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ABSTRACT
Graphics Processing Units (GPUs) are used as general pur-
pose parallel accelerators in a wide range of applications.
They are found in most computing systems, and mobile de-
vices are no exception. The recent availability of program-
ming APIs such as OpenCL for mobile GPUs promises to
open up new types of applications on these devices.

However, producing high performance GPU code is ex-
tremely difficult. Subtle differences in device characteristics
can lead to large performance variations when different opti-
mizations are applied. As we will see, this is especially true
for a mobile GPU such as the ARM Mali GPU which has a
very different architecture than desktop-class GPUs. Code
optimized and tuned for one type of GPUs is unlikely to
achieve the performance potential on another type of GPUs.

Auto-tuners have traditionally been an answer to this per-
formance portability challenge. For instance, they have been
successful on CPUs for matrix operations, which are used
as building blocks in many high-performance applications.
However, they are much harder to design for different classes
of GPUs, given the wide variety of hardware characteristics.

In this paper, we take a different perspective and show how
performance portability for matrix multiplication is achieved
using a compiler approach. This approach is based on a
recently developed generic technique that combines a high-
level programming model with a system of rewrite rules. Pro-
grams are automatically rewritten in successive steps, where
optimizations decision are made.This approach is truly per-
formance portable, resulting in high-performance code for
very different types of architectures such as desktop and mo-
bile GPUs. In particular, we achieve a speedup of 1.7x over a
state-of-the-art auto-tuner on the ARM Mali GPU.

1. INTRODUCTION
Graphics Processing Units (GPUs) have emerged as power-

ful general-purpose parallel accelerators. They have revolu-
tionized the high-performance computing landscape and are
about to bring big changes to mobile devices. Programming
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APIs such as OpenCL or RenderScript are now supported on
most mobile GPUs and new types of mobile applications are
emerging, such as real-time 3D scene reconstruction [17].

However, producing high-performance GPU code is no-
toriously hard. Low-level hardware features are directly ex-
posed to programmers, requiring expert knowledge to achieve
high performance. In addition, each type of devices comes
with its own performance characteristics, requiring differ-
ent optimizations. This problem is further exacerbated with
mobile GPUs since optimizations benefitial for desktop GPUs
(e.g., AMD, Nvidia GPUs) can negatively impact performance
on mobile GPUs, as we will see later in this paper.

Auto-tuners have been proposed to address performance
portability issues on GPUs. They are generally based on a
specialized parametric implementation of a computational
kernel, such as matrix multiplication, and the tuning process
explores the performance space on the targeted hardware.
However, auto-tuners have two major drawbacks. First, writ-
ing the parametric implementation for a given kernel requires
non-negligible effort from the programmer. Secondly, and
more importantly, the implementation is limited by a finite
set of parameters which might not be good at expressing com-
plex composition of optimizations. As we will see, this can
result in far from optimal performance when the parametric
implementation is run on a device it was not originally de-
signed for. In other words, auto-tuning alone is not sufficient
to solve the performance portability challenge.

We argue that achieving true performance portability re-
quires a more generic mechanism that expresses combina-
tions of optimizations beyond a fixed parametric space. We
advocate the use of a recently developed new high perfor-
mance code generation technique based on rewrite rules [23].
Programs are expressed in a high-level functional program-
ming model which shields the programmer from hardware
peculiarities.The compiler is then free to automatically ex-
plore the optimization space using a system of rewrite rules.
These rules encode algorithmic transformations as well as
hardware-specific low-level optimizations. Recent work [22]
has shown that this generic compiler approach leads to high
performance for desktop-class GPUs from AMD and Nvidia.

In this paper, we demonstrate that this compiler-based
technique is able to succeed where auto-tuners fail to deliver,
using matrix multiplication as a use-case. Matrix multiplica-
tion is a well studied and useful primitive found at the heart
of many numerical codes and algorithms in areas such as
machine-learning. In addition, there exist high-performance
reference implementations and specialized auto-tuners, which
allow for meaningful comparison.

http://dx.doi.org/10.1145/2968455.2968521


Using the ARM Mali GPU as an example, we show that
an auto-tuner designed primarily for desktop-class GPUs is
unable to achieve the full performance potential, resulting
in a 40% performance loss. In contrast, our compiler-based
approach delivers performance on par with the best hand-
tuned version on each of the three platforms tested. This is
possible due to the generic nature of the rewrite-based code
generation technique, which allows us to encode generic op-
timizations that are combined during the exploration process.
This includes vectorization and the use of built-in functions,
which are highly beneficial for the Mali GPU.
To summarize, this paper makes the following contributions:
• We demonstrate the limitations of auto-tuning when

applied on a different class of GPUs;
• We present how generic optimizations beneficial for the

Mali GPU are expressed in a rewrite-based generator;
• Our experimental results show that a rewrite-based ap-

proach is performance portable and even outperforms
hand-tuned code on Mali.

The rest of the paper is organized as follows. The next
section shows that performance is far from portable between
different classes of GPUs. Section 3 presents characteristics of
the Mali GPU. Section 4 introduces the high-level functional
language and the rewrite-based code generator we adopted.
Section 5 discusses optimizations for matrix multiplication,
how they are represented functionally and how they are en-
coded as rewrite rules. Sections 6 and 7 present our exper-
imental setup and show results on how we automatically
achieve high performance from a portable, high-level rep-
resentation of matrix multiplication. Finally, sections 8–10
discuss our work, related work and conclude the paper.

2. MOTIVATION
Matrix multiplication is probably one of the most studied

kernels in the high-performance community. Automatic tun-
ing techniques have been applied quite successfully to this
benchmark for over 20 years starting with PHiPAC [4] and
ATLAS [25]. However, auto-tuners rely on a parametric im-
plementation (or a parametric code generator) that is highly
specialized to the target machine. This approach is well-
suited in cases where little variation exists between different
processing units but falls short when the target processing
units exhibit significant variations. We illustrate this problem
using the CLBlast library auto-tuned using CLTune, a state-
of-the-art auto-tuner which has been shown [18] to achieve
competitive performance on several GPUs.

