x‖1.

F (xk)− F (x∗) APPROX SPCDM [11]
409.6 0.3 s 0.3 s
204.8 0.4 s 0.5 s
102.4 1.3 s 2.8 s
51.2 2.7 s 9.9 s
25.6 5.5 s 28.6 s
12.8 10.1 s 87.0 s
6.4 17.8 s 252.4 s
3.2 27.7 s 526.3 s
1.6 41.2 s 1,041.1 s
0.8 58.7 s 1,896.5 s
0.4 86.8 s >2,000 s
0.2 122.7 s >2,000 s
0.1 186.5 s >2,000 s
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Fig. 3 Comparison of PCDM ([33]; dashed line) and APPROX (solid line). Left: l1-regularized
least-squares problem and the KDDB dataset with λ = λmax/103. As the decrease is big in the
beginning (from 8.3× 106 to 1.1× 106), we present a zoom for 9.8× 105 ≤ F (x) ≤ 1.1× 106.
Right: SVM dual problem and the Malicious URL dataset.

practice for the LASSO problem, we normalized the columns of the matrix A. We
wish to find x ∈ RN that minimizes

F (x) =
1

2
‖Ax− b‖2 + λ‖x‖1.

We compare APPROX (Algorithm 2) with the (nonaccelerated) parallel coordinate
descent method (PCDM [33]) in Figure 3 (left), both run with τ = 16 processors
and λ = λmax/10

3, where λmax = max1≤j≤m|(AT b)j | is the smallest regularization
parameter for which 0 is solution to the LASSO problem. Coordinate descent is
currently the method of choice of many solvers for the LASSO problem [50]. Both
algorithms converge quickly. PCDM is faster in the beginning because each iteration
is half as expensive. However, APPROX is faster afterwards. In Table 9 we give
the accuracy achieved by PCDM and APPROX for a wide range of regularization
parameters. We obtained feasible dual points by dual scaling of the residuals [8]. We
can see that, except for the highly regularized problem, APPROX indeed is faster.
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Table 9 Comparison of LASSO problem’s duality gap after 2,000 s of computations for APPROX
and smoothed parallel coordinate descent (SPCDM) on the KDDB dataset. We give the value
as a percentage of the initial duality gap obtained at x0 = 0. We obtained a sparse solution
with the postprocessing described in the last paragraph of this section.

λ λmax/10 λmax/102 λmax/103 λmax/104 λmax/105

nnz(x∗) ≈ 58 570 96,000 3.7× 106 8.1× 106

APPROX 0.017% 0.025% 0.100% 1.890% 0.543%

PCDM [33] 0% 0.299% 3.794% 3.383% 0.669%

Table 10 Decrease of the duality gap for APPROX and stochastic dual coordinate ascent (SDCA).

Duality gap APPROX SDCA
0.032 24 s 30 s
0.016 56 s 95 s
0.008 104 s 225 s
0.004 144 s 390 s
0.002 216 s 603 s
0.001 290 s 936 s
0.0005 420 s 1,359 s
0.00025 616 s 1,951 s

An important feature of the L1-regularization is that it promotes sparsity in the
optimization variable x. As APPROX only involves proximal steps on the z variable,
only zk is encouraged to be sparse, and not xk, yk, or uk. A possible way to obtain
a sparse solution is to first compute xk and then postprocess with a few iterations
of a sparsity-oriented method (such as iterative hard thresholding, proximal gradient
descent, or cyclic/randomized coordinate descent).

7.4. Training Linear Support Vector Machines. Our last experiment is the dual
of the SVM problem [38]. For the dual SVM, the coordinates correspond to examples.
We use the Malicious URL dataset [24] with data matrix A of size m = 3,231,961,
N = 2,396,130, and a vector b ∈ R

N . We adapted b so that bi ∈ {−1, 1}. Here
ω = N = n but the matrix is still sparse: nnz(A) = 277,058, 644� mn, 1

m

∑m
j=1 ωj ≈

85.7. Our goal is to find x ∈ [0, 1]N that minimizes

D(x) =
1

2λN2

m∑
j=1

(
N∑
i=1

biAjixi

)2

− 1

N

N∑
i=1

xi + I[0,1]N (x),

with λ = 1/N . We compare APPROX (Algorithm 2) with stochastic dual coordinate
ascent (SDCA [32, 40, 44]); the results are in Figure 3 (right). We have used a single
processor only (τ = 1) because ω = N and ω̄ ≈ 1.6 × 106 ≈ 2N/3 are quite large,
making parallelization not so efficient. For this problem, one can recover the primal
solution [38], and thus we can compare the decrease in the duality gap, summarized
in Table 10. APPROX is two to three times as fast as SDCA on this instance.

