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SUMMARY

Pathogenic animal trypanosomes affecting livestock have represented a major constraint to agricultural development in
Africa for centuries, and their negative economic impact is increasing in South America and Asia. Chemotherapy and
chemoprophylaxis represent the main means of control. However, research into new trypanocides has remained inad-
equate for decades, leading to a situation where the few compounds available are losing efficacy due to the emergence
of drug-resistant parasites. In this review, we provide a comprehensive overview of the current options available for the
treatment and prophylaxis of the animal trypanosomiases, with a special focus on the problem of resistance. The key
issues surrounding the main economically important animal trypanosome species and the diseases they cause are also pre-
sented. As new investment becomes available to develop improved tools to control the animal trypanosomiases, we stress
that efforts should be directed towards a better understanding of the biology of the relevant parasite species and strains, to
identify new drug targets and interrogate resistance mechanisms.

Key words: animal trypanosomiases, veterinary trypanocide, drug resistance, Trypanosoma congolense, Trypanosoma
vivax, Trypanosoma brucei.

INTRODUCTION

The animal trypanosomiases (or trypanosomoses)
include a variety of wasting diseases caused by
unicellular protozoan parasites of the genus
Trypanosoma (order Kinetoplastida). All relevant
animal pathogenic trypanosomes (T. vivax – sub-
genus Duttonella, T. congolense – subgenus Nanno-
monas and T. brucei spp. – subgenus Trypanozoon)
(Fig. 1) belong to the Salivaria group (Haag et al.
1998), so-called because their transmission to the
vertebrate host occurs principally via the infected
saliva of blood-sucking insects. Most valuable do-
mestic livestock (bovines, ovines, caprines, equids,
camelids and suids) are susceptible to infection
with one or more of these Trypanosoma species.
This can lead to acute and/or chronic forms of
wasting disease, causing high morbidity, mortality
and infertility in the absence of treatment (Leach
and Roberts, 1981; Connor, 1992). By affecting agri-
cultural production and animal husbandry, the
animal trypanosomiases have a high economic and

social impact in vast areas of the tropics and subtrop-
ics where transmission occurs. Africa has historically
suffered the greatest burden (Steverding, 2008), but
the negative effects are also increasing in South
America and South-East Asia, where unrestricted
animal movements favour the spread of some tryp-
anosome species.
Chemotherapy and chemoprophylaxis represent

the mainstay of animal trypanosomiases control, en-
suring animal health and production in enzootic
countries. However, the available veterinary trypa-
nocides (Table 1) are inadequate and outmoded.
Only six compounds are currently licensed, and
their narrow therapeutic indices restrict their use, es-
pecially when even low-level resistance arises. By
far, the most usage is of two compounds, diminazene
aceturate and isometamidium chloride, largely
applied against animal trypanosomiases in Africa
(Holmes et al. 2004), with suramin also being rela-
tively widely used to treat T. b. evansi infections.
Worryingly, an increasing number of reports of re-
sistance to this handful of existing chemicals, par-
ticularly diminazene and isometamidium, indicate
their future utility to be in jeopardy (Geerts et al.
2001; Delespaux and de Koning, 2007).
It has been estimated that as many as 35 million

doses of trypanocides are used annually in sub-
Saharan Africa alone (Holmes, 2013), which
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represents a figure suitable to treat only around one-
third of the cattle at risk (Swallow, 2000). Inclusion
of trypanocides sold informally in the African
market may substantially increase the total number
of doses sold annually, which may be as high as 70
million doses (Frans van Gool, personal communica-
tion, 2015). Despite this demand, the high costs
of drug development and the low anticipated
profit from the sale of chemotherapeutics in develop-
ing countries have disincentivized commercial
pharmaceutical investments in this field (Connor,
1992). In recent years, a public–private partnership,
GALVmed (Global Alliance for Livestock
Veterinary Medicines), supported by funding from
the Bill & Melinda Gates Foundation and the UK
Department for International Development, has
emerged to fill the gap, and has committed to the de-
velopment of new therapeutic and prophylactic try-
panocidal drugs (http://www.galvmed.org/en/).
However, even in the best case scenario, a novel
licensed compound is unlikely to be available for
several years yet; hence the rational, correct use of
the trypanocides already available is of paramount
importance.

THE ANIMAL TRYPANOSOMIASES :

DISTRIBUTION, TRANSMISSION, HOSTS ,

PATHOLOGY AND ECONOMIC IMPACT

Animal African trypanosomiasis (AAT, nagana)

AAT[also callednagana, fromtheZuluword ‘N’gana’
which means ‘powerless/useless’ (Steverding, 2008)],
is caused by trypanosome species T. congolense,
T. vivax and, to a lesser extent, T. brucei spp.