Figure 1 shows the performance achieved by CLBlast on
three different platforms; two desktop-class GPUs (Nvidia
and AMD) and one mobile GPU (ARM Mali). For each
platform, we compare the performance of the auto-tuner
with the best open source reference implementation available:
MAGMA [5] on Nvidia, clBLAS on AMD and code written
and optimized by ARM’s engineers [8] on the Mali GPU. The
auto-tuner is able to achieve significant performance on both
desktop GPUs, clearly beating the hand-written MAGMA
and slightly outperforming AMD’s clBLAS.

However, the auto-tuner is unable to achieve the full per-
formance potential on the mobile GPU resulting in a 40%
performance loss. This shortfall is explained by the fact that
CLBlast has been primarily designed for desktop-class GPUs
and includes optimizations that are beneficial on these ma-
chines but detrimental on the Mali GPU. While it is concep-
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Figure 1: Performance comparison between auto-tuned (left
bar) and hand-optimized (right bar) code. Higher is better.

tually not difficult to realise what needs to be done to reach
a higher-level of performance for some specific machine, it is
extremely hard to write a parametric kernel which exposes
these choices as a finite set of parameters. Especially given
that a library enabled for auto-tuning, such as CLBlast, is al-
ready quite complex with more than 1500 lines of parametric
OpenCL code just for matrix multiplication.

What is needed is an approach that easily combines opti-
mizations and produce a search space that includes the best
performing implementations for different types of hardware.
In this paper we propose to use a generic rewrite-based ap-
proach [23], which is not specific to matrix multiplication,
and we show that it succeeds where the auto-tuner fails. This
approach is also simpler to use since the compiler input is a
high-level functional program. For instance, matrix multipli-
cation is expressed in just five lines of code.

3. MALI GPU CHARACTERISTICS

ARM Mali-T628 GPU.
The Mali-T628 GPU is a mobile GPU implementing ARMs

second generation Midgard micro-architecture. Each core has
two arithmetic pipelines, each of which processes 128-bits of
data at a time using SIMD operations. A single core can
simultaneously manage up to 256 threads in hardware, de-
pending on the amount of registers required by each thread.
This large number of threads is used to hide memory laten-
cies, as stalled threads waiting for memory can be overtaken
by other threads.

Mali GPU Performance Characteristics.
Due to its hardware design, certain optimizations are cru-

cial for achieving high performance on the Mali GPU. Opti-
mizations techniques are discussed in the ARM documenta-
tion [2] as well as in [7] and [8]. These techniques are not
aligned and quite often contradictory with advice given by
AMD or Nvidia for their GPUs. This leads to a large perfor-
mance portability gap when executing kernels optimized for
a desktop GPU on the Mali GPU, or the other way around, as
we will see in the evaluation (section 7).

Vectorization is one of the most important optimization
given the SIMD architecture of the Mali GPU. OpenCL sup-
ports vectorization through the use of vector data types (e.g.,
float4).Arithmetic operations performed on values of vec-
tor data types are performed by the hardware SIMD units.
Special load operations exist in OpenCL for loading vector
values from arrays of scalar values. Performing vectorized
memory operations reduces the number of instructions is-
sued and helps to better utilize the memory bandwidth.



While vectorization is a crucial optimization for the Mali
GPU it is not recommended to be applied on Nvidia GPUs, as
they do not have hardware vector units. Therefore, OpenCL
code optimized for Nvidia GPUs will most likely make no
use of vector data types and perform poorly on Mali GPUs.

Register pressure is an extremely important topic on the
Mali GPU, as the number of registers influences the amount
of threads managed by the hardware. Therefore, reducing
the number of registers used increases the amount of active
threads which helps to hide memory latencies and keeps the
cores busy. If a kernel uses more than 4 128-bit registers, the
number of threads drops from 256 to 128. If the kernel uses
more than 8 registers, the amount of threads halves again.

While register pressure is also important on desktop GPUs,
there are more registers available and the degree of thread
level parallelism degrades more gracefully than on Mali.

There exist optimizations for AMD and Nvidia GPUs
which are not beneficial on the Mali GPU. The local memory
which is crucial for good performance on desktop GPUs is
mapped to the same physical memory as the global memory
on Mali. Its usage has, therefore, no performance benefits.

Memory accesses to the global memory are coalesced on
AMD and Nvidia if all work items in the same execution batch
access consecutive memory locations. Optimizing code for
coalesced accesses is hugely beneficial on these architectures,
where on Mali this might increase cache misses and memory
accesses should be vectorized instead.

4. REWRITE-BASED CODE GENERATION
Traditionally, optimization decisions are encoded explic-

itly, and almost always manually, using a low-level program-
ming model like OpenCL. This approach leads to code which
is inherently not performance portable, because optimization
choices for one architecture are often disadvantageous on
other architectures, as hinted in the motivation.

To address the performance portability challenge we ad-
vocate the use of a high-level programming model coupled
with automatic code generation. To this end we adopt a re-
cently developed novel code generation technique based on
rewrite rules [23]. It starts from a high-level functional pro-
gram where implementation and optimization decisions are
not explicitly specified. This empowers the compiler to auto-
matically explore the implementation and optimization space
and generate high performance OpenCL code. This has two
main advantages: first, programming is simplified, as time
consuming low-level programming is avoided; secondly, per-
formance portability is achieved as code is optimized and
specialized automatically by the compiler.

The following sections discuss how programs are expressed
in a high-level functional language for data parallelism, how
rewrite rules are used to transform high-level programs into
functionally equivalent low-level programs and how OpenCL
code is generated from them.

4.1 A High-Level Functional Language for
Data Parallelism

We express programs in a functional high-level language
specifically designed for data parallel applications. A set of
primitives, shown in Table 1, is used to express the applica-
tions. The primitives do not determine how the computation
is performed but only specify what has to be computed. This
gives the compiler the freedom to choose different implemen-
tations for different GPUs enabling performance portability.

High-level data-parallel primitives

map(f, xs) Apply f to every element of array xs.
reduce(z,⊕, xs) Perform a reduction of the array xs using

the binary operator ⊕ and its identity z.
zip(xs, ys) Combine the arrays xs and ys pairwise.
split(n, xs) Split the array xs into chunks of size n.
join(xs) Opposite of split: merge 2D array xs.

