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During natural scene viewing, humans typically attend
and fixate selected locations for about 200–400 ms. Two
variables characterize such ‘‘overt’’ attention: the
probability of a location being fixated, and the fixation’s
duration. Both variables have been widely researched,
but little is known about their relation. We use a two-
step approach to investigate the relation between
fixation probability and duration. In the first step, we use
a large corpus of fixation data. We demonstrate that
fixation probability (empirical salience) predicts fixation
duration across different observers and tasks. Linear
mixed-effects modeling shows that this relation is
explained neither by joint dependencies on simple image
features (luminance, contrast, edge density) nor by
spatial biases (central bias). In the second step, we
experimentally manipulate some of these features. We
find that fixation probability from the corpus data still
predicts fixation duration for this new set of
experimental data. This holds even if stimuli are
deprived of low-level images features, as long as higher
level scene structure remains intact. Together, this shows
a robust relation between fixation duration and
probability, which does not depend on simple image
features. Moreover, the study exemplifies the
combination of empirical research on a large corpus of
data with targeted experimental manipulations.

Introduction

Scrutinizing long fixations observers made when
viewing a picture of a painting, Buswell hypothesized in
1935 that ‘‘the main centers of interest, as judged by
number of fixations, also receive the fixations which are
longest in duration’’ (p. 90). He thereby linked two

fundamental aspects of eye guidance in scene viewing:
fixation number or fixation probability (Where do the
eyes preferentially fixate?) and fixation duration (When
do the eyes proceed to the next location?). In the eight
decades since Buswell’s seminal study, both aspects of
gaze guidance have received considerable research
interest, but they have been accounted for separately.
This when/where separation goes back to an early
suggestion of distinct oculomotor control circuits (van
Gisbergen, Gielen, Cox, Bruijns, & Kleine Schaars,
1981). Accordingly, Findlay and Walker (1999) pro-
posed an influential qualitative model of oculomotor
control that completely separated the when and where
systems. Models of eye-movement control in reading
have also adopted this separation (Engbert, Nuth-
mann, Richter, & Kliegl, 2005; Reichle, Rayner, &
Pollatsek, 2003). Empirical and computational research
on real-world scene viewing has focused on the where
decision to a great extent. The widely used saliency map
(Itti, Koch, & Niebur, 1998) and its recent variants
have had some success in predicting fixation probability
(for a review, see Borji, Sihite, & Itti, 2013a; but see
Tatler, Hayhoe, Land, & Ballard, 2011). However, the
original implementation of the saliency map failed to
achieve realistic fixation durations: Using biophysically
realistic time constants, the dwell times of the ‘‘focus-
of-attention’’ were too low to be interpreted as fixation
durations (Itti et al., 1998); conversely, when model
parameters were constrained by search time, the model
arrived at unrealistically long fixation durations (Itti &
Koch, 2000). Following this lead, more recent devel-
opments of salience-type models, which have improved
the predictive power for fixation probability (Bruce &
Tsotsos, 2009; Erdem & Erdem, 2013; Garcia-Diaz,
Leborán, Fdez-Vidal, & Pardo, 2012; Harel, Koch, &
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Perona, 2007; Lin & Lin, 2014; Xu, Jiang, Wang,
Kankanhalli, & Zhao, 2014; Zhang, Tong, Marks,
Shan, & Cottrell, 2008), have consistently ignored the
issue of fixation duration. Conversely, the CRISP
model of fixation durations in scene viewing (Nuth-
mann & Henderson, 2012; Nuthmann, Smith, Engbert,
& Henderson, 2010) models the control of fixation
durations without taking fixation locations into ac-
count. To summarize, models of eye guidance in
natural scene viewing have addressed either the where
or the when decision, but not both.

In addition to proposing a link between the when and
the where, Buswell’s statement implicates that it is some
form of high-level ‘‘interestingness’’ that guides fixation
duration and probability alike. At first glance, this
appears in contrast to most contemporary computational
approaches, which model fixation probability as conse-
quence of low-level features. However, key proponents of
salience models have argued that these models approx-
imate ‘‘interesting objects’’ (Elazary & Itti, 2008) or
‘‘objects that stand out’’ (Borji, Sihite, & Itti, 2013b). In
turn, scene regions that are ‘‘interesting’’ (Masciocchi,
Mihalas, Parkhurst, & Niebur, 2009), ‘‘informative’’
(Antes, 1974; Mackworth & Morandi, 1967), or ‘‘rele-
vant’’ (Onat, Açık, Schumann, & König, 2014), accord-
ing to the consensus of other observers, are preferentially
fixated. Such human-defined, high-level salience typically
outperforms model-defined salience in predicting fixated
locations (Koehler, Guo, Zhang, & Eckstein, 2014; Onat
et al., 2014). Similarly, the presence of objects overrides
low-level salience (Stoll, Thrun, Nuthmann, & Einhäus-
er, 2015). Despite the success of low-level models, higher
level information and scene content play an important
role in guiding gaze, in line with Buswell’s interestingness
assertion. The interaction between low-level salience and
higher level content nonetheless necessitates that any
putative relation between when and where has to be
controlled for low-level feature effects.

Research in reading and visual search has demon-
strated that fixation durations are sensitive to moment-
to-moment processing demands (Rayner, 1998), and this
generalizes to scene viewing (Nuthmann et al., 2010). A
number of scene-viewing studies have investigated the
impact of low-level features on fixation durations by
virtue of feature modifications to the entire image. As a
general finding, any image-wide degradation of low-level
features prolongs fixations. For example, fixation dura-
tions have been found to increase when the overall
luminance of the scene is reduced (Henderson, Nuth-
mann, & Luke, 2013; Walshe & Nuthmann, 2014), color
is removed (Ho-Phuoc, Guyader, Landragin, & Guérin-
Dugué, 2012; Nuthmann & Malcolm, 2016), or phase
information is removed from the scene (1/f noise; Kaspar
& König, 2011; Walshe & Nuthmann, 2015). Moreover,
local image statistics around fixation also modulate
fixation duration (Nuthmann, 2016). Recent fMRI data

support the notion that cognitive scene-processing
demands control fixation duration in an online (‘‘real-
time’’) fashion (Henderson & Choi, 2015), which is
consistent with the CRISP model.