(Fig. 1). The disease is widespread in sub-Saharan
Africa (Fig. 2), where it is cyclically transmitted by
the tsetse fly (Glossina spp.), the same vector respon-
sible for the transmission of human-infective trypano-
somes (T. brucei gambiense and T. b. rhodesiense, the
aetiological agents of humanAfrican trypanosomiasis,
HAT, or sleeping sickness) (Barrett et al. 2003). In
animals, tsetse flies can also transmit trypanosomes
mechanically when they begin a blood meal on an
infected host and end it on another one, provided
that the time between the two meals is short enough
toensure survival ofparasites in the insectmouthparts,
as shown in experimental infections in goats (Moloo
et al. 2000). Unlike other trypanosomes, T. vivax
does not multiply in the tsetse midgut, but remains
confined to the insect proboscis, where it completes
its short life cycle (Gardiner, 1989). This is the
reason why this species can also be transmitted mech-
anically by other haematophagous flies, in particular
horseflies (Tabanus spp.) and stable flies (Stomoxys
spp.). Mechanical transmission has allowed T. vivax
to spread far beyond the limits of the African tsetse
belt: this parasite is now established in Mauritius and
in 13 South American countries (Fig. 2), where it
probably arrived in the 18th or 19th century via
infected Zebu cattle exported from West Africa
(Jones and Davila, 2001; Osorio et al. 2008), an
origin corroborated by phylogenetic studies (Cortez
et al. 2006). Although T. vivax remains enzootic in
South America primarily due tomechanical transmis-
sion, other potential modes of transmission include
perinatal and iatrogenic routes or via alternative, as
yet unidentified vectors (Osorio et al. 2008). This
lack of definitive knowledge greatly hampers the

Fig. 1. Morphological characteristics of the bloodstream form trypomastigote of the three most important livestock
trypanosomes. T. brucei group trypanosomes (T. b. brucei, T. b. evansi, T. b. equiperdum) are morphologically
indistinguishable (with the exception of the non-proliferative stumpy-form in T. b. brucei). The trypomastigote is the
disease-relevant form and the target of therapy.
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Table 1. Currently available veterinary trypanocides.

Name Trade namesa Structure
Administration
route Action

Dosage
(mg Kg−1)b Indication/animal

Adverse
effects/other
information

Treatment of
relapses

Diminazene
aceturate

Berenil, Veriben,
Pirocide,
Ganaseg,
Azidin, Trypan

IM, SC
T 3·5 (up to 8

for resistant
trypanosomes,
5–10 for
T. b. evansi)

T. congolense,
T. vivax (less active
on T. b. brucei,
T. b. evansi)/Cattle,
sheep, goats, dogs

Toxic to horses,
donkeys, dogs
and camels. Also
babesicidal

Isometamidium
chloride

Homidium
bromide

Homidium
chloride

Ethidium

Novidium

IM (deep,
cattle), IV
(sheep, goats,
pigs)

T, (P) 1 T. vivax,
T. congolense (less
active on
T. b. brucei)/Cattle,
sheep, goats, pigs

IM toxic to
horses.
Potentially
carcinogenic

Diminazene
aceturate,
Isometamidium
chloride

Isometamidium
chloride

Trypamidium,
Samorin,
Veridium,
Securidium

IM (deep) P, T 0·25–1 (T), 0·5–1
(P)

T. congolense,
T. vivax (less active
on T. b. brucei,
T. b. evansi)/Cattle,
sheep, goats,
horses, camels

Toxic above 2
mgKg–1. Avoid
subcutaneous
administration.
Highly irritant.
Possible local
reactions in
cattle.

Diminazene
aceturate

Quinapyramine
sulphate

Quinapyramine
sulphate:chlor-
ide (3:2 w/w)

Antrycide,
Trypacide,
Noroquin,
Quintrycide,
Tribexin,
Triquin-S,
M7555,
Trypacide
prosalt

SC T

P

3–5 (T) (20–40
for T. simiae)
(Camels,
horses, pigs,
dogs: dose
divided and
given at 6 h
intervals), 7·4
(P)

T. b. evansi,
T. vivax,
T. congolense,
T. brucei,
T. b. equiperdum,
T. simiae/Camels,
horses, pigs, dogs,
cattle
(discouraged)

Toxic at high
doses. Fast
resistance
acquisition

Isometamidium
chloride,
Suramin
sodium

Suramin sodium Naganol, Bayer
205, Germanin

IV T (P) 10 (horses: 3
doses/1 week)