Low-level OpenCL specific primitives

mapGlb(f, xs) Parallel map using global work items.
mapWrg(f, xs) Parallel map using work groups.
mapLcl(f, xs) Parallel map using local work items.
mapSeq(f, xs) Sequential map.
reduceSeq(z,⊕,xs) Sequential reduction.
asVector(n, xs) Vectorize array xs with a width of n.
asScalar(xs) Scalarize a vectorized array xs.
vectorize(f) Vectorize the function f.
toGlobal(f) Stores the result of f in global memory.
toLocal(f) Stores the result of f in local memory.
toPrivate(f) Stores the result of f in private memory.

Table 1: High-level and Low-level primitives.

1 λ (A : [[float]M]K, B : [[float]K]N) 7→
2 A >> map(λ rowOfA 7→
3 B >> transpose >> map(λ colOfB 7→
4 zip(rowOfA, colOfB) >>
5 map(mult) >> reduce(0.0f,add) ) )

Listing 1: Matrix multiplication expressed functionally.
This is the input from which our compiler generates
efficient OpenCL code targeted for the Mali GPU.

The primitives are customized with application specific
functions and can be freely composed as they are functions
themselves. For example, to sum up the absolute values of
an array we write: reduce(0, plus, map(abs, xs)). In this
paper we use a notation similar to dataflow programming
where, expressions are read from left to right. This example
is written as: xs >> map(abs) >> reduce(0, plus). We will call
programs written in this language (functional) expressions to
distinguish them from the generated OpenCL code.

Listing 1 shows the functional matrix multiplication ex-
pression. The first map in line 2 performs a computation for
every row of A. In line 3 we map over the transposed matrix
B to obtain a single column of B. In lines 4 and 5 the dot
product for every pair of row and column is computed.

4.2 Lowering to OpenCL using Rewrite Rules
The key idea of the rewrite-based compilation technique [23]

is to expose implementation and optimization choices in the
compiler in the form of rewrite rules. A rewrite rule is a syn-
tactic program transformation which is proven to preserve
the semantic of the program. These rewrites can, therefore,
be safely and automatically applied to explore different im-
plementation choices. This is in sharp contrast to traditional
optimizing compilers where complicated static analysis is re-
quired to prove that transformations are valid.



The rewrite rules are coupled with a set of low-level prim-
itives which resemble the OpenCL programming model (Ta-
ble 1). The rewrite rules bridge the gap between the high-
level algorithmic primitives and the low-level OpenCL spe-
cific primitives. Implementation choices are made by choos-
ing between different rewrite rules. For example, we might
decide to perform a map operation sequentially by rewrit-
ing it into the mapSeq primitive. Alternatively the high-level
map can be rewritten into a different low-level map to exploit
parallelism using global threads (mapGlb) or local threads
(mapLcl) grouped in work-groups (mapWrg). Once a high-
level program is rewritten into a low-level program, all de-
cisions about how the computation should be executed in
OpenCL have been made and explicitly encoded in the pro-
gram. We will explain the rewrite process and how it is
guided to achieve high performance in section 5.4.

4.3 OpenCL Code Generation
The last stage consists of generating OpenCL code from a

low-level program. No implementation or optimization deci-
sions are made at this point, as these have already been made
using rewrite rules. Every low-level primitive from Table 1
directly corresponds to a piece of OpenCL code. Therefore,
the code generation process is straightforward and consists
of traversing the low-level program and emitting the corre-
sponding OpenCL code fragment. The code generation pro-
cess relies on information about the length of arrays which are
stored in their types. This information is used for the alloca-
tion of memory as well as for emitting indices when accessing
data, as we will see in more detail in the next section.

5. OPTIMIZING MATRIX
MULTIPLICATION FOR MALI

This section discusses how to optimize matrix multiplica-
tion for Mali. It first investigates a hand-optimized OpenCL
kernel and how it is expressible in the functional language.
Then it shows that the functional representation is suitable
for expressing optimizations structurally as rewrite rules.

5.1 Manually Optimized OpenCL Kernel
ARM recently published a paper where they discuss op-

timization techniques for their Mali GPU [8]. One of the
applications investigated is the general matrix multiplication
for which multiple optimized OpenCL kernels are presented.
Listing 2 shows the best performing version developed by
ARM’s engineers [8]. To keep the discussion simple we show
a slightly simpler version, which concentrates on the actual
matrix multiplication and omits the scalar values α and β
used in the BLAS formulation of GEMM.

OpenCL kernel analysis.
The OpenCL kernel shown in Listing 2 applies vectoriza-

tion and blocking as its two main optimizations. The for loop
in line 8 iterates over blocks (or tiles) comprising of 2 float4
elements from matrix A and B. These elements are loaded into
private variables in lines 9–12. The dot products of all four
combinations of float4 elements from matrix A and B are
computed using the OpenCL built-in dot function (lines 13
and 14) resulting in four separate intermediate results. These
are combined into a single float4 value (line 13) which is
added to the accumulation variable ab (declared in line 7).

The vectorization of the addition operation in line 13 is

1 kernel void mm(global float4* const A,
2 global float4* const B,
3 global float2* C, uint n) {
4 uint i = get_global_id(0);
5 uint j = get_global_id(1);
6 uint nv4 = n >> 2;
7 float4 ab = (float4)(0.0f);
8 for (uint k = 0; k < nv4; ++k) {
9 float4 a0 = A[ 2*i *nv4+k];

10 float4 a1 = A[(2*i+1)*nv4+k];
11 float4 b0 = B[ 2*j *nv4+k];
12 float4 b1 = B[(2*j+1)*nv4+k];
13 ab += (float4)(dot(a0, b0), dot(a0, b1),
14 dot(a1, b0), dot(a1, b1)); }
15 uint ix = 2*i*(n>>1) + j;
16 C[ix] = ab.s01;
17 C[ix + (n>>1)] = ab.s23; }

Listing 2: Optimized OpenCL matrix multiplication
kernel. This listing shows the blockedNT version from [8].

independent of the use of vector data types for the elements
of matrix A and B. Instead, the blocking of 2 values from A
and 2 values from B leads to 4 intermediate results which are
added to the accumulation variable using a vector addition.
After the loop, the results are written to global memory in
two instructions (lines 16 and 17) using a vector width of 2.

