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Highlights

• Matrix completion under interval uncertainty can be encoded using box
constraints.

• E.g. in collaborative filtering, a rating of 2 can be replaced by an
interval 1-3.

• Present-best results in terms of statistical performance are provided for
a benchmark.

• Convergence of randomised coordinate-descent methods to stationary
points is proven.
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Matrix Completion under Interval Uncertainty

Jakub Mareček1,, Peter Richtárik2, Martin Takáč3

Abstract

Matrix completion under interval uncertainty can be cast as a matrix com-
pletion problem with element-wise box constraints. We present an efficient
alternating-direction parallel coordinate-descent method for the problem. We
show that the method outperforms any other known method on a bench-
mark in image in-painting in terms of signal-to-noise ratio, and that it pro-
vides high-quality solutions for an instance of collaborative filtering with
100,198,805 recommendations within 5 minutes on a single personal com-
puter.

Keywords: Matrix Completion, Robust Optimization, Collaborative
Filtering, Coordinate Descent, Large-Scale Optimization, Non-Convex
Optimization

1. Introduction

There has been much recent interest in non-convex optimization problems
in statistics, data mining, and machine learning communities. Clearly, non-
convex optimization is also at the heart of operations research [35], where
considerable advances are being made, e.g., in decomposition approaches to
non-convex optimization, and robust optimization [11]. In this paper, we
present a decomposition approach to a robust variant of matrix completion,
a key problem in data science, with numerous applications ranging from
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image processing to recommender systems. This shows the value of advances
in operations research to data science.

After an informal overview highlighting some key applications, we in-
troduce the problem formally in Section 2. In Section 3, we present our
algorithm and its convergence analysis. In Section 4, we present our com-
putational results: In terms of statistical performance, our approach with
an explicit consideration of the uncertainty, outperforms a number of pre-
viously proposed approaches to matrix completion, on a well-known bench-
mark. On the computational side, our implementation runs within minutes
on a standard laptop even on instances with a 480, 189× 17, 770 matrix with
100,198,805 non-zero entries, which had been previously [12, 52, 26, 28] solved
on substantial clusters of computers in comparable times. We conclude with
a variety of suggestions for future work.

1.1. An Informal Overview

When dimensions of a matrix X and some of its elements Xi,j, (i, j) ∈ E
are known, the matrix completion problem is to find the unknown elements.
Without imposing any further requirements on X, there are infinitely many
solutions. Nevertheless, a matrix completion that minimizes the rank:

minY rank(Y ) subject to Yi,j = Xi,j, (i, j) ∈ E , (1)

provides the simplest explanation for the known elements, in many applica-
tions. There is a long history of work on the problem, c.f. [9, 43, 56, 24],
with thousands of papers published annually since 2010.

Although we cannot provide a complete overview, let us note that Fazel
[10] suggested to replace the rank, which is the sum of non-zero elements
of the spectrum, with the nuclear norm, which is the sum of the spectrum.
The minimization of the nuclear norm can be cast as a semidefinite program-
ming (SDP) problem and approaches based on the nuclear-norm have proven
very successful in theory [6] and very popular in practice. [43, 3] study the
Singular Value Thresholding (SVT) algorithm. This, however, required the
computation of a singular value decomposition (SVD) in each iteration. A
number of other approaches, e.g., augmented Lagrangian methods [53], ap-
peared, but those would require a truncated SVD or a number of iterations
[17, 25, 44, 54] of the power method. Even considering the recent progress
in randomized methods for approximating SVD, [15], the approximation be-
comes very time-consuming as the dimensions of matrices grow.
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A major computational break-through came in the form of the alternat-
ing least squares (ALS) algorithms [47, 38]. Initially, the algorithm has been
used as a heuristic for finding stationary points of the non-convex problem
[47, 38, 32, 2, 14], where a single iteration had complexity O(|E|r2), for |E|
observations and rank r, c.f., p. 60 in [22]. Keshavan et al. [23, 22], how-
ever, proved its exponential rate of convergence to the global optimum with
high probability, under probabilistic assumptions common in the compressed
sensing community. Independently, Cai et al. [3] analyzed matrix completion
with an arbitrary convex constraint. Further, more technical analyses of the
convergence to the global optimum have been performed by Jain et al. [19].