The present study tests Buswell’s hypothesis on a
relation of fixation probability and duration. We
specify linear mixed-effects models (LMMs) to test
whether fixation probability at a given location predicts
fixation duration at the same location. In the first step,
we report new analyses of a large corpus data set, based
on 72 observers engaging in three different tasks on 135
images. Fixation probability is computed from the
aggregate fixation data from one viewing task; predic-
tion of durations is then done within the same task as
well as across tasks, and therefore across observer
subsets. In the second step, we control statistically for
potentially confounding variables on the hypothesized
relation between fixation probability and duration. To
do so, we add to the model low-level features
(luminance, contrast; Reinagel & Zador, 1999), a mid-
level feature (edge density; Baddeley & Tatler, 2006;
Mannan, Ruddock, & Wooding, 1996), and a generic
spatial bias (central bias; Clarke & Tatler, 2014; Tatler,
2007). In the third step, we control experimentally for
such confounders by using the fixation probabilities
obtained in the original experiment to predict fixation
durations in an independent set of observers who freely
viewed feature-degraded versions of the same scenes.

Materials and methods

Experiment 1

Stimuli and data collection

Data for Experiment 1 come from a large corpus of
eye movements during scene viewing. The methods of
data acquisition have been reported elsewhere (Nuth-
mann & Henderson, 2010; Pajak & Nuthmann, 2013).1

In brief, 72 observers each viewed 135 images of natural
scenes (43 outdoor and 92 indoor, depicting street
views and diverse interior spaces with varying degree of
clutter) for 8 s each, while their eye position was
recorded with an EyeLink 1000/2K system (SR
Research, Ottawa, Canada). For each observer, images
were divided into three subsets of 45 images on which
three different tasks were performed: search for a
verbally defined target, memorization of the image for
a subsequent memory test, and an aesthetic-preference
judgment. Images had a resolution of 800 3 600 pixels,
and 18 of visual angle corresponded to 32 pixels.

For the present analysis, fixations were excluded if
they preceded or succeeded a blink, if they started
before image onset or ended after image offset, or if
their duration was below 50 ms or above 1000 ms. For

Journal of Vision (2016) 16(11):13, 1–17 Einhäuser & Nuthmann 2
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the search task, fixations made after the search target
was found were also excluded. After applying these
criteria, 33,162 fixations were included for search,
67,484 for memorization, and 69,847 for the prefer-
ence-judgment task.

Empirical salience maps

The probability of a location being fixated was
quantified by applying the following procedure to each
image (Figure 1; cf. Pomplun, Ritter, & Velichkovsky,
1996): First, fixations were pooled over all observers who
viewed the image under a given viewing-task instruction
(the predicting condition). Second, a Gaussian of 0.58
standard deviation was centered at each fixation. Third,
these Gaussians were added. To ease comparison to
feature maps, the resulting maps were z-scored—that is,
normalized to zero mean and unit standard deviation.
Bar this linear scaling, the value at each location
corresponds to the probability of the location being
fixated. We refer to this value as empirical salience and to
the map as an empirical salience map.

Image features

To test whether effects of fixation probability on
fixation duration were mediated by low-level image
features, we specified models that included local lumi-
nance and luminance contrast (low-level features, Figure
2A, B) as well as edge density (mid-level image feature,
Figure 2C). For consistency with the definition of the
empirical salience maps, all features were defined as
weighted mean around the respective location, where the
weighting function was a Gaussian of 0.58 standard
deviation; mathematical definitions of the features are

provided in Appendix A. Eccentricity, defined as the
Euclidian distance from the center of the image, was used
as additional predictor (Figure 2D). All feature maps
were z-normalized to zero mean and unit standard
deviation to be on a consistent scale with each other and
with the empirical maps.

Following experimental studies on fixation probabil-
ity (e.g., Baddeley & Tatler, 2006; Einhäuser & König,
2003; Mannan et al., 1996; Reinagel & Zador, 1999;
Vincent, Baddeley, Correani, Troscianko, & Leonard,
2009), we chose to probe a number of individual image
features rather than reverting to aggregate salience
measures that are often used in computational studies
(Borji et al., 2013a; Kümmerer, Wallis, & Bethge, 2015).
This way, we can also account for dependencies among
features (cf. Baddeley & Tatler, 2006; Nuthmann, 2016;
Nuthmann & Einhäuser, 2015), which are explicitly
modeled by our approach.

Experiment 2

Stimuli

Experiment 2 served to test whether a relation of
fixation probability and duration would prevail once
various low-level features in these images were modified
or removed. Stimuli were based on a subset of 48 images
from Experiment 1. When selecting these images, we first
excluded the 52 images depicting humans and two images
whose original resolution differed from the default. From
the remaining images, all 10 outdoor images and the first
38 indoor images were selected for Experiment 2. For all
conditions in Experiment 2, color was removed from the
images. To this end, images were first converted to
grayscale using MATLAB’s (The MathWorks, Natick,

Figure 1. Empirical salience map. Scheme for computing the empirical map for a given image: All fixations for a given task (the

predicting task) were pooled and smoothed with a Gaussian kernel.