T. b. evansi,
T. b. brucei,
T. b. equiperdum/
Camels, horses

IM can cause
severe necrosis
at injection site.
May be toxic to
horses

Quinapyramine
sulphate

3
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implementation of surveillance and control strategies
(Jones and Davila, 2001). Non-tsetse transmitted T.
vivax infection in cattle is also recognized in parts of
Africa, for example in regions of Ethiopia, Chad and
Sudan (Ahmed et al. 2016). Mechanical transmission
of T. congolense has been shown under experimental
conditions (Desquesnes andDia, 2003) and can there-
fore not be excluded from contributing to its spread in
Africa (Desquesnes et al. 2009).
The host range is wide (Uilenberg, 1998).

Trypanosoma congolense is considered the most
pathogenic trypanosome in cattle (followed by T.
vivax), but it also causes infections in horses,
sheep, goats, pigs and dogs. Apart from bovines,
T. vivax can affect sheep, goats, horses and camels
(Osorio et al. 2008). Trypanosoma b. brucei is found
in various domestic ungulates but it is particularly
virulent in dogs, camels and horses, the latter often
succumbing to infection within a few months in
the absence of treatment. In areas where more than
one trypanosome species is present, mixed infections
in domestic animals are often encountered (Kihurani
et al. 1994; Auty et al. 2008; Biryomumaisho et al.
2013; Takeet et al. 2013; Moti et al. 2015) and
modern molecular techniques (Desquesnes and
Davila, 2002) facilitate speciation. Many wild
animal species in Africa also host one or more tryp-
anosome species and can serve as reservoirs for both
human and domestic animal infective trypanosomes
(Mulla and Rickman, 1988; Auty et al. 2012).
Similarly, wild South American fauna can harbour
T. vivax and act as reservoir of infection (Osorio
et al. 2008).
Belonging to the same Nannomonas subgenus as

T. congolense, T. simiae is the only trypanosome
species to be extremely pathogenic to pigs, which re-
present the main host, although other domestic
species can harbour the parasite (Joshua and Kayit,
1984; Salim et al. 2014). In pigs, T. simiae causes a
hyperacute, often fatal infection, with death often
occurring within 48 h of the appearance of symp-
toms (Leach and Roberts, 1981). For this reason,
chemoprophylaxis is preferred to curative treatment.
The pathogenicity of trypanosomal infections

varies considerably depending on several factors, in-
cluding parasite-related aspects (species and viru-
lence), host (species, breed, age, immunological
status, nutritional status, presence of co-infection
and physical condition), vector (species, density, in-
fection rate and host preference), epidemiological
situation (endemic or epidemic) and the environ-
ment (e.g. the availability of food and water and
the season) (Leach and Roberts, 1981; Van den
Bossche and Delespaux, 2011). Anaemia is the
most prominent pathological feature of AAT
(Taylor and Authié, 2004) and, in conjunction
with other systemic lesions, can contribute to death
through eventual congestive heart failure. Other
symptoms include pyrexia, lymph node and spleenT
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enlargement, ataxia, lethargy, weight loss, oedema,
immunosuppression, abortion and decrease in milk
production. The immunosuppression caused by try-
panosomes can affect animal health by interfering
with vaccination against other diseases (Singla
et al. 2010), or by increasing susceptibility of the
host to other infections. Inflammatory, degenerative
lesions are also observed, and can damage various
organs such as heart, central nervous system
(CNS), eyes, testes, ovary and pituitary gland.
Death may occur within weeks from onset of the
acute disease. Otherwise the animal enters a
chronic phase (spontaneous recovery is rare but not
unknown), characterized by intermittent or sub-
patent parasitaemia, general malaise and infertility,
and may last months or years prior to death
(Taylor and Authié, 2004).
While mortality due to the disease is clearly im-

portant, the impact upon overall cultivation and
crop production due to reduced draught power is
the most significant contributor to the economic
impact of AAT (Swallow, 2000). This is considered
the livestock disease with the highest impact on agri-
cultural production and animal husbandry in Africa,
causing annual losses which run to billions of US$
(Shaw et al. 2014). Across the tsetse belt as many
as 55 million cattle are at risk of infection (Cecchi
and Mattioli, 2009), plus 30 million sheep and 40
million goats. Of these cattle, 3 million die every
year from AAT. The disease has devastating effects
on the livelihoods of local farmers, for whom cattle
represent not only a source of food (meat and
milk), manure, and draught power, but have also
fundamental social roles as ‘living banks’ and are
used for social obligations (e.g. dowry and ritual
use) (Swallow, 2000; Grace et al. 2009; Mungube
et al. 2012).