Many studies of matrix completion consider the uncertainty, in some
form. A number of analyses [23, 22, 19] consider the use of the standard
rank-minimization for the reconstruction of low-rank m × n matrix XY T

from XY T + W , where X ∈ Rm×r, Y ∈ Rn×r, W ∈ Rm×n with elements of
W being bounded i.i.d. random variables, which are sub-Gaussian and have
bounded expectation. A number of further analyses [55, 4] considered the use
of the standard rank-minimization for the reconstruction of low-rank m× n
matrix XY T from XY T + S, where X, Y are as above and W has a small
number of non-zero entries. [8] consider some columns being corrupted. Al-
though we are not aware of any studies of matrix completion under interval
uncertainty, interval-based uncertainty has been considered in related prob-
lems. Alaiz et al. [1] consider the min-max variant of the problem of finding
the nearest correlation matrix, i.e., the problem of finding the closest matrix
within the set of symmetric positive definite matrices with the unit diagonal
to an uncertainty set, with respect to the Frobenius norm. [27] studied in-
terval uncertainty in certain semidefinite programming problems, which can
be used to encode the nuclear-norm minimization.

We present an explicit extension of matrix completion towards interval
uncertainty, which has applications in image in-painting, collaborative fil-
tering, and beyond. The algorithm we present for solving the problem can
be seen as a coordinate-wise version of the ALS algorithm, which does not
require the approximation of the spectrum of the matrix. Before we proceed
to describe the actual algorithm, we provide a motivating overview of the
possible applications.

1.2. Collaborative Filtering under Uncertainty

Collaborative filtering is a well-established application of matrix comple-
tion problems [46], largely thanks to the success of the Netflix Prize. There

4
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is a matrix, where each row corresponds to one user and each column cor-
responds to a product or service. Considering that every user rates only a
modest number of products or services, there are only a small number of
entries of the matrix known. Our extension is motivated by the fact, that
one user may provide two different ratings for one and the same product
at two different times, depending on the current mood and other circum-
stances at the two times. One may hence want to consider an interval [x, x]
instead of a fixed value x of the rating, e.g., [x − ε, x + ε]. Further, when
one knows the scale [0,M ] the rating x is chosen from, one can consider
[max{0, x − ε},min{x + ε,M}]. Hence, if intervals are known for elements
Xi,j of a matrix X indexed by (i, j) ∈ I, one may want to solve:

minYi,j∈[0,M ]maxXi,j∈[Xi,j ,Xi,j ]∀(i,j)∈I rank(Y ) (2)

subject to Yi,j = Xi,j, ∀(i, j) ∈ I.

Although numerous extensions of matrix completion problems have been
studied, e.g. [31], the use of robustness to interval uncertainty is novel. It
can be seen as an extension of robust optimization [45] to matrix completion.

1.3. Image In-Painting

Further applications can be found in image processing. In in-painting
problems, a subset of pixels from an image are given and the goal is to fill
in the missing pixels. Rank-constrained matrix completion with equalities,
where I is the index set of all known pixels, has been used numerous times
[6, 18, 30, 13, 25, 17, 54, 54] in this setting. If the image comes from real
sensors, it the corresponding matrix may have full (numerical) rank, but have
quickly decreasing singular values in its spectrum. In such a case, instead of
solving the equality-constrained problem (1), one should like to find a low-
rank approximation Y ∗ of X, such that the known entry of X is not far away
from Y ∗, i.e., ∀(i, j) ∈ I we have Yi,j ≈ Xi,j. Let us illustrate this with a
small matrix

X =




68.16 78.12 24.04
78.12 90.09 30.03
24.04 30.03 20.01


 ,

5
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which has rank 3 and its singular values Σ = (167.9945, 10.2553, 0.0102)T . It
is easy to verify that

Y ∗(2) =




68.1546 78.1250 24.0389
78.1250 90.0853 30.0310
24.0389 30.0310 20.0098




is the best rank 2 approximation of X in Frobenius norm. Observe that
no single element of Y ∗(2) is identical to X, but that Y ∗(2) ≈ X. It is an
easy exercise to show that for any X ∈ Rm×n with singular values σ1 ≥
σ2 ≥ · · · ≥ σmin{m,n}, and Y ∗(r) as its best rank-r approximation, we have

|Xi,j − (Y ∗(r))i,j| ≤
∑min{m,n}

i=r+1 σi =: R(r) for all (i, j). Therefore, one should
not require equality constrains in (1), but rather inequalities |Yi,j − Xi,j| ≤
R(r),∀(i, j) ∈ I. Notice that this approach is not the same as minimizing∑