Figure 2. Feature maps for luminance (A), contrast (B), and edge density (C), along with a generic feature map (D) to capture the

central bias modeled by eccentricity. All maps are for the example image shown in Figure 1; warmer colors correspond to higher

feature values.
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MA) rgb2gray function. The resulting pixel values were
then linearly mapped to a range from 0 to 1. Assuming
the unknown camera gamma to be 0.5, which is a typical
setting, this intensity was then squared and mapped
linearly to the luminance range of the display (0.11 to
66.0 cd/m2). Based on these grayscale images, five
conditions were defined in which low-level features were
modified (Figure 3): Condition 1, the grayscale image
itself, i.e., the original image deprived of color (Figure
3A); Conditions 2 and 3, images with reduced global
luminance and contrast, respectively (Figure 3B, C); and
Conditions 4 and 5, images with luminance (Condition 4,
Figure 3D) or contrast (Condition 5, Figure 3E) nearly
equalized at scales above 0.58. In the sixth condition, the
image’s phase spectrum was randomized except for the
lowest frequency components. Randomizing the phase of
a natural scene is a widely used method to destroy higher
order scene structure (e.g., Rainer, Augath, Trinath, &
Logothetis, 2001; response by Dakin, Hess, Ledgeway, &
Achtman, 2002; Einhäuser et al., 2006; Kayser, Nielsen,
& Logothetis, 2006; Rainer, Lee, & Logothetis, 2004;
Wichmann, Braun, & Gegenfurtner, 2006). The present
modification keeps mean luminance and the luminance
autocorrelation unaltered, and in addition preserves
information on a very low frequency scale. Higher order
structure, including edges, higher order groupings, and
objects, is destroyed (Figure 3F). The mathematical
details of the modifications are given in Appendix B.

Observers

Twenty-four observers (12 men and 12 women, age
range¼ 20–36 years) participated in Experiment 2.
Participants were unaware of the purpose of the
experiment. The number of participants was chosen to
match the number of participants per task in Experiment
1. Procedures adhered to the Declaration of Helsinki and

were approved by the local ethics review board
(Ethikkommission FB04, Philipps-Universität Marburg),
and all participants gave written informed consent.

Setup

Stimuli were presented on a 19-in. CRT screen
(EIZO FlexScan F77S) running at a resolution of 1024
3 768 pixels at a 100-Hz refresh rate. The luminance of
the screen was set to range from 0.11 cd/m2 (black) to
66 cd/m2 (white). These settings, despite implying a
comparably low contrast of 600:1, allowed faithful
representation of the low luminance values. The
stability and correctness of luminance settings were
verified with a Mavo Monitor USB photometer
(Gossen, Nuremberg, Germany) at the start and the
end of each testing day. Stimuli were presented at their
native 8003 600 resolution centrally in a gray (33.0 cd/
m2) frame. The screen was located 73 cm from the
observer, implying that 18 of visual angle corresponded
to 32.6 pixels centrally. Eye position was recorded at
1000 Hz with an EyeLink 1000 device. Blink and
fixation detection used the EyeLink’s built-in algorithm
with standard settings (saccade thresholds of 358/s for
velocity and 95008/s2 for acceleration).

Procedure

Each observer performed a total of 288 trials, split
over six blocks of 48 trials each. In each block, all 48
distinct images were shown once in exactly one of the
six conditions. Over the course of the six blocks, each
image was shown in each condition once. Per block,
each condition was used eight times. The assignment of
the 288 distinct stimuli (6 conditions 3 48 images) to a
given block was balanced across the 24 observers.
Within each block, order of stimuli was randomized.

Figure 3. Conditions used in Experiment 2 for the example stimulus displayed in Figure 1.
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Observers started each trial by fixating centrally
(within 18 of a central black cross) on a gray (33 cd/
m2) screen for at least 300 ms. If they failed to reach
stable fixation within 3 s, the eye tracker was
recalibrated. After a further 100 ms the stimulus was
presented and remained visible for 5 s. Observers were
instructed to ‘‘study each image carefully’’ and told
that they were ‘‘free to move [their] eyes whenever the
stimulus is on.’’ After each block, the eye tracker was
recalibrated and participants had the opportunity to
take a break. For the purpose of a different study, all
observers also performed the same task on an
unrelated stimulus set in a separate session either
directly before (half of observers) or directly after
Experiment 2.

Data analysis and models

To test how well empirical salience (i.e., fixation
probability) predicted fixation duration in each of

the three tasks (the predicted condition), LMMs
were used. Each fixation was treated as an individual
observation, fixation duration was the dependent
variable, and fixation probability was defined as the
value of the empirical salience map sampled at the
corresponding fixated location. In addition to
empirical salience as a fixed effect, each model
included random intercepts and random slopes for
subjects and items (images). The values of all input
variables (empirical salience, luminance, contrast,
edge density, eccentricity) were linearly scaled to
have zero mean and unit standard deviation (z-
scored) prior to computing the LMMs (Schielzeth,
2010). This scaling puts all predictors on a com-
mensurate scale. By definition, the linear scaling
does not affect the shape of the distributions of
input variables. We deliberately refrained from
applying somewhat arbitrary nonlinear transforma-
tions, and instead tolerate that some distributions
are skewed toward low values.

Simple models

For a first analysis (Figure 4), empirical salience was
included as a fixed effect in the LMMs in addition to
the intercept. The LMMs had the maximal random-
effects structure for subjects and items (Barr, Levy,
Scheepers, & Tily, 2013). For subjects there was a
random intercept, a random slope for empirical
salience, and a correlation parameter for a possible
correlation between intercept and slope; the same was
true for items (scenes).

Models including image features

For the later analyses (Figures 5 through 8), LMMs
additionally included the three image features (lumi-
nance, contrast, edge density) and eccentricity as fixed
effects. For each of these features, we computed a
spatial map (Figure 2). As with the empirical map, for
each fixation the values of these maps were sampled at
the fixated location. The maximal random-effects
structure for these LMMs would require estimating 42
parameters (by subject: random intercept, five random
slopes, 15 correlation terms; by item: same as by
subject). This maximal random-effects structure is too
complex for the information contained in the data, with
the result that some of the LMMs did not converge. To
reduce model complexity, the correlations between
random intercepts and slopes were set to zero (cf. Barr
et al., 2013), except for the correlation between the
intercept and the slope for empirical salience, which
was the predictor of interest for the present study.
Mathematical details of the models are provided in
Appendix C.