Infection with T. vivax is considered an emerging
disease in South America where it has a significant
impact on cattle farming, but where it also affects
horses and other ruminants (Batista et al. 2007,
2009, 2012; Da Silva et al. 2011). In a region including
the Brazilian Pantanal and the Bolivian lowlands,
where cattle ranching is the singlemost important eco-
nomic activity (11 million head of cattle are reared in
the region), the losses caused to the industry by a
single outbreak of T. vivax in 1995 were calculated
at more than US$ 160 million (Seidl et al. 1999).
The gross financial burden of T. vivax in South
America, however, is not known with any degree of
certainty.

Surra

Surra (from the Hindi word for ‘rotten’) is the most
widely used of a plethora of names given to
T. b. evansi infection in animals (Desquesnes et al.
2013b). As seen for T. vivax, T. b. evansi (a T.
brucei subspecies) has also evolved a mechanical
mechanism of transmission that has allowed this
species to spread beyond Africa by export of infected
animals (Lun et al. 2010). Trypanosoma b. evansi is
today the pathogenic animal trypanosome with the
broadest geographical distribution (Fig. 2), which
stretches from North-East Africa to much of Asia
in the east (Luckins, 1988; Payne et al. 1991; Lun
et al. 1993) and to Latin America in the west
(Desquesnes et al. 2013b), and it is spreading stead-
ily. In Europe, recent imported cases of surra have
been documented and vigilance remains necessary
after outbreaks in the Canary Islands, mainland
Spain, France and Germany (Desquesnes et al.
2008; Gutierrez et al. 2010; Tamarit et al. 2011;
Defontis et al. 2012).

Fig. 2. Countries where the most important livestock trypanosomes are present. Modified from (Auty et al. 2015), based
on PubMed search and including countries where data were not available and parasite presence is inferred. To note that the
real geographical distribution in some countries is limited (as, for example, for T. congolense in South Africa, Namibia and
Botswana and for T. b. evansi in Russia). Cases of eradicated outbreaks of T. b. evansi in Europe (i.e. in France) are not
indicated.
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Several probable or suggested methods of surra
transmission exist: by biting insects including
horseflies and stable flies (the major credited
route), by vampire bats, by iatrogenic (e.g. as a
result of a vaccination intervention), sexual, horizon-
tal or vertical transmission, or by per-oral contamin-
ation in the case of carnivores eating infected meat
(Desquesnes et al. 2013a).
Trypanosoma b. evansi can parasitize a wide range

of wild and domestic animal hosts, but the infection
is particularly pathogenic in horses, camels and
Asian water buffaloes (Desquesnes et al. 2013b).
There is increasing evidence that common rodents
are an important reservoir host for T. b. evansi and
other trypanosomes (Jittapalapong et al. 2008;
Maia da Silva et al. 2010; Kocher et al. 2015;
Pumhom et al. 2015), such as T. lewisi, a parasite
of rats also found in atypical human infections
(Howie et al. 2006; Sarataphan et al. 2007). These
findings revive the important question of rodents
as reservoirs of other T. brucei species. Rare cases
of human infection with T. b. evansi (Joshi et al.
2005; Haridy et al. 2011; Van Vinh et al. 2016),
where individuals were infected through trypano-
some-carrying animal blood, have been reported
and, in at least one case, infection was associated
with a null mutation in the trypanosome lytic
factor blood component Apolipoprotein L1
(APOL1), which normally protects humans from
animal trypanosome infections (Vanhollebeke et al.
2006; Truc et al. 2013). In a more recent case, no
mutations in APOL1 were found to explain the
unusual infection (Van Vinh et al. 2016).
Symptoms of surra overlap those previously

described for AAT and their intensity can vary
greatly between and within host species and
depend on the geographical area and epidemiological
situation (Desquesnes et al. 2013b).
In the Philippines, outbreaks of surra cause high

morbidity and mortality in water buffaloes and
other large ruminants, greatly affecting the liveli-
hood of local small-scale farmers (Dargantes et al.
2009; Desquesnes et al. 2013a). In the Brazilian
Pantanal T. b. evansi affects over 6000 horses per
year (of the 50 000 present), with serious conse-
quences to the local economy, horses being essential
for herding livestock. The total impact ofT. b. evansi
infection in horses in this region was estimated at US
$ 2·4 million per year (Seidl et al. 1998). Surra is also
one of the most frequent diseases affecting camels in
North Africa, causing severe economic damage.