(i,j)∈I(Xi,j−Yi,j)2 over all rank r matrices, because we do not penalize the
elements of Y , which are already close to X. It is also different from the
usual treatment of noise in the observations [5]. One could rather formulate
this as the minimization of

∑
(i,j)∈I max{0, |Xi,j−Yi,j|−R(r)}2 over all rank

r matrices. Further, one knows the range of values allowed, e.g., [0, 1] for
common encoding of gray-scale images. This can hence be seen as “side
information” which, as we will show in numerical section, improves recovery
of a low-rank approximation considerably. Further still, one could assume
that the intensity should be at least 0.8, if pixels are missing within a light
region of the image, or similar domain-specific heuristics.

A number of other applications, e.g., in the recovery of structured ma-
trices [7], in certain forecasting problems with periodic time series and side
information, and in sparse principal component analysis with priors on the
principal components can be envisioned. Some are discussed in Section 5.
Now, let us introduce our notation and formalize the problem.

2. The Problem

Formally, let X be an m × n matrix to be reconstructed. Assume that
elements (i, j) ∈ E of X we wish to fix, for elements (i, j) ∈ L we have
lower bounds and for elements (i, j) ∈ U we have upper bounds. We employ
the following natural formulation for the equality and inequality constrained

6
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matrix completion problem:

min
X∈Rm×n

rank(X)

subject to Xij = XEij, (i, j) ∈ E
Xij ≥ XLij, (i, j) ∈ L
Xij ≤ XUij , (i, j) ∈ U .

(3)

We shall enforce the following natural assumption:

Assumption 1. E ∩ (L ∪ U) = ∅ and XLij ≤ XUij whenever (ij) ∈ L ∩ U .
The first condition says that if some element (ij) is already fixed by an

equality constraint, it does not (unnecessarily) appear any of the inequality
constraints. The second condition says the upper and lower bounds should
be consistent.

Problem (3) is NP-hard, even with U = L = ∅ [33, 16]. A number of
special cases of (3) have been studied in the literature, e.g., in [43, 37, 21].
A popular heuristic enforces low rank in a synthetic way by writing X as a
product of two matrices, X = LR, where L ∈ Rm×r and R ∈ Rr×n. Hence,
X is of rank at most r [49]. Let Li: and R:j be the i-th row and j-th column
of L and R, respectively. Instead of (3), we consider the smooth, non-convex
problem

min{f(L,R) : L ∈ Rm×r, R ∈ Rr×n}, (4)

where

f(L,R) := µ
2
‖L‖2

F + µ
2
‖R‖2

F + fE(L,R) + fL(L,R) + fU(L,R). (5)

Above we have

fE(L,R) := 1
2

∑
(ij)∈E(Li:R:j −XEij)2

fL(L,R) := 1
2

∑
(ij)∈L(XLij − Li:R:j)

2
+

fU(L,R) := 1
2

∑
(ij)∈U(Li:R:j −XUij)2

+,

where ξ+ = max{0, ξ}.
The parameter µ > 0 helps to prevent scaling issues4. We could optionally

set µ to zero and instead, from time to time, rescale matrices L and R, so

4Let X = LR, then also X = (cL)( 1
cR) as well, but we see that for c → 0 or c → ∞

we have ‖L‖2F + ‖R‖2F � ‖cL‖2F + ‖ 1cR‖2F .

7
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Input: E ,L,U , XE , XL, XU , rank r
Output: m× n matrix LR

1: choose L ∈ Rm×r and R ∈ Rr×n

2: for k = 0, 1, 2, . . . do
3: choose random subset Ŝrow ⊂ {1, . . . ,m}
4: for i ∈ Ŝrow in parallel do
5: choose r̂ ∈ {1, . . . , r} uniformly at random
6: compute δir̂ using formula (8)
7: update Lir̂ ← Lir̂ + δir̂
8: end for
9: choose random subset Ŝcolumn ⊂ {1, . . . , n}

10: for j ∈ Ŝcolumn in parallel do
11: choose r̂ ∈ {1, . . . , r} uniformly at random
12: compute δr̂j using (11)
13: update Rr̂j ← Rr̂j + δr̂j
14: end for
15: end for

Algorithm 1: MACO: Matrix Completion via Alternating Parallel Coor-
dinate Descent

that their product is not changed [49]. The term fE (resp. fU , fL) encourages
the equality (resp. inequality) constraints to hold.