Optimized matrix multiplication expressed functionally.

Listing 3 shows a functional expression resembling the op-
timized implementation shown in Listing 2. Starting from
the top, the blocking optimization is expressed by splitting
matrices A (line 2) and B (line 3) by a factor of 2. This groups 2
rows of A and 2 columns of B together. The mapGlb primitives
used in lines 2 and 3 express the mapping of parallelism to
global threads in OpenCL: every global thread processes a
pair of 2 rows of A and 2 columns of B.

To complete the blocking of A, we first transpose a block of
2 rows of A (line 4), split each row into chunks of 4 elements
and then transpose back to obtain tiles with 2×4 floatvalues.
The same process is applied to B in lines 6 and 7. The zip
(line 4) combines the tiles of A and B together. These pairs
of tiles are then processed by the reduceSeq in line 8 which
corresponds to the for loop in the OpenCL kernel.

When processing a single pair of a tile of A and a tile of B
inside of the reduction, the pairs are copied into the private
memory in lines 10–13. The asVector(4) primitive (used in
lines 11 and 13) vectorizes the data by turning 4 individual
float values of a tile into a single float4 value. This section
corresponds to the lines 9–12 in Listing 2 where values from
matrices A and B are loaded into private variables.

For each combination of a row of a tile of A and a column of a
tile of B, each represented by a float4 value, we perform the
dot product computation in lines 17–19. The dot product is
expressed as a combination of the zip, mapSeq and reduceSeq
primitives. The zip (line 17) combines the two float4 values
from the tiles of A and B, before the mapSeq(mult4) (line 18)
performs the vectorized multiplication of the two values. To
finish the dot product computation, reduceSeq(0.0f, add)
(line 19) adds up the multiplied values after they have been
turned back into scalar values using the asScalar primitive
(line 18). This section corresponds to the four occurrences of
the dot function in lines 13 and 14 in Listing 2.



1 λ (A, B) 7→
2 A >> split(2) >> mapGlb0(λ 2RowsOfA 7→
3 B >> split(2) >> mapGlb1(λ 2ColsOfB 7→
4 zip( 2RowsOfA >> transpose >>
5 split(4) >> transpose ,
6 2ColsOfB >> transpose >>
7 split(4) >> transpose ) >>
8 reduceSeq(init = (float4)0.0f,
9 λ (acc, (tileOfA, tileOfB)) 7→

10 〈tileOfA >> mapSeq(
11 asVector(4) >> toPrivate(id4)),
12 tileOfB >> mapSeq(
13 asVector(4) >> toPrivate(id4))〉 >>
14 (λ (tileOfAp, tileOfBp) 7→
15 tileOfAp >> mapSeq(λ rowOfTileOfA 7→
16 tileOfBp >> mapSeq(λ colOfTileOfB 7→
17 zip(rowOfTileOfA, colOfTileOfB) >>
18 mapSeq(mult4) >> asScalar >>
19 reduceSeq(0.0f, add) ) ) ) >>
20 (λ 2x2DotProducts 7→
21 2x2DotProducts >> join >> asVector(4) >>
22 mapSeq(add4(acc)) ) ) >>
23 asScalar >> asVector(2) >>
24 toGlobal(mapSeq(id2)) ) )

Listing 3: Low-level functional expression resembling the
OpenCL kernel presented in Listing 2.

To complete the reduction over multiple tiles, we must add
the computed intermediate result to an accumulation vari-
able. To achieve this, we flatten the computed 2 × 2 dot prod-
ucts into a one dimensional array using the join primitive
(line 21). The resulting array of 4 float values is vectorized,
using the asVector(4) primitve and added to the accumula-
tion variable acc in line 22. This section corresponds to the
vectorized += operation in Listing 2 (line 13).

Finally, to write the computed results back to the global
memory the vector width is changed using asScalar and
asVector(2) before the actual copy operation in line 24. This
last section corresponds to the lines 16 and 17 from Listing 2.

This example should give some intuition on how optimized
programs are expressed functionally. This representation en-
ables the automatic transformation of the high-level program
in Listing 1 into low-level expressions such as Listing 3 using
rewrite rules, as the rest of the paper shows.

5.2 Optimizations Expressed Structurally
This section investigates individual optimizations, shows

how they are expressed functionally and presents the corre-
sponding generated OpenCL code.

Mapping of parallelism.
In OpenCL, programmers have different choices on how

to map the computation to the hardware, which directly af-
fects performance. The programmer might decide to group
threads (work items) into work groups and use their associ-
ated local ids together with their work group ids to distribute
the work. Sometimes it is possible to use the global ids of work
items independently of their work group ids.

In our approach, using the different layers of this hierarchy
is expressed by using different low-level variations of the map
pattern. All variations share the same high level semantics:
applying a function to each element of the input array to pro-
duce the output array. The low-level variations differ in their

A >> mapGlb0(λ rowOfA 7→
B >> mapGlb1(λ colOfB 7→ . . . ) )

(a) Functional expression using the mapGlb primitive.

kernel void KERNEL(...) {
for (int g_id_0 = get_global_id(0); g_id_0<N;

g_id_0 += get_global_size(0))
for (int g_id_1 = get_global_id(1); g_id_1<N;

g_id_1 += get_global_size(1))
. . . }

(b) Generated OpenCL code for an arbitrary global size.

kernel void KERNEL(...) {
int g_id_0 = get_global_id(0);
int g_id_1 = get_global_id(1);
. . . }

(c) Generated OpenCL code for fixed global size.

Figure 2: Exploiting parallelism using global work items.

OpenCL implementations, where the computation might be
performed sequentially (mapSeq), or in parallel, distributing
the workload across work groups (mapWrg), local work items
(mapLcl) or global work items (mapGlb).

Figure 2 shows one possible mapping of parallelism for
matrix multiplication. In Figure 2a, the mapGlb0 primitive is
used to perform a computation for every row of A. Nested
inside is the mapGlb1 primitive which maps over the columns
of B. As we use the mapGlb primitives we indicate, that a
work item with the global ids g_id_0 and g_id_1will process
a combination of a row of A and a column of B.