Dourine

Dourine is a disease caused by the subspeciesT. brucei
equiperdum, the only Salivarian trypanosome whose
transmission cycle avoids invertebrate vectors com-
pletely. Instead, this parasite is transmitted among
horses and other equids during mating (Claes et al.

2005). Of note, vertical or perinatal transmission of
trypanosomes other than T. b. equiperdum in the re-
productive tissues has been reported (Griffin, 1983;
Melendez et al. 1993; Lindner and Priotto, 2010;
Biteau et al. 2016), although the role and relative im-
portance of this mode of transmission in the field is
not clear.
Trypanosoma b. equiperdum is an important veter-

inary trypanosome endemic in Africa and Asia, and
is also found in the Middle-East, South-East
Europe and South America. Strict control policies
have eradicated T. b. equiperdum from Western
Europe in the past century (Claes et al. 2005), but
the risk of reintroduction remains, as shown by a
recent outbreak in Italy (Pascucci et al. 2013).
The infection presents with typical oedema of the

genital organs as well as weakness, emaciation, ur-
ethral discharge, characteristic plaques in the skin
and neurological symptoms such as lack of coordin-
ation of the hind legs (Hagos et al. 2010). Dourine in
horses is generally fatal without treatment but it is
usually subclinical in donkeys and mules (Brun
et al. 1998).
Considering the transmission mechanism and the

absence of a reservoir in other species, the control
strategies for the disease follow a different approach
as compared with other insect-borne forms of tryp-
anosomiasis (Claes et al. 2005). The World Health
Organization for Animal Health (OIE) recommends
breeding and movement restrictions, compulsory
notification and slaughter of infected animals to
block new infection outbreaks or achieve eradication.
Additionally, pharmacological therapy is not advised
as this may result in clinical improvement but not in
complete cure, leaving the animal as a potential
carrier of the parasite. However, the feasibility or
effectiveness of this strict policy in developing coun-
tries, where horses have a significant role in transport
and agriculture, is questionable. Here, chemotherapy
may help to sustain animal health and productivity.
Although no official cure for dourine is available,
studies have indicated the efficacy of melarsomine in
the treatment of acute and chronic T. b. equiperdum
infection in horses (Hagos et al. 2010).

ANIMAL TRYPANOSOME SPECIES : VIRULENCE,

TISSUE DISTIBUTION, BIOLOGY AND

LABORATORY TOOLS

Trypanosoma congolense and T. simiae

Trypanosoma congolense is the smallest of the patho-
genic trypanosomes (see Fig. 1 for its morphology).
The species is divided into three main subgroups
(i.e. Savannah, Forest and Kilifi) based on molecular
markers (Hide and Tait, 2004; Auty et al. 2015), the
Savannah subgroup being the most virulent (Bengaly
et al. 2002a, b) and the most clinically important in
cattle. However, even within the same Savannah
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subgroup substantial differences in virulence exist,
with some strains causing only mild infections
(Masumu et al. 2006), highlighting the complexity
and subtlety of the balance between the level of para-
site persistence and the host immune system.
In the vertebrate host, T. congolense parasites

remain confined to the vascular system, where they
bind to circulating erythrocytes (Banks, 1979) and
to endothelial cells (Hemphill et al. 1994) through
their flagellum, causing damage at the adhesion site
(Banks, 1980). Attachment of the bloodstream
form is also observed in in vitro culture, where para-
sites adhere to the bottom of the flask, a phenotype
unique to T. congolense among trypanosome species
(Coustou et al. 2010).
Today, long-term culture of the pathogenic

bloodstream form is possible only for a limited
number of strains (e.g. IL3000 and STIB910)
(Coustou et al. 2010). Genetic tools have been devel-
oped for this species, including a gene overexpres-
sion system (Coustou et al. 2010) and RNA
interference (although, in this case, only for the pro-
cyclic insect form) (Inoue et al. 2002; Coustou et al.
2010). A draft genome sequence of strain IL3000 has
also been published (Jackson et al. 2012) and offers
the potential to accelerate discovery of biomarkers
for diagnosis and targets for new drugs. However,
despite the veterinary importance of T. congolense,
the data available to understand its biology and
pathogenicity and, therefore, to improve treatment,
are scanty. It appears that this parasite has a carbo-
hydrate metabolism that differs significantly from
that of the far more widely studied T. brucei
(Agosin and von Brand, 1954), with indications of
a more pronounced mitochondrial activity in its
bloodstream form. These dissimilarities may have
relevance in the very different responses of these
species to trypanocides (Leach and Roberts, 1981)
and in the identification of potential drug targets.
Of note, T. congolense lacks an orthologue of the T.
brucei TbAT1 gene that encodes the P2 nucleoside
transporter (see subsection Diminazene aceturate
below), which is central to the uptake of the trypano-
cidal drug diminazene (Munday et al. 2013).
Trypanosoma congolense has a correspondingly
reduced sensitivity to diminazene, which is not accu-
mulated to the same degree in these parasites.
Similarly, the closely related T. simiae does not

easily infect common laboratory rodents and, there-
fore, little data on this organism is available.
However, a method for the axenic in vitro culture of
the bloodstream form of this parasite has been pub-
lished (Zweygarth et al. 1992), offering the means to
accelerate our ability to dissect the parasite’s biology.