3. The Method

Coordinate descent algorithms (CDA) are effective in solving large-scale
problems, due to their low per-iteration computational cost. Although each
iteration of CDA is cheap, many more iterations are required for convergence,
compared to second-order algorithms or similar. Recently, the stochastic
CDA has received much attention [34, 39] not least due to the parallelizability
[42, 41, 50, 51] with almost linear speed-up in regimes with sparse data,
when the number of parallel updates τ is much smaller that the dimension of
the optimization problem [37]. Distributed variants have also been studied
[29, 40].

In Algorithm 1, we present our alternating parallel coordinate descent
method for MAtrix COmpletion, henceforth simply “MACO”. In Steps 3–8
of our algorithm, we fix R, choose random r̂ and a random set Ŝrow of rows
of L, and update, in parallel for i ∈ Ŝrow: Lir̂ ← Lir̂ + δir̂. In Steps 9–14,

8
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we fix L, choose random r̂ and a random set Ŝcolumn of columns of R, and
update, in parallel for j ∈ Ŝcolumn: Rr̂j ← Rr̂j + δr̂j.

Let us now comment on the computation of the updates, δir̂ and δr̂j.
First, note that while f is not convex jointly in (L,R), it is convex in L for
fixed R and in L for fixed R.

3.1. Row Update

If we now fix row i ∈ {1, 2, . . . ,m} and r̂ ∈ {1, 2, . . . , r}, and view f as a
function of Lir̂ only, it has a Lipschitz continuous derivative with constant

Wir̂ = Wir̂(R) := µ+
∑

j : (ij)∈E
R2
r̂j +

∑

j : (ij)∈L∪U
R2
r̂j. (6)

That is, for all L, R and δ ∈ R, we have

f(L+ δEir̂, R) ≤ f(L,R) + 〈∇Lf(L,R), Eir̂〉δ +
Wir̂

2
δ2, (7)

where Eir̂ is the n × r matrix with 1 in the (ir̂) entry and zeros elsewhere.
The minimizer of the right hand side of (7) in δ is given by

δir̂ := −〈∇Lf(L,R), Eir̂〉/Wir̂, (8)

where

〈∇Lf(L,R), Eir̂〉 = µLir̂ +
∑

j : (ij)∈E
(Li:R:j −XEij)Rr̂j

+
∑

j : (ij)∈U & Li:R:j<XUij

(Li:R:j −XUij)Rr̂j

+
∑

j : (ij)∈L & Li:R:j>XLij

(Li:R:j −XLij)Rr̂j.

Note that

f(L+ δir̂Eir̂, R) ≤ f(L,R)− 〈∇Lf(L,R), Eir̂〉2
2Wir̂

. (9)

Let W
(k)
ir̂ := Wir̂(R

(k)) be the value of the Lipschitz constant at iteration k.

9
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3.2. Column Update

Likewise, if we now fix r̂ ∈ {1, 2, . . . , r} and column j ∈ {1, 2, . . . , n}, and
view f as a function of Rr̂j only, it has a Lipschitz continuous derivative with
constant

Vr̂j = Vr̂j(L) := µ+
∑

i : (ij)∈E
L2
ir̂ +

∑

i : (ij)∈U∪L
L2
ir̂.

That is, for all L, R and δ ∈ R,

f(L,R + δEr̂j) ≤ f(L,R) + 〈∇Rf(L,R), Er̂j〉δ +
Vr̂j
2
δ2, (10)

where Er̂j is the r ×m matrix with 1 in the (r̂j) entry and zeros elsewhere.
The minimizer of the right hand side of (10) in δ is given by

δr̂j := −〈∇Rf(L,R), Er̂j〉/Vr̂j, (11)

where

〈∇Rf(L,R), Er̂j〉 = µRr̂j +
∑

i : (ij)∈E
(Li:R:j −XEij)Lir̂

+
∑

i : (ij)∈L & Li:R:j<XLij

(Li:R:j −XLij)Lir̂

+
∑

i : (ij)∈U & Li:R:j>XUij

(Li:R:j −XUij)Lir̂.

Note that

f(L,R + δr̂jEr̂j) ≤ f(L,R)− 〈∇Rf(L,R), Er̂j〉2
2Vr̂j

. (12)

Let V
(k)
r̂j := Wr̂j(L

(k)) be the value of the Lipschitz constant at iteration k.

