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Associations between education and brain
structure at age 73 years, adjusted for age
11 IQ

ABSTRACT

Objective: To investigate how associations between education and brain structure in older age
were affected by adjusting for IQ measured at age 11.

Methods: We analyzed years of full-time education and measures from an MRI brain scan at age
73 in 617 community-dwelling adults born in 1936. In addition to average and vertex-wise
cortical thickness, we measured total brain atrophy and white matter tract fractional anisotropy.
Associations between brain structure and education were tested, covarying for sex and vascular
health; a second model also covaried for age 11 IQ.

Results: The significant relationship between education and average cortical thickness (b5 0.124,
p 5 0.004) was reduced by 23% when age 11 IQ was included (b 5 0.096, p 5 0.041). Initial
associations between longer education and greater vertex-wise cortical thickness were significant
in bilateral temporal, medial-frontal, parietal, sensory, and motor cortices. Accounting for childhood
intelligence reduced the number of significant vertices by .90%; only bilateral anterior temporal
associations remained. Neither education nor age 11 IQ was significantly associated with total
brain atrophy or tract-averaged fractional anisotropy.

Conclusions: The association between years of education and brain structure z60 years later
was restricted to cortical thickness in this sample; however, the previously reported associations
between longer education and a thicker cortex are likely to be overestimates in terms of both
magnitude and distribution. This finding has implications for understanding, and possibly amelio-
rating, life-course brain health. Neurology® 2016;87:1–7

GLOSSARY
FA 5 fractional anisotropy; FDR 5 false discovery rate; gFA 5 general fractional anisotropy; ICV 5 intracranial volume;
MHT 5 Moray House Test No.12.

Longer education duration is associated with reduced risk of dementia1 and cognitive decline2

and with several brain MRI measures in older age (such as greater cerebral3 or gray matter
volume4 or ostensibly more favorable white matter macrostructure and microstructure5,6).
However, the current understanding of which brain measures characterize the putative benefits
of education is hampered by analyses of isolated MRI biomarkers, sometimes small sample
sizes, and the absence of an important potential confounder that we address here: preexisting
cognitive ability.

Most recently, longer education was reportedly associated with a thicker cortex across several
loci,7 which was interpreted as evidence that education may increase brain or cognitive reserve:
“Our findings suggest the protective effect of education on cortical thinning in.older
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individuals.”7(p806) Such causal statements are
often seen,1–6 but are they warranted? Specifi-
cally, the contribution of education level to
brain measures in older age, beyond preexist-
ing cognitive differences that are present from
earlier development, is unknown. Intelligence
at age 11 accounts for some variation in cortical
thickness8 and white matter macrostructure9,10

and microstructure11 in older adulthood. Edu-
cational and cognitive ability are substantially
phenotypically12 and genetically13,14 correlated.
Thus, early-life intelligence may partly con-
found education-brain associations; more intel-
ligent children tend to stay in education
longer15 and have brains that ultimately age
well. Alternatively, these 2 predictors might
provide incremental information about older-
age brain structure. In the current study, we
adopt an analytic approach similar to that used
by Kim et al.7 to examine associations between
education, cortical thickness, and other MRI
measures among older adults, conducting
analyses before and after accounting for age
11 intelligence.

METHODS Participants. In June 1947, almost all Scottish

school children born in 1936 took a validated intelligence test

(Moray House Test No.12 [MHT]) atz11 years of age. School-

children at the time entered formal education at 5 years of age.

They then spent 7 years in primary school, where they were

taught mostly English and arithmetic without subject specializa-

tion. The transition to secondary education took place at 11 or 12

years of age. Children were often streamed by ability, received

different curricula, and stayed at school thereafter for a different

number of years. Therefore, IQ at age 11 represents a measure of

cognitive ability before the time at which variation in education

duration and topics took effect. Indeed, the MHT was deliber-

ately administered at age 11 to capture cognitive data before the

transition from primary to secondary school (the earliest school-

leaver in the current sample was 14 years old and thus experienced

z50%more education between the MHT and leaving school) to

avoid, as far as possible, the effect of educational differences on

cognitive ability test scores.