Figure 2b shows the corresponding OpenCL code gener-
ated for this expression. The two for loops correspond to the
map primitives. In the generic case it is unclear how many
global work items will be launched at execution time, there-
fore, for loops are emitted and a single work item might
process multiple data elements. For matrix multiplication
(and many other applications) it is common to specialize the
OpenCL kernel so that it only works if a matching global size
is selected at execution time. To support this, we use array
length information to statically prove that each work item
executes the loop exactly once and avoid generating the loop
altogether. The resulting OpenCL code is shown in Figure 2c.

Vectorized memory operations.
Vectorizing load and store instructions helps to better uti-

lize the memory bandwidth by issuing larger memory trans-
fers with a single instruction. OpenCL provides specific
vload and vstore instructions for loading or storing vector
values from arrays of scalar values.

We decompose vectorized memory operations into two
parts, as shown in Figure 3a: first, interpreting the initially
scalar array as a vectorized array using asVector; secondly,
copy the data by applying the vectorized identity function
id4 to every element of the vectorized array. In the example
toPrivate indicates a copy into the private memory. We keep
track of the length of arrays in their types. Let us assume that
A in the example is an array of N float values. Therefore,
we write its type as: [float]N. After applying asVector(4)
to it we obtain an array with type: [float4]N/4. We use this
length information when generating indices in OpenCL.

The generated OpenCL code is shown in Figure 3b. The
id4 function is declared in the first line and models a copy



. . . A >> asVector(4)
>> toPrivate(mapSeq(id4)) >> . . .

(a) Functional expression using the asVector primitive.

1 float4 id4(float4 x) { return x; }
2 kernel void KERNEL(const global float* A) {
3 . . .
4 float4 elemsOfA_0 = id4(vload4(index0, A));
5 float4 elemsOfA_1 = id4(vload4(index1, A));
6 . . . }

(b) Generated OpenCL code using vload instructions.

Figure 3: Vectorized memory operations.

. . . >> zip(elemsOfA, elemsOfB)
>> mapSeq(vectorize(4, mult))
>> asScalar >> reduceSeq(0.0f, add) >> . . .

(a) Functional expression performing a vectorized dot product.

1 float4 mult4(float4 l,float4 r){ return l*r;}
2 float add(float l,float r){ return l+r;}
3 kernel void KERNEL(const global float* A,
4 const global float* B) {
5 . . .
6 float4 tmp = mult4(elemsOfA, elemsOfB);
7 float acc = 0.0f;
8 acc= add(acc,tmp.s0); acc= add(acc,tmp.s1);
9 acc= add(acc,tmp.s2); acc= add(acc,tmp.s3);

10 . . . }

(b) Generated OpenCL code using vector instructions.

Figure 4: Vectorized arithmetic operations.

operation in the functional expression. It will be inlined
and, therefore, optimized away by the OpenCL compiler.
After vectorizing the array its float4 values are loaded us-
ing vload4 instructions. As arrays in private memory are not
stored in registers we unroll the array into private variables.
We show the first two variables in lines 4 and 5. To unroll the
array, its size has to be statically known, which is the case for
arrays obtained through fixed size tiling. We use symbolic
computations to compute indices like index0 using the length
information stored in the array’s type.

Vectorized arithmetic operations.
Vectorizing arithmetic operations is one of the most impor-

tant optimizations on Mali GPUs due to its SIMD architecture.
We discuss the vectorization of the dot product computation
as an example, which is used as a building block in matrix
multiplication as seen in Listing 3 lines 17–19.

The dot product is represented functionally by combin-
ing two arrays using the zip primitive. It is followed by
map(mult) which performs a pairwise multiplication before
reduce(0, add) adds up all the intermediate results. Fig-
ure 4a shows a vectorized version of the dot product. The
vectorize(4, mult) primitive is used to vectorize the mul-
tiplication with a vector width of 4. Currently we support the
vectorization of simple functions but we intend to incorporate
existing research on vectorizing more complex functions [9]
in the future. After performing the vectorized pairwise multi-
plication, all values are added up to compute the scalar result
by first interpreting the vectorized data as scalar, and then by
performing a reduction using scalar addition.

The generated OpenCL code is shown in Figure 4b. The
vectorized function mult4 performs the multiplication oper-
ation on two float4 values. The add function in line 2 is
not vectorized and operates on scalar float values. This ex-
ample OpenCL code assumes that only two float4 values
are combined and multiplied producing a temporary tmp in
line 6. The following two lines reduce the vector by accessing
its individual components to produce the final result.

5.3 Optimizations Expressed as Rewrite Rules
The optimizations discussed above are easily expressed as

rewrite rules. Let us take the vectorization of the dot product
(Figure 4) as an example. The following rewrite rule describes
this transformation independently of the concrete operation
performed by the function f or the concrete vector width n:

zip(a, b) >> map( f )
=⇒
zip(asVector(n, a), asVector(n, b)) >>
map(vectorize(n, f )) >> asScalar

It is easy to see that this rule is correct, since the result of
both expressions is an array of scalar values computed by
applying the function f to pairs of elements from a and b.

Similarly we define a rule for vectorizing a reduction:

a >> reduce(z, ⊕)
=⇒
a >> asVector(n)
>> reduce(asVector(n, z), vectorize(n, ⊕))
>> toScalar >> reduce(z, ⊕)

The rewritten expression performs a reduction on the vec-
torized data using the vectorized operator ⊕ before the final
result is computed by a scalar reduction of the components
of the vectorized result of the first reduction. For this rewrite
to be correct, we require the reduction operator ⊕ to be com-
mutative, as we change the order in which elements are pro-
cessed.

In Listing 2 the OpenCL build-in function dot is used to
perform a dot product of two float4 values. This function
can be implemented more efficiently by the compiler, e.g., by
using specialized hardware instructions. As we will see, this
is highly beneficial on Mali. We can easily define a rule to
detect a sequence of patterns computing a dot product and
rewrite it into a function call of the dot built-in function:

zip(x, y) >> mapSeq(mult4) >> asScalar
>> reduceSeq(z, add)

=⇒
dot(x, y) >> reduceSeq(z, add)

For this rule to fire x and y must be of type float4. The addi-
tional reduceSeq after applying the dot adds the computed
result to the accumulation variable which is initialized with
z. This shows how a very specialized optimization can be
implemented as a simple generic rewrite rule.