Figure 4. Experiment 1: Prediction of fixation durations by

fixation probability. Each panel depicts the partial effect of

fixation probability (empirical salience map) on fixation

duration. Fixation probabilities (x-axes) were z-scored for model

fitting. Regression coefficients (bs; that is, the slope of the

empirical-map predictor, in ms per z-normalized probability)

and t values (t ¼ b/SE) are given in each panel. Each row

corresponds to a different task that is predicted (predicted

condition), each column to a different task from which the

empirical salience map is computed (predicting condition).

Journal of Vision (2016) 16(11):13, 1–17 Einhäuser & Nuthmann 5

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/935705/ on 09/15/2016



Assessing statistical significance

Since the degrees of freedom are ill-defined in LMMs
(Baayen, Davidson, & Bates, 2008), there is no closed-
form estimate that yields a p value. If the number of
observations (here, fixations) is large compared to the
number of predictors, for all practical purposes the t
distribution is identical to the normal distribution
(Baayen et al., 2008). Hence, an absolute t value greater
than 1.96 corresponds to a two-sided significance
criterion at a 5% alpha level.

Implementation

All image processing was done using MATLAB
version R2007b; all statistical analysis was conducted
using the R system for statistical computing (version 3.1;
R Core Team, 2014). Linear mixed-effects models were
computed using the lmer program of the lme4 R package
(version 1.1.7; Bates, Maechler, Bolker, & Walker, 2014)
with the bobyqa optimizer and a maximum of 107

function evaluations. Model parameters were estimated
through restricted maximum-likelihood estimation. For
computation of partial LMM effects, the remef function
(Hohenstein & Kliegl, 2014) was used.

Results

Experiment 1: Fixation probability predicts
fixation duration across tasks

In Experiment 1, each scene was viewed by 72
observes in one of three viewing tasks (24 observers per
task). Each task could serve as predicting condition (the
condition that fixation probability is estimated from)
and as predicted condition. The combination of three
predicting conditions with three predicted conditions
resulted in a total of nine individual models. For all nine
models, fixation probability significantly predicted
fixation duration, such that locations that were fre-
quently selected for fixation also received longer
fixations (Figure 4 for all t values). For each model, the
regression coefficient b quantifies the increase of fixation
duration (in milliseconds) per standard-deviation (z-
unit) increase in empirical salience; it reached a
maximum of 19.6 ms/z (Figure 4 for all values of b).

For six of the models, the predicted condition was
different from the predicting condition (off-diagonal
models in Figure 4). In these cases, the predicting and
predicted sets of observers were entirely independent for
any given item, by virtue of the experiment’s design. In
general, effects were smaller when search was either the
predicting or predicted task than for predictions not
involving search. For the remaining three models (on-
diagonal in Figure 4), predicted and predicting condition
were identical. For these models, the empirical salience
map that predicted fixation durations for a given
individual and image also included this individual. To
address this issue, we recomputed the three on-diagonal
models with leave-one-out empirical salience maps: For
each observation in the model (i.e., each fixation), the
computation of empirical salience excluded the corre-
sponding observer. This leave-one-out empirical salience
still significantly predicted fixation duration (search: b¼
16.1 ms/z, t¼ 13.56; memorization: b¼ 17.7 ms/z, t¼
13.56; preference: b¼ 14.9 ms/z, t¼ 14.11). Hence,
prediction of duration by probability in the same task
was not dominated by observer idiosyncrasies. In sum,
the results suggest that fixation probability in an image
predicts fixation duration, and it does so across tasks and
in independent observers.

Fixation probability predicts duration above and
beyond image features or central bias

The result that fixation probability predicts fixation
duration could potentially depend on low-level image
features, if there is a low-level feature that relates to
fixation probability and fixation duration alike. A
similar confound could arise if fixation duration and

Figure 5. Experiment 1: Prediction of fixation durations by

fixation probability after statistically controlling for low-level

feature effects. Partial effect of fixation probability on fixation

duration, in models that include image features as additional

fixed effects. Notation as in Figure 4.
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fixation probability were to exhibit a similar depen-
dence on the spatial location within the scene. To
address this issue, we included several features in the
model that are known to affect fixation probability or
duration (Figure 2). We again specified nine LMMs,
which now included the three image features and the
eccentricity variable as additional fixed effects along
with the empirical-salience predictor; details on the
random-effects structure are provided in Materials and
methods. Including the additional predictors did not
affect the overall result pattern. For all nine models,
fixation probability—as measured by empirical sa-
lience—remained a significant predictor of fixation
duration (Figure 5). As with the simple models, among
the six off-diagonal models prediction appeared to be
best for those predictions not involving search as either
the predicted or predicting condition. Again, we
recomputed the three on-diagonal models (i.e., identical
predicted and predicting condition) with leave-one-out
empirical salience maps and found that the significant
prediction prevailed (search: b ¼ 14.7 ms/z, t¼ 12.95;
memorization: b¼ 17.8 ms/z, t¼ 13.54; preference: b¼
15.2 ms/z, t¼ 14.24). The results suggest that neither
any of the tested features nor central bias can explain
the observed relation between fixation duration and
fixation probability.

Factors guiding fixations may change over viewing
time. It is a well-established finding that fixation
durations increase during initial viewing periods and
stabilize during later viewing (for a review, see
Nuthmann, 2016). Moreover, effects of low-level
features on fixation probability appear to decline over
time (Parkhurst, Law, & Niebur, 2002); some of this
decline can be explained by spatial biases (Tatler,
Baddeley, & Gilchrist, 2005), and both factors become
less important during prolonged viewing (Wang et al.,
2015). The question therefore arises whether the
relation of fixation probability and fixation duration
takes substantial time to develop. To test this, we ran
additional analyses that considered only the first n
seconds of the experiment. For most conditions, the
effect in question quickly reaches the pattern observed
for the full viewing time (Figure 6). The prediction of
search by itself takes about 5 s to reach its asymptotic
level. This time (5 s) is chosen as the presentation
duration for Experiment 2.