Between 2004 and 2007, 1,091 (543 female) community-

dwelling older adults, most of whom took the MHT at age 11,

were recruited into the Lothian Birth Cohort 1936 study.16

Approximately 3 years later (at z73 years of age), 866 (79%)

returned for a second wave of follow-up testing, including an

optional MRI brain scan that was undertaken by 728, yielding

681 participants with usable MRI data.17 Main reasons for non-

attendance at this second wave were death or self-assessment of

inability to participate. Early termination of scan and movement

artifacts were the main reasons for the loss of MRI data. Of these,

617 also had age 11 MHT scores, self-reported years of full-time

education, and contemporaneous information on health during

the medical interview: self-reported history of hypertension,

hypercholesterolemia, diabetes mellitus, and body mass index,

which we refer to collectively as vascular risk factors.18 All 617

participants had a Mini-Mental State Examination19 score of.24

and reported no diagnosis of dementia.

Standard protocol approvals, registrations, and patient
consents. The Multi-Centre Research Ethics Committee for

Scotland (MREC/01/0/56) and Lothian Research Ethics

Committee (LREC/2003/2/29) approved the use of the human

participants in this study. All participants provided written

informed consent, and these forms have been kept on file.

Brain MRI acquisition. Full details of the whole-brain MRI

structural and diffusion protocol are available open access.17 Briefly,

T2-, T2*-, and fluid-attenuated inversion recovery–weighted axial

volumes, a high-resolution coronal T1-weighted volume (1 3 1 3

1.3 mm), and diffusion imaging were acquired on the same 1.5TGE

Signa Horizon HDx clinical scanner (General Electric, Milwaukee,

WI). The diffusion MRI protocol consisted of 7 T2-weighted and

a set of diffusion-weighted (b5 1000 s/mm2) axial single-shot spin-

echo echo-planar volumes acquired with diffusion gradients applied

in 64 noncollinear directions (dimensions 2 3 2 3 2 mm).

Cortical thickness measurement. We measured cortical thick-

ness using the CIVET image processing pipeline developed at the

Montreal Neurological Institute.20,21 CIVET performs the following

steps22: (1) registration of T1-weighted volumes to an age-specific

template; (2) bias field correction; (3) brain extraction; (4)

segmentation of gray and white matter and CSF; (5) definition of

cortical thickness at 81,924 vertices (the perpendicular distance

between gray and white matter surfaces) across the cortex via the

t-link metric; (6) inverse of registration at step 1 for cortical thickness

measurements in the native space of each participant; and (7)

smoothing with a 20-mm kernel.

We visually inspected the output blinded to all participant

characteristics. Approximately 10% of participants failed CIVET

processing because of poor scan quality/motion artifact, and their

cortical thickness maps were excluded from the analysis. The final

number of 548 participants included in the present analysis in-

cludes only those who passed visual inspection.

Brain volumetry. Intracranial volume (ICV) and total brain vol-

ume were measured with a validated semiautomated multispectral

fusion method using T1-, T2-, T2*, and fluid-attenuated

inversion recovery–weighted sequences.23 ICV included all struc-

tures and CSF inside the dura, where the lower limit was the axial

slice immediately inferior to the limit of the cerebellar tonsils on or

above the superior tip of the odontoid process. Brain atrophy was

computed as total brain volume as a proportion of ICV. All seg-

mented images were visually examined by researchers blinded to

participant characteristics for accuracy on anonymized scans to

correct errors.24

Tractography. After preprocessing of the diffusion data (brain

extraction, removal of bulk patient motion and eddy current–

induced artifacts), parametric maps of fractional anisotropy

(FA) were generated for every participant with freely available

tools in FSL (FMRIB, Oxford, UK: http://www.fmrib.ox.ac.uk).

Tract-averaged FA values were determined for 12 tracts of interest

(genu and splenium of corpus callosum; bilateral anterior

thalamic radiations, cingulum bundles, arcuate, uncinated, and

inferior longitudinal fasciculi) using probabilistic neighborhood

tractography with the BedpostX/ProbTrackX algorithm,25 which

offers reproducible segmentation of major white matter

pathways26,27 (http://www.tractor-mri.org.uk). Visual inspection

of the tract masks was conducted to ensure that they were

anatomically plausible. Segmentations that exhibited aberrant

or truncated pathways were excluded. To reflect the relatively

high degree of shared variance in diffusion characteristics across
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white matter tracts,28 we derived a measure of general FA (gFA)

from the first unrotated principal component of FA across all

pathways, explaining 40% of the variance. A total of 333

participants had list-wise complete data; the number of specific

tracts available is shown in table e-1 at Neurology.org.