Trypanosoma vivax

Among African trypanosomes, T. vivax (Fig. 1) is
the most phylogenetically distinct species (Fig. 3).

Specific isolates present with different pathogenicity
in cattle, in some cases causing chronic, sub-clinical
infections and in others acute, haemorrhagic infec-
tions (Wellde et al. 1983; Magona et al. 2008).
Although T. vivax (as T. congolense) has been con-

sidered typically to remain confined to the vascular
system of the host, some strains may, especially in
late infections, also reach extravascular locations
(e.g. lymph nodes, eyes and cerebrospinal fluid)
where they may directly damage tissues and where
they are less accessible to drug treatment
(Whitelaw et al. 1988; Osorio et al. 2008;
D’Archivio et al. 2013).
Trypanosoma vivax is generally difficult to culti-

vate in the laboratory and this has restricted bio-
logical studies into this parasite. Short-term, axenic
culture systems for the bloodstream form have
been reported (Brun and Moloo, 1982; Zweygarth
et al. 1991; D’Archivio et al. 2011) but they have
been difficult to reproduce in other laboratories
and have not entered routine use. Most studies on
this trypanosome species are, therefore, conducted
in in vivo laboratory models; however, very few T.
vivax strains have been isolated that readily infect
rodents and most published in vivo work on this
species comprises the very few mouse-infective
strains, the main one being Y486 and its derivatives
(Gibson, 2012). A simplified system for in vitro cul-
tivation of the insect form of T. vivax was recently
described and genetic manipulation methodology
implemented (D’Archivio et al. 2011). As with T.
congolense, studies into the biochemical physiology
of T. vivax have lagged behind those in T. brucei
but significant differences with the metabolism of
bloodstream form T. brucei were clear from early
studies (Desowitz, 1956), which probably explains
incongruence in potency of different chemical
classes against these species.

Trypanosoma brucei spp.

Trypanosoma brucei spp. (Fig. 1) include both
animal (T. b. brucei, T. b. evansi, T. b. equiperdum)
and human (T. b. rhodesiense, T. b. gambiense) infect-
ive subspecies. UnlikeT. vivax (most strains at least)
or T. congolense, T. brucei group trypanosomes are
found in both the vascular system and in other
tissues, and can parasitize the brain in experimental
infections (Moulton, 1986; Grab and Kennedy,
2008; Coles et al. 2015); descriptions of this clinical
condition in field settings are limited, other than for
equids, which are particularly susceptible to
T. brucei (Tuntasuvan et al. 1997; Ranjithkumar
et al. 2014). As the most widely used drugs to
treat animal trypanosomes (diminazene and isometa-
midium) do not cross the blood–brain barrier, the
presence of parasites in sites other than the blood-
stream represents a potentially important issue for
treatment of T. brucei. Parasites from inaccessible
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body sites including the CNS may eventually re-es-
tablish infection in the bloodstream and cause
relapse following treatment with these drugs
(Myburgh et al. 2013). Trypanosoma b. equiperdum
is quite unique, it being mainly a tissue parasite,
found in the capillaries of the urogenital tract and
rarely in peripheral blood (Brun et al. 1998). This
makes diagnosis, parasite isolation and treatment
particularly difficult.
Trypanosoma b. brucei is the most extensively

studied trypanosome. Some lineages (e.g. Lister
427) are well adapted to laboratory in vitro culture
and have been used as model organism to study
many eukaryotic cell processes. The genome of this
species was published in 2005 (Berriman et al.
2005) and its metabolism has been widely studied
(Shameer et al. 2015). It has long been known that,
in its bloodstream form,T. brucei species depend en-
tirely on glycolysis for energy production, while
Krebs cycle and oxidative phosphorylation are
active only in the insect stages. New, comprehensive
metabolomics approaches (Creek et al. 2015) are
modifying this paradigm and, in conjunction with
transcriptomic approaches, a clearer understanding
of trypanosome metabolism is emerging.
Trypanosoma b. evansi and T. b. equiperdum can