5.4 Automatic Exploration
Having defined optimizations as rewrite rules, it is now

possible to explore the space automatically by applying a
combination of rules to the input program. However, the re-
sulting space is extremely large, even potentially unbounded,
which opens up a new research challenge. This is in stark
contrast to classical auto-tuners which have a much smaller
space to explore due to their parametric nature. However,
this is also the main reason why auto-tuners sometimes fail
to achieve high-performance as seen in the motivation; they



are bound by the fixed set of parameter chosen by the im-
plementer and cannot search beyond these. In contrast, our
rewrite-based approach is able to combine the various opti-
mizations expressed as rules in any way and can, therefore,
explore a far larger amount of implementations unreachable
with classic auto-tuning.

We present here a first, simple and heuristic-based prun-
ing strategy to tackle the space complexity problem. Future
research will investigate more advanced techniques to fully
automate the pruning process, e.g., using combinations of
micro-benchmarking and machine learning.

For matrix multiplication, we start exploring from the high
level expression shown in Listing 1. Rewrite rules are au-
tomatically applied until a low-level expression is produced
such as Listing 3 from which OpenCL code is generated.

To explore different algorithmic optimization choices, we
encode the optimizations discussed in section 5.3 plus 1D
and 2D register blocking, and tiling presented by others [22].
Starting from the high-level expression in Listing 1, we apply
these rewrite rules at all valid locations in an arbitrary or-
der. This leads to a large number of expressions which we
filter based on simple heuristics to limit the depth of nesting
of maps and keep the distance between multiplication and
addition in the dot product small. Expressions with deep
nesting or with temporaries between the two crucial arith-
metic operations are unlikely to deliver great performance.

To further rewrite into a low-level expression containing only
OpenCL-specific primitives, we restrict ourself to a couple of
fixed parallelism mapping. For instance, the two outermost
maps are mapped to the global work items using mapGlb when
the local memory is not used in the expression since using
work-group is usually not beneficial otherwise. Using these
heuristics, our system produces 31 differently optimized low-
level expressions automatically derived from the single, high-
level expression of matrix multiplication.

Once a low-level expression has been produced, the next
step consists of selecting kernel parameters which is similar
to classical auto-tuning techniques. Every low-level expres-
sion explicitly encodes which optimizations are applied but
not which numerical parameters are picked for them. We au-
tomatically explore these parameters, for example the vector
width or the size of a tile, for all 31 low-level expression, re-
sulting in 677 specialized OpenCL kernels. Because we focus
on Mali, we fixed the vector width to 4 to prune the space.
We explored the tiles sizes in a reasonable range ensuring that
the generated kernel does not require too much memory.

Once an OpenCL kernel has been generated, we still need
to decide on the work group size runtime parameter,i.e., the
number of threads in a work-group. For matrix multiplica-
tion, work groups are two-dimensional and we have to select
the number of threads in both dimensions. We conducted
a search of the work-group size within the range allowed
by OpenCL.This resulted in 11, 628 unique combinations of
runtime parameters and optimizations on Mali.

5.5 Summary
In this section we have looked at optimizations for the

Mali GPU, how they are implemented in OpenCL and in a
generic rewrite-based code generator. These rewrites enable
our compiler to automatically combine various optimizations
and transform high-level programs into optimized functional
low-level expressions from which OpenCL code is generated.
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Figure 5: Performance distribution of matrix multiplication
kernels generated from functional expressions. The white dot
is the median. The black box delimits the 25%–75% quantiles.

6. EXPERIMENTAL SETUP
We evaluated our code generation technique using matrix

multiplication with differently sized square and rectangular
matrices (5122

∗5122, 10242
∗10242, 2048×512∗512×2048, 512×2048∗

2048×512) of single precision floating point values. We report
the median performance in GFLOPS of at least five runs.

We use an ODROID XU3 board with a Samsung Exynos5422
system on a chip. The mobile Mali-T628 MP6 GPU is sepa-
rated into two OpenCL devices. We used the first device with
4 cores and the Mali SDK 1.1 as OpenCL implementation. We
disabled DVFS and locked the clock frequency at 600 MHz.

To investigate performance portability we also performed
experiments on two desktop GPUs: a Nvidia GTX Titan Black
using CUDA 6.0 and driver 331.79, and an AMD Radeon HD
7970 using AMD APP SDK 2.9.214.1 and driver 1526.3.

7. EVALUATION
This section evaluates our approach using matrix multipli-

cation as a case study. We start by analyzing the performance
distribution of the entire exploration space and compare it
against the performance of the OpenCL kernels generated
from the best expression in the space. We then analyze the
performance impact of particular optimizations and compare
performance against manually optimized implementations
as well as the auto-tuned CLBlast library. Unless specified
otherwise, we use 10242

∗ 10242 as default input size.

7.1 Space Exploration
Following the strategy described in section 5.4, the genera-

tion of the 677 OpenCL kernels from 31 functional expressions
took less than half an hour while performing the 11, 628 ex-
ecutions took about a day. Figure 5 shows the performance
distribution of executions of the kernels generated. The vio-
lin plot represents a smooth histogram (turned by 90 degrees)
of the performance measured in GFLOPS. The left-most vio-
lin corresponds to the entire space (i.e., all the expressions +
parameter tuning) while the right-most violin represent the
distribution of tuning the parameter of the kernel resulting
from the single best expression (Listing 4).

As can be seen on the left, most executions in the entire
space result in very low performance with a median of less
than 1 GFLOP. When focusing on the executions of kernels
generated from the best expression (right-side), performance
increases significantly with a median of ~5 GFLOPS.