3.3. Row and Column Sampling

The random set (“sampling”) Ŝrow defined in Step 3 (resp sampling Ŝcolumn

in Step 10) can have an arbitrary distribution as long as it contains every
row (resp column) of matrix L (resp R) with positive probability. We shall
now formalize this.

10
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Assumption 2. The samplings Ŝrow and Ŝcolumn are proper, i.e.,

Prob(i ∈ Ŝrow) > 0 for all i ∈ {1, 2, . . . ,m},

and
Prob(j ∈ Ŝcolumn) > 0 for all j ∈ {1, 2, . . . , n}.

In particular, we can chose the random sets Ŝrow (resp Ŝcolumn) so that
every row (resp column) has equal probability of being chosen. Samplings
with this property are called uniform, and we use this choice in our exper-
iments. However, our theory also allows for nonuniform samplings. If we
have a multicore machine available with τ cores, then a reasonable sampling
should have cardinality τ , or some integral multiple of τ , so that every core
has a reasonable (not too small to be underutilized, but not too large either,
so as to avoid long processing time) load at every iteration.

3.4. The Final Step

Formulae (8) and (11) suggest that the computation of the final step is
very computationally demanding. This can, however, be avoided if we define
matrices A ∈ Rm×r and B ∈ Rr×n such that Aiv = Wiv and Bvj = Vvj. After
each update of the solution, we can also update those matrices. Similarly,
one can store sparse residuals matrices ∆E , ∆L, ∆U , where

(∆E)i,j =

{
Li:R:j −XEij, if (ij) ∈ E
0, otherwise,

and ∆U , ∆L are defined in similar way. Subsequently, the computation of δir̂
or δr̂j is reduced to just a few multiplications and additions.

3.5. Convergence Analysis

Due to the non-convex nature of (4), one has to be satisfied with conver-
gence to a stationary point, in general.

Theorem 1. Let µ > 0 and and let (L(k), R(k)) be the (random) matrices
produced by Algorithm 1 after k iterations, assuming that Ŝrow and Ŝcolumn

are proper. Then for all k ≥ 0,

0 ≤ f(L(k+1), R(k+1)) ≤ f(L(k), R(k)). (13)

11
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That is, the method is monotonic. Moreover, with probability 1,

lim
k→∞

inf ‖∇Lf(L(k), R(k))‖ = 0,

and
lim
k→∞

inf ‖∇Rf(L(k), R(k))‖ = 0.

We refer to the appendix for the proof.

4. Computational Results and a Discussion

We have conducted a variety of experiments. First, we present the perfor-
mance in collaborative filtering, next we compare the performance in image
in-painting with classical matrix completion techniques with U ≡ L ≡ ∅. We
conclude with remarks on the run-time and hardware used.

4.1. Collaborative Filtering

In our computational testing of collaborative filtering, we start with
smallnetflix_mm, where the training dataset contains ctr = 3, 298, 163 inte-
gers out of {1, 2, 3, 4, 5}, which describe how m = 95, 526 users rate n = 3, 561
movies. Second, we use a well-known data-set, which contains 100, 198, 805
ratings on the same scale, obtained from 480, 189 users considering 17, 770
products, as available from CMU5. Third, we use Yelp’s Academic Dataset6,
from which we have extracted a 252, 898 × 41, 958 matrix with 1,125,458
non-zeros, again on the 1–5 scale.

Although we know some ratings exactly on smallnetflix_mm, we con-
sider (4) of (3) with interval uncertainty sets of width 2:

Yi,j ≤ min{5, Xi,j + 1}, (i, j) ∈ I,
Yi,j ≥ max{1, Xi,j − 1}, (i, j) ∈ I. (14)

In particular, we complete a 95526 × 3561 matrix of rank 2 or 3, possibly
using width-2 interval uncertainty set and scale of 1 to 5 stars in the ratings.
To illustrate the impact of the this change, we present the evolution of Root-
Mean-Square Error (RMSE) in Figure 2 (left). Notice that an “epoch”, which

5
http://www.select.cs.cmu.edu/code/graphlab/datasets/

6
https://www.yelp.co.uk/academic_dataset
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is the unit on the horizontal axis, consists of ctr element updates of matrix
L and ctr element updates of matrix R.