be considered petite mutants of T. brucei, so

named after petite mutants of yeast that have lost
mitochondrial respiratory function. These parasites
have lost part (dyskinetoplastic parasites) or all (aki-
netoplastic parasites) of their kinetoplast DNA
(kDNA), which constitutes the mitochondrial
genome and comprises a network of circular conca-
tenated mini- and maxi-circles (Schnaufer et al.
2002; Lai et al. 2008). Although long considered
as two separate species, it has been proposed that
T. b. evansi and T. b. equiperdum be reclassified
as subspecies of T. brucei, based on phylogenetic
analysis of sequenced genomes (Carnes et al.
2015), and we have adopted this convention here.
As the kinetoplast genome encodes for an essential
subunit (F0-A6) of the mitochondrial F1F0 ATP
synthase, T. b. evansi and T. b. equiperdum cannot
complete their life cycle in the fly and are locked
in the trypomastigote stage, which relies on glycoly-
sis for ATP production. A compensating mutation
in the nuclear genome-encoded γ-subunit of the
ATP synthase allows these parasites to maintain
their mitochondrial membrane potential irrespect-
ive of the F0-A6 subunit and, therefore, to survive
in the absence of the kinetoplast genome (Dean
et al. 2013). It is for this reason that these parasites
lost their dependency on the tsetse fly for
transmission.

Fig. 3. Phylogenetic tree based on SSU rRNA sequences from trypanosome species. Modified from (Cortez et al. 2006).
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CONTROL STRATEGIES AND

TRYPANOTOLERANCE

All of the important livestock trypanosomes
described above are extracellular parasites in
mammals and evade the host immune defences by
continuously changing their surface coat (Horn,
2014), one of the immune-evading mechanisms
that essentially preclude the development of conven-
tional vaccines (La Greca and Magez, 2011; Cnops
et al. 2015). Hence, control of animal trypanoso-
miases relies primarily on the use of insecticides or
traps to control the vector (especially in the case of
tsetse-transmitted trypanosomiases), and on the use
of trypanocides to control the parasite (Holmes,
2013). (The control strategy for dourine follows
a completely different approach and has been
described separately; see subsection Dourine
above). Since vector control can be expensive when
used on a large scale and is not always sustainable
or effective, administration of trypanocidal drugs
represents the main intervention tool in most poor
rural endemic areas, ensuring maximum effects at
relatively little cost (Grace et al. 2009; Van den
Bossche and Delespaux, 2011). The cost-effective-
ness of this practice was shown both in Africa (at
least under certain circumstances) (Shaw et al.
2015) and elsewhere (Seidl et al. 1998, 1999;
Dobson et al. 2009). Control of parasites with che-
motherapeutic and chemoprophylactic agents has
the double effect of limiting the losses caused by
the infection and of eliminating the transmissible
trypanosome reservoir (Welburn et al. 2015).
Effective treatment of the acute phase of infection
usually leads to prompt recovery of the animal; the
use of trypanocides in the chronic phase, however,
usually clears parasitaemia, but clinical recovery in
these instances may require a significantly longer
time, depending on the severity of symptoms such
as weight loss and organ damage.
Some indigenous African livestock breeds (e.g.

N’Dama, Muturu and Dahomey) are more resistant
to trypanosome infection than imported breeds
(classically temperate ‘European’ taurine breeds
but also including Asian-derived Bos indicus
breeds, relatively new to trypanosome endemic
areas, such as Boran). This phenomenon is called
‘trypanotolerance’ and is defined as the ‘capacity to
survive and remain productive after trypanosome in-
fection’ (Murray et al. 1982). A major factor enab-
ling these animals to cope with trypanosome
infections is a better capacity to limit both anaemia
and parasitaemia (Naessens, 2006). The use of trypa-
notolerant breeds has helped livestock productivity
in various endemic regions in Africa and elsewhere,
and it is often advocated as an important control
strategy. Wild animals, which have co-evolved
with trypanosomes, are also usually trypanotolerant
and rarely suffer from clinical disease when infected.