Experiment 2: The relation of fixation
probability and duration is insensitive to the
experimental manipulation of low-level
features

Mixed-effects modeling of the data from Experiment
1 suggests that the relation between fixation probability
and fixation duration is insensitive to low-level stimulus

features. In Experiment 2, we followed the LMM
results up with experimental manipulations. Does the
prediction persist if image features are modified
experimentally, and if participants are asked to freely
view the images?

Stimuli from Condition 1 in Experiment 2 matched a
subset from Experiment 1, except with color removed.
For these grayscale images, fixation probability still
predicts fixation duration (b ¼ 16.2 ms/z; t¼ 8.95;
Figure 7 upper left panel). In Conditions 2 through 5,
in addition to removing color, we reduced or equalized
other low-level features (luminance, contrast; first five
rows and columns of Figure 7). Under these experi-
mental modifications, the prediction also persists: Both
within a condition (diagonal in Figure 7) and across
conditions (off-diagonal panels in Figure 7), the
regression coefficients range between 11.3 and 18.7 ms
per z-normalized empirical salience value (all ts . 6.6),
and this range is comparable to the non-search
conditions of Experiment 1 (Figure 5). Hence, the
experimental manipulations of Experiment 2 confirm
the statistical analysis of Experiment 1: The prediction
of fixation duration by fixation probability persists
when features are accounted for. In contrast, when
higher level information is destroyed (phase-noise
Condition 6), fixation duration is not predicted by
fixation probability (Figure 7, bottom row and right
column, all jtj , 1.35). Interestingly, fixation proba-
bility in the phase-noise condition predicts fixation
duration in the phase-noise condition, suggesting that
observers interpret consistent structure in the noise. As

Figure 6. Time-course analysis of the relation between fixation

duration and fixation probability in Experiment 1. Standardized

fixed-effects regression coefficients are plotted against inte-

grated viewing time. Error bars depict the standard errors of the

estimates. All regression slopes are significantly larger than 0

(t . 1.96), except the prediction of the search task by

memorization after 2 s. In each panel, the rightmost data point

(‘‘all’’) corresponds to the data in Figure 5.
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Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/935705/ on 09/15/2016



Figure 7. Experiment 2. Prediction of fixation duration by empirical salience in Experiment 2. The predicting condition from which the

empirical map is computed is given by the column, the predicted condition by the row. Notation as in Figure 4.
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for the analysis of Experiment 1, we repeat the analysis
but now exclude the participant whose durations are
considered from the computation of the corresponding
empirical map (leave-one-out prediction). The results
are consistent with the main analysis: For all 25 pairs of
predicting and predicted condition that exclude phase
noise, there is a significant prediction (all ts . 6.35, bs
between 10.7 and 17.3 ms/z). The same is true for the
prediction of phase noise by itself (b ¼ 19.8 ms/z; t¼
4.84; Figure 7), while for the combination of phase
noise and other conditions, no such prediction is
observed (all jtj , 1.1). As every image is presented to
each observer once in each condition, each observer
sees each image six times (albeit in different versions).
To discount the possibility that the results are affected
by those item repetitions, we repeated the analysis using
data from the first block only, which still provides us
with a fully balanced between-subjects design per image
and condition. We find the same qualitative result: For
the 25 models excluding the phase-noise condition as
predicted and predicting condition, fixation probability
predicts fixation duration (all ts . 2.6); for the 10
models including phase noise as either predicted or
predicting condition, no such effect is found (all jtj ,
1.3). The ‘‘self-prediction’’ of phase noise is again
significant (t ¼ 5.0).

In sum, these data show that the prediction of
fixation duration by fixation probability is not ex-
plained by the low-level features (luminance, contrast)
that change between the first five conditions, but by
(higher level) properties that are changed only in the
phase-noise condition.

Fixation probability in Experiment 1 predicts
fixation duration in Experiment 2

Finally, we asked how well fixation probability from
the corpus data predicts fixation durations in Experi-
ment 2. Notably, in all conditions of Experiment 2,
images were deprived of color, while in Experiment 1
color stimuli were used. Besides robustness across labs,
setups, and cultural background, successful prediction
of Experiment 2 by Experiment 1 would therefore
demonstrate that the presence of color is not a
necessary condition for the relation between fixation
duration and fixation probability.

We used the empirical maps of Experiment 1 to
predict fixation durations in Experiment 2. For each
model, the same LMM model structure was applied as
the one used for the data presented in Figures 5
through 7. The empirical maps from any task in
Experiment 1 significantly predicted fixation duration
in all five conditions of Experiment 2, in which only
low-level features were modified (Figure 8, top five
rows). The standardized regression coefficients indicate

that, numerically, the fixation probability obtained
from memorization and preference predict fixation
duration in free viewing somewhat better than fixation
probability obtained from search. When higher level
scene structure was removed, the prediction vanished
(Figure 8, bottom). This confirms across experiments
that the relation between fixation probability and
fixation duration is insensitive to the removal or
modification of low-level features, including color
besides luminance and contrast, as long as higher level
scene structure remains intact.

Discussion

The present study demonstrated a systematic rela-
tionship between fixation probability and fixation
duration in real-world scene perception and search: The
locations that observers were more likely to select for
fixation were also the locations that received longer
fixations. We provided two lines of evidence that this
key result was not confounded by low- and mid-level
luminance features or by an eccentricity bias. First, we
used a statistical control approach that allowed for
assessing the independent contribution of fixation
probability to fixation duration; second, we showed
experimentally that fixation probabilities obtained in
the original scenes continued to predict fixation
durations in scenes deprived of low-level features.