Let us remark that RMSE is sensitive to the choice of ∆ and the rank
of the matrix we are looking for. If the underlying matrix has a higher rank
than expected, ∆ > 0 can lead to smaller values of RMSE. We should also
note that for some fixed ∆1 and ∆2, RMSE can be better with ∆1 for a
few epochs, but then get worse when compared with ∆2. Hence, in practice,
cross validation should be used to determine suitable value of parameter ∆.

On the Yelp data set, we have performed 10-fold cross-validation on the
training set, using varying rank. As we increased the rank from 1 to 2, 4,
8, 16, 32, and 50, the average error decreased from 1.7958 to 1.8284, 1.6464,
1.4590, 1.3395, 1.2702, and 1.2454, respectively. This seems to be comparable
to the best results from the 2013 Recommender Systems Challenge7, where
a smaller dataset was used.

Further, one can illustrate the effects in a matrix-recovery experiment.
We use random matrices X ∈ R20×20 of rank 8. We sample p% of entries of
the matrix and store their indices in I. We solve (4) with just the inequality
constrains, i.e., E ≡ ∅,U ≡ L ≡ I, XU = X − ∆1 and XL = X + ∆1,
where 1 ∈ Rm×n is a matrix with all elements equals to 1. Let us denote by
Y ∗(∆) the solution of that optimization problem after 105 serial iterations
(|Ŝ| = 1) and with µ = 10−5. Figure 1 shows the dependence of error

defined as follows Error(∆) = ‖Y ∗(∆)−X(7)‖F
‖X(7)‖F , where X(r) is the best rank r

approximation of X obtain using SVD decomposition of the whole matrix.
Figure 1 clearly suggest that, e.g., if 50% of elements are observed then by
allowing each entry ∈ I of reconstructed matrix to lie in ∆ neighborhood
of observed values, we can decrease the relative error of reconstruction from
approximately 1.22 to 0.4 for ∆ ≈ R(r). In this case, the value of ‖X(7)‖F
was 21.3245 and R(r) = 0.1075.

4.2. Image In-Painting

Further, we provide a comparison on the in-painting benchmark of [54].
Table 1 details the performance of SVT [6], SVP [18], SoftImpute [30],
LMaFit [13], ADMiRA, [25], JS [17], OR1MP [54], and EOR1MP [54] on 10
well-known gray-scale images (Barbara, Cameraman, Clown, Couple, Crowd,
Girl, Goldhill, Lenna, Man, Peppers) of 512 × 512 pixels each. 50% of pix-

7
https://www.kaggle.com/c/yelp-recsys-2013
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Figure 1: Dependence of Error on ∆ for various p ∈ {30, 50, 80} in matrix reconstruction.
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Figure 2: Left: The effect of adding inequalities (∆ = 1) to the equality-constrained
problem (∆ = 0) on smallnetflix, for r = 2, 3, µ = 10−3. Center and right: RMSE as
a function of the number of iterations and wall-clock time, respectively, on a well-known
480189× 17770 matrix, for r = 20 and µ = 16.
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els were removed uniformly at random, and the image was reconstructed
using rank 50. The performance was measured in terms of PSNR, which
is 10 log10(2552/E) for mean squared error E, with the results of all ap-
proaches but ours cited from the literature [54]. Our approach with inequali-
ties 0 ≤ Yi,j ≤ 255 dominates all other approaches on 7 out of the 10 images.
On the remaining 3 images, one would have to use the extrema of the ob-
served elements, e.g., a subinterval of 12–246 for Barbara.

To illustrate the aggregate results further, we undertook the following
experiment. We took a 512 × 512 gray scale image (Lenna) and chose 50%
of the pixels randomly, indexed as I. Then, we ran Algorithm 1 for 107

serial iterations (|Ŝ| = 1). We obtained solutions XE(rank) and XIN(rank),
where XE(rank) was obtained when we used only equality constrains (E =
I,U ≡ L ≡ ∅) and XIN(rank) was obtained when we used also inequality
constrains (E = I, U ≡ L ≡ −I, XL = 0 ∈ R512×512, XU = 1 ∈ R512×512

and −I is a set of all elements of X except those in I). Figure 3 shows for
different rank ∈ {30, 50, 100} the best rank approximation obtained by SVD
(X(rank)) and solutions XE(rank) and XIN(rank). The benefit of obvious
inequality constrains is nicely visible, e.g., at rank = 100, where the relative
error of reconstruction is more than twice smaller. Further, the image is more
smooth, upon visual inspection.
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Trank X(rank) XE(rank) XIN (rank)

30
‖X(rank)‖F = 223.9999 Error = 13.1394 Error = 12.6303

50
‖X(rank)‖F = 224.6876 Error = 18.2070 Error = 13.1859

100
‖X(rank)‖F = 225.2117 Error = 39.1631 Error = 15.2551

Figure 3: Adding obvious constraints can help to get better solution. Error is defined as
Error := ‖X(rank)−X‖F .
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Table 1: Comparison with other solvers on the image recovery in terms of the peak signal-to-noise ratio (PSNR), citing the
experiments of Wang et al. and adding results considering 0 ≤ Yi,j ≤ 255 under “MACO”.