Statistical analysis. All statistical analyses were performed in R

version 3.03 (https://www.r-project.org) except for cortical

thickness analyses, which were performed with the SurfStat

MATLAB toolbox (http://www.math.mcgill.ca/keith/surfstat)

for Matrix Laboratory R2014a (The MathWorks, Inc, Natick,

MA). We assessed associations of years of education and age 11

IQ with brain MRI measures in older age using 2 models. In

model 1, only sex, years of education, and vascular risk factors

were independent variables. In model 2, age 11 IQ was an

additional independent variable. Age in days at MRI scanning

was also entered into both models to account for any residual

effect of age on brain structure. Initially, average cortical thickness

atrophy and gFA were analyzed. Adding an interaction term

between education and age 11 IQ addressed whether both

might be important for later-life brain status beyond their

individual main effects. Next, we conducted region-specific

analysis of cortical thickness. Models 1 and 2 were tested for

each vertex across the cortical mantle both with and without

correcting for ICV. Finally, we ran models 1 and 2 for tract-

averaged FA in each of the 12 white matter fasciculi. We set a

at 0.05, and the false discovery rate (FDR) was used to correct for

multiple comparisons (Q values are reported in figures for vertex-

wise regressions29). Models were examined for multicollinearity

with the variance inflation factor (VIF in the HH package for R).

In a supplementary analysis, we matched participants with less (9

or 10 years) education with those who had more education ($11

years) on the basis of propensity scores for age 11 IQ, age, and sex

using the nonrandom package for R (matches were made within

0.05 SD of the logit of the propensity score). If longer education

conferred a cerebral advantage beyond preexisting intelligence

differences, this would be indicated by a significant difference

between groups that were well matched on age 11 IQ (rather

than using a statistical control, as in the main analysis).

RESULTS Descriptive statistics of the study partici-
pants are given in table 1. Bivariate (uncorrected)
correlations among study variables are reported for
illustrative purposes in table e-2. Years of education
ranged from 9 to 14 years. A higher age 11 IQ and
more years of education were significantly correlated
(r 5 0.416, p , 0.001).

Associations of education and age 11 IQ with cortical

thickness. The associations between education and age
11 IQ and average thickness of the entire cortical
mantle based on regression analyses are shown in table
2 (standardized b values reported throughout). Con-
sidering education alone (model 1), more years were
associated with a generally thicker cortex. The rela-
tionship between education and average cortical thick-
ness was attenuated by z23% when age 11 IQ was
included (model 2), although age 11 IQ was not sig-
nificant in the model. We found no significant inter-
actions between education and age 11 IQ for cortical
thickness (b 5 20.002, p 5 0.940), atrophy (b 5

0.007, p 5 0.752), or either general (b 5 20.015,

p 5 0.665) or tract-specific (babsolute , 0.002, p .

0.117) FA.
Longer education was associated with a thicker

cortex in bilateral temporal, medial frontal, parietal,
somatosensory, and motor cortices (figure 1, top).
Entering age 11 IQ into the analysis (model 2; figure
1, bottom) reduced the extent of the FDR-corrected
significant associations by 90.6% (from 12,820 to
1,209 significant vertices). Unique effects of longer
years of education on a thicker cortex remained in
only the superior temporal regions, bilaterally. The
spatial extent of this confounding is illustrated in
figure 2. Associations between age 11 IQ and
vertex-wise cortical thickness in the Lothian Birth
Cohort 1936 (in the absence of education and health
covariates) were reported previously.8 We also ran the
same analysis including ICV as a covariate, but its
inclusion had no impact on our findings (figure e-1).

Contributions of education and age 11 IQ to other

cerebral measures in older age. Neither education nor
age 11 IQ was significantly associated with global
atrophy or with gFA at age 73 (table 2). Associations
between years of education and tract-averaged FA in
model 1 were consistently negative but largely null.
Only 1 of 12 tests was significant, specifically for genu
of the corpus callosum, and it remained significant
when age 11 IQ (model 2) was included and survived
FDR correction (table e-3). Throughout the analysis,
all models were found to exhibit acceptably low
multicollinearity (variance inflation factor , 2.262
across all covariates tested in each model30).