In the present study we used four distinct tasks:
search, memorization, and preference judgment in
Experiment 1, and free viewing in Experiment 2. Tasks
varied in the degree of top-down control they typically
evoke (cf. Nuthmann & Matthias, 2014), ranging from
minimal top-down influences in free viewing to strong
top-down control in visual search. Viewing task can
have a profound influence on fixation probability
(Buswell, 1935; Yarbus, 1967). In particular, search for
a target reduces or abolishes the effect of bottom-up
signals (Henderson, Brockmole, Castelhano, & Mack,
2007; Einhäuser, Rutishauser, & Koch, 2008). Perhaps
not surprisingly, predictions across tasks were worse if
search was involved as either predicting or predicted
condition (Figures 4, 5, and 8). Nonetheless, fixation
durations in search were still significantly predicted by
fixation probabilities in the other tasks, and in turn,
empirical salience from search significantly predicted
fixation durations in the other tasks. These results
indicate that part of the relation between fixation
probability and fixation duration is insensitive to task,
at least for the tasks tested.

No analysis can exclude all possible features that
could potentially contribute to the relation of fixation
duration and fixation probability, which is why we
restricted ourselves to the most commonly used
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Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/935705/ on 09/15/2016



Figure 8. Fixation probabilities obtained in Experiment 1 predict fixation durations in Experiment 2: Partial effect of fixation

probability on fixation duration. Empirical maps from search task of Experiment 1 (left column), memorization task (middle column),

and preference-judgment task (right column) predict fixation durations for the different stimulus conditions of Experiment 2 (rows).
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achromatic low- and mid-level features. We deliber-
ately refrained from including chromatic features, as
the corpus stimuli were not controlled for veridical
color representation. The role of color in guiding
attention during scene viewing is indeed debated and
most likely task dependent. In free viewing, Tatler et al.
(2005) found only a small effect of chromaticity as
compared to contrast and edge density. Similarly,
during scene memorization, removing color from the
scene images had little effect on fixation patterns
(Harding & Bloj, 2010). Frey et al. (2011) manipulated
color information in scenes during free viewing in
normal observers and those with color deficiency. They
found that contrasts along the red–green axis relate to
fixation probability, but their influence does not seem
to be causal. In contrast, for a search task, chromatic
information may supersede achromatic information
(Amano & Foster, 2014). Although we did not include
chromatic features in our statistical models, Experi-
ment 2 allows us to discount the possibility that the
relation between fixation duration and fixation proba-
bility is exclusively or primarily driven by color.
Fixation probability from the corpus study (Experi-
ment 1), in which the images were presented in color,
predicts fixation probability in Experiment 2, in which
all stimuli were presented in grayscale—that is, without
chromatic information. Nonetheless, the systematic
experimental manipulation of chromatic features with
well-defined chromatic stimuli remains an important
issue for further research.

By design, our analysis only addresses fixated areas.
Although—by normalization of the empirical maps—
fixation probability is defined relative to the whole
scene, fixation duration can only be assessed for
locations that are actually fixated. It can thus not be
ruled out that the non-visited regions of a scene would
act contrary to prediction (i.e., produce longer fixa-
tions) if fixations there would be enforced. Although
this might be an interesting option for further
experimental investigation, it is clearly beyond the
scope of the present study.

In this article, we combine corpus-based analyses
with experimental manipulations: The correlational
results obtained from the corpus data (Experiment 1)
guided the experimental design of Experiment 2.
Although such a combined strategy is rather common
in the research on eye-movement control in reading
(Angele et al., 2015; Kliegl, 2007; Kliegl, Nuthmann, &
Engbert, 2006; Rayner, Pollatsek, Drieghe, Slattery, &
Reichle, 2007), it has rarely been followed in natural
scene viewing.

In contrast to Buswell’s hypothesis, the separation of
the when from the where of fixation selection has been
the dominant view in natural scene viewing over the
last decades. It has influenced the development of
theoretical and computational models as well as the

design of behavioral and physiological experiments.
The when/where distinction has led to the development
of increasingly sophisticated salience models (Borji &
Itti, 2013; Borji et al., 2013a) which ignore fixation
durations and has fostered the development of a
theoretical model of fixation duration (Nuthmann et
al., 2010) which does not currently implement a target-
selection mechanism. Similarly, experimental studies
addressed either the role of local image features in the
selection of fixated locations (e.g., Baddeley & Tatler,
2006, Borji & Itti, 2013; Reinagel & Zador, 1999) or the
effect of image-wide feature modifications on fixation
duration (Henderson et al., 2013; Ho-Phuoc et al.,
2012; Kaspar & König, 2011; Walshe & Nuthmann,
2014, 2015). Recent work has quantified the indepen-
dent effects of local image features on fixation duration
(Nuthmann, 2016), akin to their effects on fixation
probability (Nuthmann & Einhäuser, 2015): All image
features considered here (luminance, contrast, edge
density) were shown to have an independent contribu-
tion to fixation duration in mixed models that
controlled for spatial and oculomotor constraints. All
of these studies considered either fixation duration or
fixation probability. Besides conceptual (Findlay &
Walker, 1999) and neurobiological (van Gisbergen et
al., 1981) reasons, this choice may also result from
practical considerations: Especially in considering
several factors and features in parallel, the when/where
division helps to keep experiments, regression analyses,
and computational modeling tractable. Here we used
empirical salience to estimate fixation probability.
Linear mixed-effects modeling showed that fixation
probability had a significant effect on fixation duration,
even after controlling for local image features and
central bias. We then went beyond a pure statistical
control approach and controlled low-level features
experimentally. The results from Experiment 2 con-
firmed that the when/where relation was insensitive to
image features and generalized over tasks, setups, and
labs. Eighty years after Buswell’s original proposal, we
now have the analytical and experimental tools
available to establish a systematic relationship between
fixation probability and duration. At least on the level
of behavior, these findings challenge the prevalent
notion of a separation between when and where
decisions of attentional selection.