1 λ (A, B) 7→
2 A >> split(n) >> mapGlb0(λ nRowsOfA 7→
3 B >> split(m) >> mapGlb1(λ mColsOfB 7→
4 zip( transpose(nRowsOfA) >> split(k),
5 transpose(mColsOfB) >> split(k) ) >>
6 reduceSeq(init = make2DArray(n,m, 0.0f),
7 λ (accTile, (tileOfA, tileOfB)) 7→
8 zip(accTile, transpose(tileOfA)) >>
9 mapSeq(λ (accRow, rowOfTileOfA) 7→

10 zip(accRow, transpose(tileOfB)) >>
11 mapSeq(λ (acc, colOfTileOfB) 7→
12 dot(rowOfTileOfA >> asVector(k),
13 colOfTileOfB >> asVector(k)) >>
14 reduceSeq(acc, add)
15 ) >> join ) ) >>
16 toGlobal(mapSeq(mapSeq(mapSeq(id)))) >>
17 transpose() >> map(transpose) >> transpose
18 ) >> join >> transpose ) >> join

Listing 4: The best performing low-level expression
automatically derived from the high-level expression in
Listing 1 using rewrite rules.

The results show that picking the right combination of op-
timizations, explicitly encoded in the low-level expression
after rewriting, is crucial for avoiding bad performing code.
Nevertheless, it is still important to tune the kernel and run-
time parameters for achieving high-performance.

Listing 4 shows the best performing expression found au-
tomatically for the 10242x10242 input size. By investigating
the expression we can see that vectorization has been applied
(lines 12–13), the dot built-in function is used (line 12), and
tiling is performed with the split and transpose in lines 2–
5. The vector width (k) and tile sizes (n × k and m × k) are
still parameters that are picked prior to OpenCL code genera-
tion. After conducting the parameter exploration, the values
leading to the fastest kernel are k = 4 and n = m = 2.

The expression is similar to the one resembling the man-
ually optimized OpenCL kernel (Listing 3). Nevertheless,
there are a few notable differences. For example the tiles are
not explicitly copied to private memory and, therefore, more
loads to the global memory are issued. However, as we will
see in the next subsection, this does not affect performance
negatively as these accesses are probably cached. In fact,
the generated OpenCL kernel is faster than the kernel which
explicitly copies the data into private memory.

7.2 Performance Comparison Against
Manually Optimized Kernel

Figure 6 shows a performance comparison of three matrix
multiplication implementations. The first bar shows the per-
formance of the generated OpenCL kernel from the expres-
sion resembling the manually optimized kernel (Listing 3)
whose performance is shown as the last bar. The second bar
shows the best OpenCL kernel generated by automatically
deriving the expression shown in Listing 4 from the five-
line long high-level expression of matrix multiplication (List-
ing 1). For the two automatically generated OpenCL kernels
we indicate the performance benefit measured when includ-
ing the rewrite rule for introducing the dot built-in function.

We can see that the performance of the OpenCL kernel
generated via our automatic exploration even slightly out-
performs the manually optimized kernel. It is important to
note that this is achieved completely automatically by sys-
tematically applying rewrite rules starting from a high-level
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Figure 6: Performance of different matrix multiplication ker-
nels. Our fully automated exploration technique produces a
kernel that outperforms the manually optimized kernel.

representation of matrix multiplication. The rewrite rule that
introduces the dot built-in turns out to be crucial, giving an
extra 30% of performance as can be seen.

The kernel generated from the expression resembling the
manually optimized implementation (the first bar) achieves
96% of the performance of the manually written kernel. Again,
the usage of the dot built-in is crucial for achieving high per-
formance for matrix multiplication on Mali.

7.3 Performance Portability and Performance
Comparison Against Auto-tuning

To investigate portability of performance across different
classes of GPUs we compare our approach against the CLBlast1

library auto-tuned with the state-of-the-art CLTune2 [18] on
three GPUs from AMD, ARM, and Nvidia. As reference
points, we use the clBLAS3 library developed by AMD using
OpenCL, as well as an implementation particularly tuned for
each architecture: the hand tuned version shown in Listing 3
on Mali, cuBLAS on Nvidia, and clBLAS on AMD.

Figure 7 shows the performance comparison of all imple-
mentations on four different input sizes and shapes. The
auto-tuned CLBlast library delivers high performance on
the two desktop GPUs, achieving performance higher than
clBLAS on the AMD GPU. On Nvidia, CLBlast achieves
about 80% of the performance of cuBLAS for three inputs
sizes. That is a very good number, as the proprietary cuBLAS
relies on advanced assembly-level optimizations which can-
not be implemented using CUDA or OpenCL [11]. However,
on the mobile Mali GPU the auto-tuning approach is less
successful, achieving only about 60% of the performance of
the hand optimized implementation on three inputs and 25%
slower than our own results on the other input.

This shows that performance portability is not achieved
purely using auto-tuning. By investigating the tuned OpenCL
kernel used by CLBlast, we could see that the built-in dot func-
tion or vectorized operations are not used which – as we have
seen – is crucial for achieving high performance on Mali. On
the desktop GPUs these optimizations are not required as
there is no hardware support for vectorization. Furthermore,
the overall structure of the kernel is similar to the one used for
the desktop GPUs, clearly showing that CLBlast was devel-
oped for these GPUs and applied to Mali as an afterthought.

Our rewrite-based approach delivers high performance on
the desktop GPUs and on the mobile GPU. Performance on
the desktop GPUs is very close (Nvidia) or even slightly better
(AMD) compared to CLBlast on all input sizes. Crucially, the
1d190bec from https://github.com/CNugteren/CLBlast
2ad94a3d from https://github.com/CNugteren/CLTune
3d16f7b3 from https://github.com/clMathLibraries/clBLAS
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Figure 7: Performance of matrix multiplication on two desktop GPUs and one mobile GPU for different input sizes. The
rewrite-based approach is the only one that achieves performance portability across desktop-class and mobile GPUs.

rewrite-based approach consistently achieves a large perfor-
mance improvement on the Mali GPU compared to CLBlast
(up to 1.7× better). It is able to outperform any other imple-
mentation on Mali, especially for the third input size where
choosing a larger tile size increases the amount of work per
thread which is beneficial for this type of matrix shape.