An alternative algorithm is accelerated SDCA [41]. But to apply it, one needs to
smooth the L1 norm, which makes the problem ill conditioned. In a similar fashion to
LASSO (see Table 6), the complexity bound of accelerated SDCA involves logarithmic
terms of order log(vNε )2 ≈ 200 that are not negligible in the present case and make
this algorithm not competitive when compared with SDCA or APPROX.



30 OLIVIER FERCOQ AND PETER RICHTÁRIK

8. Conclusion. In summary, we proposed APPROX, a randomized coordinate
descent method combining the following four acceleration strategies:

1. Our method is accelerated, i.e., it achieves O(1/k2) convergence rate (in ex-
pectation). Hence, the method is better able to obtain a high-accuracy solu-
tion on nonstrongly convex problem instances than nonaccelerated methods,
which achieve the slower rate O(1/k).

2. Our method is parallel. Hence, it is able to better utilize modern parallel
computing architectures and effectively tame the problem dimension n.

3. We proposed new longer stepsizes for faster convergence on functions whose
degree of separability ω is larger than their average degree of separability ω̄.

4. We have shown that our method can be implemented without the need to
perform full-dimensional vector operations.

Our work is amenable to further extensions. When the function to minimize is
strongly convex and its coefficient of strong convexity is known, one can design a
specialized algorithm (see the follow-up papers [25, 15]). Further, in this paper we
have focused on the case of uniform samplings. However, with a proper change in the
definition of ESO, one can also handle nonuniform samplings [29, 28, 27] as well. A
particular type of nonuniform (and, in fact, nonstationary) sampling is the shrinking
technique, which is often used when solving the LASSO problem with classical coordi-
nate descent [32]. The idea is to update more often the nonzero coordinates than the
coordinates that we think are zeros at the optimum. The main issues when combining
this idea with APPROX are (i) the algorithm depends explicitly on the number of

variables, and (ii) even if z
(i)
k = 0 for all k ≥ k0, we may have x

(i)
k �= 0. It may be

necessary to restart the algorithm from time to time in order to overcome these issues.
Finally, it would be interesting to analyze APPROX used with an adaptive sampling
strategy, such as the one employed in [6].

Appendix A. Proof of Proposition 1 (equivalence). It is straightforward to see
that x0 = y0 = z0 = x̃0 = ỹ0 = z̃0, and hence the statement holds for k = 0. By

induction, assume it holds for some k. Note that for i /∈ Sk, z̃
(i)
k+1 = z̃

(i)
k = z

(i)
k = z

(i)
k+1.

If i ∈ Sk, then

(65) z̃
(i)
k+1 = z̃

(i)
k + t

(i)
k ,

where

t
(i)
k = arg min

t∈RNi

{
〈∇if(θ

2
kuk + z̃k), t〉+ nθkvi

2τ
‖t‖2(i) + ψi(z̃

(i)
k + t)

}
(62)
= arg min

t∈RNi

{
〈∇if(ỹk), t〉+ nθkvi

2τ
‖t‖2(i) + ψi(z̃

(i)
k + t)

}

= arg min
t∈RNi

{
〈∇if(yk), t〉+ nθkvi

2τ
‖t‖2(i) + ψi(z

(i)
k + t)

}

= −z(i)k + arg min
z∈RNi

{
〈∇if(yk), z − y(i)k 〉+

nθkvi
2τ
‖z − z(i)k ‖2(i) + ψi(z)

}
= −z(i)k + z

(i)
k+1.(66)

Combining (65) with (66), we get z̃
(i)
k+1 = z̃

(i)
k −z(i)k +z

(i)
k+1 = z

(i)
k+1. Further, combining

the two cases (i ∈ Sk and i /∈ Sk), we arrive at

(67) z̃k+1 = zk+1.
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Looking at Algorithm 2, we see that uk+1 − uk = − 1−n
τ θk

θ2
k

(z̃k+1 − z̃k), and thus

x̃k+1
(61)
= θ2kuk+1 + z̃k+1 = θ2k

(
uk −

1− n
τ θk

θ2k
(z̃k+1 − z̃k)

)
+ z̃k+1

= θ2kuk + z̃k +
n

τ
θk(z̃k+1 − z̃k)

(62)
= ỹk +

n

τ
θk(z̃k+1 − z̃k) (67)

= yk +
n

τ
θk(zk+1 − zk) = xk+1.(68)

Finally,

ỹk+1
(62)
= θ2k+1uk+1 + z̃k+1

(61)
=

θ2k+1

θ2k
(x̃k+1 − z̃k+1) + z̃k+1

(43)
= (1 − θk+1)(x̃k+1 − z̃k+1) + z̃k+1

(67)+(68)
= (1− θk+1)(xk+1 − zk+1) + zk+1

= yk+1.
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