As a parsimonious explanation for our results, we
suggest that it is some form of ‘‘interestingness’’ or
‘‘relevance’’ that makes a location more likely to be
fixated and fixated longer. Indeed, several studies found
that regions of a scene that had been labeled as more
interesting, more relevant, or more informative were also
more likely to be fixated (Antes, 1974; Mackworth &
Morandi, 1967; Masciocchi et al., 2009; Onat et al.,
2014). In one of the very few studies that related such
subjective measures of relevance to fixation duration,
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Onat et al. found a positive correlation between
‘‘interestingness’’ and fixation durations. They also
report a correlation between interestingness and fixation
probability, but they did not assess the relationship
between fixation probability and duration. The results
from Experiment 2 lend support to the role of
interestingness in explaining the relation between the
where and the when. If low-level features were degraded
in a scene, the relation persisted; if, however, higher level
structure was removed (phase-noise condition), the
relation vanished. Phase randomization destroys not
only objects but also structure that may gain object-like
properties (gestalt) without necessitating a semantic
interpretation. Using artificial stimuli, it has been
demonstrated that such ‘‘perceptual objects’’ can guide
attention (Yeshurun, Kimchi, Sha’shoua, & Carmel,
2009). In the light of these findings, interestingness in
natural scenes does not necessarily require semantic
meaning. Instead, it may refer to any scene property to
which distinct observers consistently attribute some
form of perceptual relevance. Such consistent attribution
of relevance may also underlie the prediction of fixation
duration by probability in the phase-noise condition:
Here, large-scale noise structure may consistently be
interpreted as some form of content. Such persistence of
second-order structure across spatial scales is a property
that distinguishes 1/f noise from other types of noise
(e.g., white noise). It will therefore be an interesting
question for further research to investigate for which
types of noise a relation between fixation probability and
fixation duration can be observed. The interestingness
interpretation suggested by the present data is in line
with Buswell’s original hypothesis on the ‘‘centers of
interest’’ receiving higher probability and higher dura-
tion. Building upon our results, further research may
directly manipulate interestingness to test how it affects
fixation duration, fixation probability, and their relation.
Moreover, our results inform and constrain computa-
tional models of fixation guidance. First, a full model
needs to explain both fixation probability and fixation
duration. Second, it needs to achieve a level of ‘‘scene
understanding’’ that captures those aspects of higher
level scene content that control gaze in space and time.

Keywords: visual attention, scene viewing, natural
scene, eye movements, gaze
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Footnote

1 Data from this corpus have previously been used to
study attentional selection within objects (Nuthmann &
Henderson, 2010; Pajak & Nuthmann, 2013) and
specific viewing biases during scene perception (Luke et
al., 2014; Nuthmann & Matthias, 2014). In contrast,
here the data are used—in addition to new experi-
mental data—to assess the relationship between fixa-
tion probability and fixation duration, which has not
been addressed before.
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Appendix A: Mathematical
definition of low-level features

Three local image features were computed for each
stimulus as described in the following: local luminance,
local luminance contrast with global normalization,
and edge density. For the data of Experiment 2, the
actually displayed luminance, ranging from 0.1 to 66.0
cd/m2, was used for computing the features. For the
data of Experiment 1, no information about the screen
luminance was available, and the intensity (pixel value
after transforming the image to grayscale using
MATLAB’s rgb2gray function, ranging from 0 to 255)
was used in lieu of luminance. For simplicity of
notation, we denote the respective values at each point
for either definition as I(x, y). For all features, a
Gaussian kernel describing the local region was defined
as

Gðx; yÞ ¼
exp � x2þy2

2r2

h i
2pr2

:

In line with the empirical maps, r ¼ 16 pixels
(corresponding to 0.58 of visual angle) was used. For
computational purposes, the Gaussian was restricted to
the patch 81 3 81 pixels wide and normalized to unit
integral within this patch.

To minimize edge effects in computing features
close to the image boundary, the image was extended
to each side with a mirrored version (mirrored at the
respective image border), and the result of convolu-
tions was cropped to the original image size. Only
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fixations that fell inside the image boundaries were
used for analysis.

Local luminance

The local luminance was defined as the weighted
mean luminance around a given location:

L ¼ G*I;

where * denotes the convolution.

Luminance contrast

For luminance contrast, we first defined the Gauss-
ian-weighted variance as

V ¼ ðG*I2Þ � ðG*IÞ2;
where ()2 denotes point-wise squaring of each pixel.

The contrast C(x, y) was then obtained by normal-
izing the square-root of this variance by the image
mean ,L(x, y).:

Cðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðx; yÞ

p
Lðx; yÞ :

Edge density

Using a Sobel filter and image-specific thresholds as
given by the default settings of MATLAB’s edge
function, we computed an edge image X from the
original image. To obtain the weighted edge density in
a local environment, the edge image was convolved
with the Gaussian kernel, averaging the number of
edges in the local region:

E ¼ G*X:

Relation to other measures of luminance,
luminance contrast, and edge density

We used the Gaussian weighting for consistency
between the definition of features and the empirical
maps. It should be noted that replacing the kernel G in
the previous definitions with the uniform kernel

Uðx; yÞ ¼
1

w2
�w

2
� x; y � w

2

0 otherwise

8<
:

with w¼ 32 pixels yields the widely used definitions of
luminance, edge density, and luminance contrast. With

the uniform kernel, one obtains the average luminance
in a 18 square, the edge density in a 18 square (Baddeley
& Tatler, 2006), and, since the relation

varðxÞ ¼ 1

N� 1

X
ðxi � x̄Þ2

¼ N

N� 1

X
x2
i

N
� x̄ 2

 !
’

X
x2
i

N
� x̄ 2

allows the (unweighted) variance to be written as

Vu ¼ ðU*I 2Þ � ðU*IÞ2;
the root-mean-square contrast in a 18 square (Reinagel
& Zador, 1999).

We note that some salience models use definitions of
contrast that are closer to the center–surround orga-
nization in the earliest stages of vision (e.g., Itti &
Koch, 2000). We chose to use a variant of root-mean-
square contrast, since it is consistent with measures of
detectability in natural scenes (Bex & Makous, 2002)
and with filter properties of early vision (Moulden,
Kingdom, & Gatley, 1990) and because it has been used
in previous experimental studies on fixation selection in
scenes (Einhäuser & König, 2003; Mannan et al., 1996;
Reinagel & Zador, 1999).