The results above are corroborated by our supple-
mentary propensity score–matched analyses, reported
in table e-4 and figure e-2.

DISCUSSION The patterns of frontal, temporal, and
parietal areas where greater cortical thickness is asso-
ciated with longer education are similar to those
found previously,7 ostensibly corroborating those au-
thors’ interpretation that longer education confers
greater thickness across distributed cortical sites. They
further interpreted their findings as evidence for edu-
cation increasing resistance to brain structural loss
from aging, as opposed to a fixed cerebral advantage
in these regions. However, when we included prior
childhood cognitive ability in our model, estimates of
the size and cortical distribution of this effect were
markedly reduced. Remaining significant effects were
confined to bilateral anterior portions of the superior
temporal cortex. This is a region with strong links to
acquiring and recall of semantic knowledge,31,32 and it
is posited as an amodal hub that integrates modality-
specific information from a more distributed semantic
network.33 Alternatively, diminished accuracy of
anterior temporal cortical thickness estimates due to
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partial volume effects could explain these residual
associations, such that the remaining associations
may be artifactual and spurious. Our supplementary
analysis using propensity matching showed no
significant differences in cortical thickness at any
point on the mantle, although this could be
attributable to the diminished power to detect this
small effect (visible in the anterior temporal lobe on
the uncorrected t maps). Our own interpretation of
these data is that any effect of years of education on

cortical thickness is likely to be an overestimate when
not considered along with preexisting differences in
cognitive ability. The finding that more education,
regardless of preexisting differences in age 11 IQ, is
limited to greater cortical thickness in a region that
allows flexible integration of semantic information
affords a plausible interpretation but requires
replication and exploration with additional study
designs.

How the reported associations pertain to different
theories about cognitive and brain reserve in aging is
not possible to assess within the current cross-
sectional framework. A previous study7 analyzed edu-
cation and cortical thickness across a wide age range,
a feature that the current cohort lacks. That study
found that the strength of the association between
cortical thickness and education was modestly (but
significantly) larger with greater age, which those au-
thors interpreted as support for increased cognitive
reserve or plasticity on age-related cortical thinning.
In the current data, we are unable to comment on
when (or how) individual differences in cortical thick-
ness manifest or alter as a function of education and
the rate at which any change in cortical thickness
might be taking effect. Future longitudinal data are
required to examine how the association of education
with the cortex (perhaps with a focus on anterior
temporal regions) changes during development and
throughout the life course to more reliably parse apart
the cause and effect of these relationships and their
putative benefit for brain and cognitive aging.

In addition to cortical thickness, we analyzed asso-
ciations of age 11 IQ and education with other MRI
indexes. Our findings were essentially null for associ-
ations between education or age 11 IQ with global
atrophy and gFA. Although this might indicate that
any relationship between education and brain struc-
ture in older age is restricted to cortical thickness,
we found a specific effect of longer education on
lower FA in genu of the corpus callosum that survived
FDR correction. This finding was unexpected, given
that FA shows cross-sectional associations and longi-
tudinal declines with age (which are thought to partly
reflect older-age–related degradation in axonal myelin
and decreased information transfer efficiency34,35) and
that, in this sample, declines in FA and cognitive
ability are coupled.36 However, diffusion character-
istics are also influenced by several other micro-
structural properties of white matter, and alterations
to these are highly dynamic into early adulthood.
Development and refinement of functional circuits
(including axonal pruning and increases in axon
diameter) could plausibly drive negative education-
FA associations37 and genu of the corpus callosum
changes most dramatically during childhood and
early development.38 Thus the cross-sectional

Table 2 Linear regressions of the effect of education and age 11 IQ on global
cerebral MRI measures

MRI measures

Education Age 11 IQ

b p b p

Total cortical thickness

Model 1 0.124a 0.004a

Model 2 0.096a 0.041a 0.067 0.156

Atrophy

Model 1 20.019 0.610

Model 2 20.050 0.235 0.075 0.077

gFA

Model 1 20.100 0.065

Model 2 20.106 0.078 0.014 0.820

Abbreviation: gFA 5 general tract-averaged fractional anisotropy.
Standardized b values are reported. Atrophy is calculated as total brain volume as a pro-
portion of intracranial volume (a higher value represents less atrophy).
ap , 0.05.