The key for achieving high performance is the support
for architecture specific optimizations expressed as generic
rewrite rules and the ability to generate structurally-different
OpenCL kernels. In fact, when running the best OpenCL
kernel generated for Mali on the Nvidia GPU we obtain only
4% of the performance compared to running the kernel opti-
mized for this GPU (i.e., 25x slower) as seen in Table 2. Con-
versely, running the kernel optimized for the desktop class
AMD GPU on Mali results in only 11% of the performance
achieved with the best kernel we generate for the embedded
GPU (i.e., 9x slowdown). The Nvidia kernel does not even
run on Mali due to insufficient hardware resources.

On the desktop GPUs our approach generates kernels ex-
ploiting the hierarchical organization of threads, local mem-
ory, tiling, and the fused multiply-add instruction, whereas
on the mobile GPU, a flat organization of threads, vector-
ization, and the dot built-in are crucial. These very different
OpenCL kernels are derived from a single high-level expres-
sion of matrix multiplication using rewrites.

7.4 Summary
This section has shown that a rewrite-based approach achieves

high performance on two desktop GPUs and the mobile Mali
GPU starting from a single portable high-level expression.The
comparison against the state-of-the-art auto-tuner, CLBlast,
shows that tuning a fixed parameter space does not achieve
performance portability across different classes of GPUs.

8. DISCUSSION
While this paper has focused on matrix multiplication, the

proposed approach is in fact more generic. The high-level
functional language introduced in section 4 has been delib-
erately designed to be more restrictive than general purpose
languages to enable efficient parallel code generation. How-
ever, the language and the rewrite rules are fully extensible
and can be used for expressing a larger class of data-parallel
applications. For instance, we are currently working on ex-
tensions to support sparse linear algebra and stencil applica-
tions using the exact same methodology presented.

Run on
Nvidia AMD Mali

Tuned
for

Nvidia 100.0 % 27.5 % N/A
AMD 20.5 % 100.0 % 11.6 %
Mali 4.2 % 14.4 % 100.0 %

Table 2: Performance portability of kernels (10242
∗ 10242)

9. RELATED WORK
Auto-tuning approaches.

There exist a large number of auto-tuning projects in the
literature. We highlight two recent examples. OpenTuner [1]
is a recent generic framework for creating domain-specific
multi-objective auto-tuners. It supports a variety of search
techniques, as well as user-defined ones providing domain
specific knowledge. CLTune [18] is an auto-tuner for opti-
mizing OpenCL kernels. Using CLTune requires the kernel
to be written in a auto-tuning friendly style and might require
providing alternative implementations to achieve good per-
formance on a variety of devices. It supports a broad range
of strategies to efficiently search the space of parameters.

Auto-tuning has been successfully applied to matrix multi-
plication. Previous work includes templates for different im-
plementations with auto-tuning targeting Nvidia GPUs [10].
Other work [13] has auto-tuned pre-written kernels.

As we have demonstrated in this paper, our rewrite-based
approach is more fundamental than classical parameter based
auto-tuning, as the rewrite rules allow to drastically change
the structure of generated OpenCL kernels achieving true
performance portability across desktop and mobile GPUs.

Mali GPU optimizations.
There is extensive literature on optimizations for desktop-

class GPUs but significantly less work on mobile GPUs. For
instance, prior work [7] has shown how manual optimiza-
tions for Mali GPUs can be used for HPC-style workloads.
The paper [15] discusses code generation for an mobile GPU
from a domain specific language for image processing.

In contrast, this paper presents a novel technique based
on rewrite rules to automatically generate optimized code for
data parallel applications targeting the Mali GPU.

Polyhedral compilation [3] has been applied to optimize
OpenCL code multiple GPUs, including Mali. Unfortunately,
the Mali GPU was excluded from the matrix multiplication
benchmark. Polyhedral compilation requires complex static



analysis for applying transformations on loops with affine
memory accesses. In contrast, our rewrite-based approach
avoids any static analysis and instead starts out from a sim-
pler functional language without any explicit loops.

High-level approaches for GPU programming.
There exists a rich literature on high-level approaches for

GPU programming inspired by functional programming.
Delite [12], Halide [21], Lime [6] all address programma-

bility issues showing that it is possible to simplify GPGPU
programming. They all exploit functional concepts such as
composability, immutability and absence of side-effects to
increase programmability. However, these approaches still
rely on hard-coded optimizations which are not performance
portable across different types of GPUs.

SkelCL [24] and Accelerate [14] are examples of domain
specific languages (DSLs) using data parallel patterns to sim-
plify GPU programming. Bones [19] is a pattern based GPU
compiler automatically detecting algorithm species and map-
ping them to patterns. All three projects rely on pre-written
implementations of patterns to generate GPU code. HiDP [16]
is a hierarchical data parallel language for GPU program-
ming generating CUDA code. Petabricks [20] allows the user
to specify algorithmic choices of implementations which are
automatically selected by the compiler and runtime.

All of these high-level projects rely on manually optimized
GPU code or device-specific compiler optimizations making
the generated code not performance portable. Re-targeting
any of these projects to generate efficient code for Mali re-
quires considerable effort, while the approach advocated in
this paper based on rewrite rules is capable of generating
efficient code for mobile as well as for desktop-class GPUs.

10. CONCLUSION
This paper has shown that the classical auto-tuning tech-

nique for matrix multiplication is not performance portable
across different types of GPUs. Auto-tuners are built around
complex parametric implementations which ultimately end
up being specialized for a certain class of devices.

In this paper, we have taken a different approach based
on a generic rewrite-based GPU code generator that encodes
optimization choices as rewrite rules. This approach can eas-
ily apply composition of optimizations which leads to very
high-performance code, even on a mobile GPU. The rewrite-
based technique makes it easy to add optimizations such as
expressing the OpenCL dot-product built-in function, which
makes a large performance difference on the Mali GPU. Per-
forming the same optimizations in an auto-tuner parametric
implementation would require a significant effort and might
result in a highly specialized device-specific version.

Overall, we have shown that the rewrite-based code gener-
ator offers true performance portability across desktop GPUs
and the Mali mobile GPU. It achieves 1.7x speedup over a
state-of-the-art auto-tuner on the Mali GPU and even outper-
forms the human-expert hand-written version on this device.
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