Appendix B: Stimulus modifications
in Experiment 2

In Condition 1, the grayscale version of the original
image was used. All other conditions were based on
this version. In Condition 2 (global luminance
reduction), the luminance of each pixel was reduced to
half its original value. In Condition 3 (global contrast
reduction), the mean image luminance was subtracted
from the image, the result divided by 2, and the mean
added again. This procedure results in a 50%
reduction of image contrast, keeping the mean
luminance unchanged. In Condition 4 (local lumi-
nance equalization), we first computed mean lumi-
nance of the original image in each local region
weighted with a Gaussian distribution of 8 pixels of
standard deviation in each direction. The original
image was then divided point-wise by this local mean.
Finally, the result was multiplied by the original image
mean and linearly rescaled to maximal displayable
luminance range (0.11 to 66 cd/m2) without changing
the mean luminance. This results in a stimulus that has
the same mean luminance as the original but no
variation of luminance on scales substantially larger
than the 16-pixel (0.58) local region. In Condition 5
(local contrast equalization), local luminance contrast
in an 8-pixel-wide region (see also the feature
definitions earlier) was computed. As in Condition 3,
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the mean luminance was subtracted from the image,
but rather than applying a global scaling with 0.5,
each pixel of this mean-free image was multiplied with
2,C./(C(x, y)þ,C.), where C(x, y) is the contrast
around (x, y) and ,C. the mean contrast over the
image. To the resulting image the mean was added,
and—as in Condition 4—the image was linearly
rescaled to the maximal luminance range possible
without affecting the mean. This procedure results in
an image where local contrast is softly equalized: If
original contrast is small, contrast is doubled; if local
contrast corresponds to the global average, no
modification occurs; and if local contrast is large,
contrast is reduced. In Condition 6 (random phase),
the image was transformed into Fourier space, with
the amplitude spectrum preserved but the phase
chosen at random. To preserve the large-scale
luminance distribution of the image (e.g., bright upper
part, dark lower part), the lowest spatial-frequency
component in each dimension was not subjected to
phase randomization. That is, at points of the
spectrum for which either kx or ky is below 1 cycle/
image, the phase remained intact. Transforming back
to image space, this results in a stimulus whose
second-order statistics and very-large-scale (1 cycle/
image) luminance distribution match the original
image but which is deprived of any local high-level
structure.

Appendix C: Model definitions

The main models, as used for Figures 5 through 8,
are described by the equation

ysi ¼ b0 þ bs0þbi0 þ
X5

k¼1

ðbkþbskþbikÞxksi þ esi;

where y denotes the response variable (fixation
duration), b denotes fixed effects, b denotes random
effects, e denotes the residual, the index s marks
subjects (1 � s � Nsub), the index i marks images/items
(1 � i � Nitems), and the index k identifies the intercept
and the predictors: k ¼ 0, the intercept; k ¼ 1, the
empirical-salience predictor; k ¼ 2, the luminance
predictor; k¼ 3, the luminance-contrast predictor; k ¼
4, the edge-density predictor; and k¼ 5, the eccentricity
predictor.

To compromise between a maximal random-effect
structure and computational feasibility, the variance-
covariance matrices for the random effects are con-
strained as follows:

The variance-covariance matrix for by-subject ran-
dom effects is

Us ¼

varðbs0Þ covðbs0; bs1Þ 0 0 0 0
covðbs0; bs1Þ varðbs1Þ 0 0 0 0

0 0 varðbs2Þ 0 0 0
0 0 0 varðbs3Þ 0 0
0 0 0 0 varðbs4Þ 0
0 0 0 0 0 varðbs5Þ

0
BBBBBB@

1
CCCCCCA

and the variance-covariance matrix for by-item
random effects is

Ui ¼

varðbi0Þ covðbi0; bi1Þ 0 0 0 0
covðbi0; bi1Þ varðbi1Þ 0 0 0 0

0 0 varðbi2Þ 0 0 0
0 0 0 varðbi3Þ 0 0
0 0 0 0 varðbi4Þ 0
0 0 0 0 0 varðbi5Þ

0
BBBBBB@

1
CCCCCCA
:

In both of these matrices, cov() denotes the covariance
matrix and var() the variance. That is, only the
covariance matrix pertaining to the empirical-map
predictor is included explicitly, while the remaining by-
item and by-subject covariance matrices are con-
strained to 0.

For the simplified models of Figure 4 the model
equation reduces to

ysi ¼ b0 þ bs0 þ bi0 þ ðb1 þ bs1 þ bi1Þxsi þ esi;

with the corresponding reduced variance-covariance
matrices

Us ¼
varðbs0Þ covðbs0; bs1Þ

covðbs0; bs1Þ varðbs1Þ

� �

and

Ui ¼
varðbi0Þ covðbi0; bi1Þ

covðbi0; bi1Þ varðbi1Þ

� �
:

In R notation, the simple model is represented as

fixDur ; empMapþ ð1þ empMapjsubNumÞ
þ ð1þ empMapjimgNumÞ

and the main model as

fixDur ; empMapþ lumþ conþ edþ ecc
þ ð1þ empMapjsubNumÞ
þ ð1þ empMapjimgNumÞ þ ð0þ lumjsubNumÞ
þ ð0þ lumjimgNumÞ þ ð0þ conjsubNumÞ
þ ð0þ conjimgNumÞ þ ð0þ edjsubNumÞ
þ ð0þ edjimgNumÞ þ ð0þ eccjsubNumÞ
þ ð0þ eccjimgNumÞ:

The variables of the R notation are vectors that each
contain one entry per observation, where fixDur refers
to fixation durations (ysi), empMap refers to empirical
salience values (x1si), lum refers to luminance values
(x2si), con refers to luminance-contrast values (x3si), ed
refers to edge-density values (x4si), ecc refers to
eccentricity values (x5si), subNum is the identifier of the
subject s, and imgNum is the identifier of the image/
item i.
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