Table 1 Lothian Birth Cohort 1936 participant characteristics

No. 617

Age, mean (SD), y 72.66 (0.73)

Female, n (%) 285 (46.19)

Education, mean (SD), y 10.78 (1.11)

Hypertension, n (%) 309 (50.08)

Diabetes mellitus, n (%) 64 (10.37)

Hypercholesterolemia, n (%) 264 (42.79)

BMI, mean (SD), kg/m2 27.86 (4.47)

MMSE score, mean (SD)/30 28.85 (1.27)

Mean cortical thickness,a mean (SD), mm 3.1 (0.1)

Total brain volume, mean (SD), mm3 991,804.30 (89,808.79)

Atrophy, mean (SD) 0.69 (0.02)

gFAb 0.08 (0.96)

Abbreviations: BMI 5 body mass index; gFA 5 general tract-averaged fractional anisotropy;
MMSE 5 Mini-Mental State Examination.
Atrophy represents total brain volume as a proportion of intracranial volume (a higher value
represents less atrophy).
a n 5 548.
b n 5 333 (standardized score from first unrotated solution from a principal component
analysis of FA values from 12 tracts; individual tract FA descriptives are reported in
table e-1).
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differences in FA reported here might reflect a small
but detectable influence of education in earlier life.
This might suggest that concretely viewing high FA as
optimal would be to ignore the multiple life-course
influences on development and learning, as well as
degeneration. Such an interpretation is highly specu-
lative, however, and requires further investigation.
This also emphasizes the importance of longitudinal
designs for maximizing the value of water diffusion
measures when studying the determinants and out-
comes of white matter changes in older age.

The study has limitations. First, although the lag
between childhood IQ, education, and brain is rare
and spans .60 years, other factors that might affect
brain development and aging across this span were
not captured by the current study. Nevertheless, this
lag is highly valuable for examining the covariance of

education and prior intelligence with brain structure
many years later. Second, each of our measures is
cross-sectional. Thus, while it may be tempting to
suggest that both education and age 11 IQ contribute
to brain reserve (the degree of susceptibility to age-
related structural change), the current data are insuf-
ficient to inform questions on the aging process per
se; rather, we can only comment on extant brain
differences in older age. This limitation is partly
instantiated by associations reported here and previ-
ously7 between education and cortical thickness
(without correction for age 11 IQ) in the motor
and sensory strips. The implication of these regions
in education and intelligence might be due to shared
genetic and life-course factors with frontal and tem-
poral regions rather than the fact that they directly
contribute to intelligence or are influenced by

Figure 1 Associations between years of education (EDU) and cortical thickness, before and after age 11 IQ correction (EDU,adj 11yrIQ)

Uncorrected (t maps, A) and false discovery rate–corrected (q maps, B) associations between cortical thickness and education (top) and cortical thickness
and education with adjustment for age 11 IQ (C and D). The extent of false discovery rate–corrected significant positive associations between cortical
thickness and education is reduced by .90% with adjustment for age 11 IQ. Both models are controlled for vascular risk factors.
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education. Third, we measured only number of years
of education; educational experience, quality, specific
subjects learned, or measures of attainment may
have different effects on cerebral tissue types or loci.
Education also showed lower variance (SD 5 1.11
years) than in previous work,7 yet this relatively low
variance still explained significant variation in cortical
thickness at comparable loci. Furthermore, the corti-
cal thickness pipeline used here allowed close com-
parison with previous work,7 although future studies
may make alternative processing decisions such as
adjusting the smoothing kernel to attempt finer-
grained analyses (but see the work by Lerch and
Evans39) or selecting alternative processing pipelines.

These findings indicate that only a modest
amount of variation in older-age cortical thickness
(but not global atrophy or white matter FA) is related
to years of education. However, the spatial distribu-
tion of the education effect on cortical thickness in
older age is likely to be overestimated if prior cogni-
tive ability is not considered. The loci of remaining
effects in the anterior temporal cortices are plausible
on the basis of prior evidence for the functional role
of these regions as an integrative hub for semantic
knowledge. To address the value of education and
age 11 IQ for brain reserve adequately, longitudinal
data are necessary to test the interplay of these
early-life predictors on trajectories of cerebral aging.
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