Instance / Algo. SVT SVP SoftImpute LMaFit ADMiRA JS OR1MP EOR1MP MACO

Barbara 26.9635 25.2598 25.6073 25.9589 23.3528 23.5322 26.5314 26.4413 23.8015

Cameraman 25.6273 25.9444 26.7183 24.8956 26.7645 24.6238 27.8565 27.8283 28.9670

Clown 28.5644 19.0919 26.9788 27.2748 25.7019 25.2690 28.1963 28.2052 29.0057

Couple 23.1765 23.7974 26.1033 25.8252 25.6260 24.4100 27.0707 27.0310 27.1824

Crowd 26.9644 22.2959 25.4135 26.0662 24.0555 18.6562 26.0535 26.0510 26.1705

Girl 29.4688 27.5461 27.7180 27.4164 27.3640 26.1557 30.0878 30.0565 30.4110

Goldhill 28.3097 16.1256 27.1516 22.4485 26.5647 25.9706 28.5646 28.5101 28.6265

Lenna 28.1832 25.4586 26.7022 23.2003 26.2371 24.5056 28.0115 27.9643 28.3581

Man 27.0223 25.3246 25.7912 25.7417 24.5223 23.3060 26.5829 26.5049 26.5990

Peppers 25.7202 26.0223 26.8475 27.3663 25.8934 24.0979 28.0781 28.0723 28.8469

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

X X(10) XE

‖X‖F = 26.63 ‖X(10)‖F = 26.63 RE = 0.1031
XE+U XE+L XE+U+L

RE = 0.0357 RE = 0.0262 RE = 0.0262

Figure 4: Original 50 × 50 image, the best rank 10 approximation and reconstruction
using Algorithm 1 with different settings. The RE is a relative error defined as RE(X·) =
‖X· −X(10)‖F /‖X(10)‖.

Further, we took a 50 × 50 image and sampled randomly 50% of pixels.
(The image is the top-left corner of the Lenna image.) Figure 4 shows the
original image X and the best rank 10 approximation X(10). The solutions
XE , XE+U , XE+L and XE+U+L were obtained by running Algorithm 1 for
3× 105 serial iterations (|Ŝ| = 1), where E contains the observed pixels and
U and L contains all other pixels. We have used XL = 0 and XU = 1.
The result again suggest that adding simple and obvious constrains leads to
better low rank reconstruction and helps to keep reconstructed elements of
matrix in expected bounds.

4.3. The Run-Time

Finally, in order to illustrate the run-time and efficiency of parallelization
of Algorithm 1, Figure 2 (right) presents the evolution of RMSE over time
on the well-known 480, 189 × 17, 770 matrix of rank 20. There is an almost
linear speed-up visible from 1 to 4 cores and marginally worse speed-up
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between 4 and 8 cores. Considering that most other algorithms proposed
in the literature cannot cope with instances of this size, we cannot compare
the performance directly to SVT [6], SVP [18], SoftImpute [30], LMaFit
[13], ADMiRA, [25], JS [17], OR1MP [54], EOR1MP [54], and similar. We
can, however, compare the run-time on the 512 × 512 instances, detailed in
Table 1.

5. Conclusions

We have studied the matrix completion problem under interval uncer-
tainty and an efficient algorithm, which converges to stationary points of the
NP-Hard, non-convex optimization problem, without ever trying to approx-
imate the spectrum of the matrix. In our computational experiments, we
have shown that even the seemingly most trivial inequality constraints are
useful in a number of applications. This opens numerous avenues for further
research:

• Forecasting with Side Information: A related application comes from
the forecasting of seasonal data, e.g. sales. Let us assume that in
process {Xt}, one knows k + 1 = τ such that FX(xt1+τ , . . . , xtk+τ ) =
FX(xt1 , . . . , xtk) for the cumulative distribution function FX(xt1+τ , . . . , xtk+τ )
of the joint distribution of {Xt} at times t1+τ, . . . , tk+τ . One can then
formulate the forecasting into the future as a matrix completion prob-
lem, where there the historical datum at time t is at row bt/τc, column
t mod k specified by an equality or a pair of inequalities, and where
inequalities represent side information. For example in sales forecasts,
one often has bookings for many months in advance and knows that
the sales for the respective months will not be less than the bookings
taken. On the other hand, there clearly are [36] instances, where this
approach may fail.

• Non-negative matrix factorization: The coordinate descent algorithm
for the problem (4) is easy to extend, e.g., toward non-negative fac-
torization. It is sufficient to modify lines 7 and 13 in Algorithm 1 as
follows: Li,r̂ = max{0, Li,r̂+δi,r̂}, Rr̂,j = max{0, Rr̂,j +δr̂,j}. One could
consider extensions beyond box constraints on the individual elements
as well.
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• Auto-tuning µ: If we have some a priori bound on the largest eigenvalue
of the matrix to reconstruct, let us denote it ζ, then we can modify lines
7 and 13 in Algorithm 1 as follows Li,r̂ = max{min{ζ, Li,r̂ + δi,r̂},−ζ},
Rr̂,j = max{min{0, Rr̂,j + δr̂,j},−ζ}.

• Additional analyses: A variety of conditions, e.g., [20], are known under
which one can reconstruct the optimum to a non-convex problem using
a convex relaxation. In some cases [6, 18, 55, 22, 23, 19, 48], these
can be used to analyse algorithms for matrix-completion. Perhaps, one
could develop similar analyses for matrix completion under interval
uncertainty as well?

We would be delighted to share our code with other researchers interested
in these and related problems. Currently, the code is available from http:

//optml.github.io/ac-dc/. Should it become unavailable, for any reason,
we encourage researchers to contact us.
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Appendix A. Proof of Theorem 1

Proof. From (9) and (12) we see that for all k we have

f(L(k), R(k))
(9)

≥ f(L(k+1), R(k))
(12)

≥ f(L(k+1), R(k+1)) ≥ 0,

where the last inequality follows from the fact that all parts of f defined in
(5) are non-negative.

Monotonicity (13) together with the fact that µ > 0 imply that the level
set

Ω0 := {(L,R) : f(L,R) ≤ f(L(0), R(0))}
is bounded. Now, for all i ∈ {1, 2, . . . ,m}, v ∈ {1, 2, . . . , r} and any iteration
counter k we have

µ
(6)

≤ W
(k)
iv

(6)

≤ µ+ ‖R(k)‖2
F

(5)

≤ µ+
2

µ
f(L(k), R(k)) ≤ µ+

2

µ
f(L(0), R(0)). (A.1)

In the second inequality we have used Assumption 1, and in the last inequal-
ity we have used monotonicity. The same lower and upper bounds can be
established for V

(k)
vj .

We shall now establish that lim inf ‖∇Lf(L(k), R(k))‖2
F = 0 with probabil-

ity 1 (the claim lim inf ‖∇Rf(L(k), R(k))‖2
F = 0 can be proved in an analogous

way). Since

‖∇Lf(L(k), R(k))‖2
F =

m∑

i=1

r∑

v=1

〈∇Lf(L(k), R(k)), Eiv〉2,

it is enough to show that for ∆
(k)
iv := 〈∇Lf(L(k), R(k)), Eiv〉 we have lim inf(∆

(k)
iv )2 =

0 with probability 1 for all i ∈ {1, 2, . . . ,m} and v ∈ {1, 2, . . . , r}. Fix any
i and v. Since Ŝrow is proper, and since r̂ is chosen uniformly at random in
each iteration, there is an infinite sequence of iterations, indexed by Kiv, in
which the pair (i, v) is sampled.

In view of (9) and (A.1), for all k ∈ Kiv we have

f(L(k+1), R(k+1)) ≤ f(L(k+1), R(k)) ≤ f(L(k), R(k))− (∆
(k)
iv )2

C
,

where C = 2(µ + 2
µ
f(L(0), R(0))). Since f(L,U) is nonnegative, it must be

the case that
∑

k∈Kiv
(∆

(k)
iv )2 is finite. This means that, with probability 1,

limk→∞ inf(∆
(k)
iv )2 = 0, as desired.
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