TREATMENT STRATEGIES AND CHALLENGES

Treatment and prophylaxis of pathogenic trypano-
some infections in animals relies on only six com-
pounds (Table 1), most dating back to the first half
of the 20th century (Leach and Roberts, 1981).
Moreover, several factors limit their use. The
current drugs all have small therapeutic indices
and can also cause local irritancy at the injection
site. Most importantly, extensive utilization in the
past has led to the appearance of resistant parasites
in the field, and the fact that many of these trypano-
cides are chemically related has exacerbated the situ-
ation with cross-resistance onset (Peregrine, 1994).
A number of currently used compounds appear to
target the kinetoplast, causing its loss (Shapiro and
Englund, 1990; Chitambo and Arakawa, 1992b),
but the actual mode of action of these trypanocides
and the biochemical mechanisms underpinning re-
sistance are largely unclear. As noted above, differ-
ences in biochemical physiology and host organ
distribution discriminate each of the veterinary try-
panosomes and, therefore, the different trypanocides
have divergent ability to kill based on specific
potency against each species and pharmacokinetic
parameters affecting distribution.
Most trypanocides have therapeutic rather than

prophylactic activity, but the phenanthridine isome-
tamidium is mostly used for its prophylactic effects
(Stevenson et al. 1995). Unfortunately, these drugs
are less active against T. b. evansi (Toro et al.
1983) and are less used outside of sub-Saharan
Africa (Reid, 2002). The decision as to whether to
use therapeutic or prophylactic drugs depends on
several factors, including the risk of infection, drug
availability and distribution logistics (Gu et al.
1999). Ideally, in areas of low prevalence, only
those animals that present with clinical disease at-
tributable to trypanosomes and/or have confirmed
infection should be treated with therapeutic drugs;
instead, in areas of high challenge, prophylactic
drugs applied to the whole herd are more cost-
effective, providing much greater reduction of mor-
tality and morbidity and avoiding the adverse effects
of infection on productivity (Gu et al. 1999). Single-
dose therapeutic and prophylactic products for cattle
are preferred, as multiple-dose administration regi-
mens are often not practical in developing countries,
where animal handling facilities are typically very
limited.
As new compounds are not likely to become avail-

able in the near future (i.e. the most optimistic
outlook is at least 3–5 years before a new compound
could realistically be expected to be registered
through current initiatives), prudent use of those
already on the market is paramount. However, in
field settings drug usage is often difficult to
monitor and regulate. In hyperendemic African
countries, trypanocides are usually administered
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directly by farmers, who can easily obtain them at
local markets for a relatively affordable price (for
less than US$ 1 per treatment). Unfortunately,
most livestock keepers in the affected regions have
limited access to tools which (a) enable accurate
diagnosis, and frequently farmers are reliant solely
on clinical signs, which are often not pathognomon-
ic; and (b) provide information or training regarding
optimal drug usage and dosage, and this combin-
ation of factors can lead to drug misuse (Van den
Bossche et al. 2000; Grace et al. 2009). Moreover,
in an unregulated market, poor quality or counterfeit
trypanocides are widespread in some areas, especial-
ly in Africa, where documented product specifica-
tions are scarce (Sutcliffe et al. 2014; Tchamdja
et al. 2016). To improve veterinary drug standards
and tackle the issue of counterfeit drugs two labora-
tories for trypanocide quality control checks were re-
cently set up in Africa (one in Dakar and one in Dar
Es Salaam) thanks to a GALVmed-FAO (Food and
Agriculture Organization of the United Nations) ini-
tiative with other collaborating partners (Sutcliffe
et al. 2014).
Besides correct dosage administration, various

other options to extend the life of current trypano-
cides exist. Different approaches (such as delivery
systems including complexing to polymeric sub-
stances promoting slow release or alternative formu-
lations) have been considered in order to improve
therapeutic efficacy (Peregrine, 1994; Geerts et al.
1999; Kroubi et al. 2011; Unciti-Broceta et al.
2015). These could allow the use of lower quantities
of trypanocide in a more effective way and, conse-
quently, pose a decreased risk of toxicity and pos-
sibly decreased resistance development.
Unlike the situation with HAT, where the nifurti-

mox–eflornithine combination therapy (NECT) is
now the preferred first line treatment for second-
stage disease (Priotto et al. 2009; Alirol et al.
2013), no drug combinations are currently used for
the animal trypanosomiases. Instead, alternating
use of compounds, particularly diminazene and
isometamidium (called a ‘sanative pair’), with low
risk of cross-resistance, is recommended where pos-
sible. In particular, in the case of relapse the animal
should be treated with a different drug class from the
one previously administered, in order not to re-
inforce drug resistance selection (Leach and
Roberts, 1981). Due to the chemical relatedness of
several veterinary trypanocides, however, this ap-
proach is not always practicable. Thus, in order to
maintain the efficacy of the currently used com-
pounds, it is important that chemotherapeutic and
chemoprophylactic dosage regimens are rationalized
on the basis of the drug-susceptibility phenotype
of trypanosome populations in a given locality.
However, such rationalization is not possible,
because the systems that are currently available to
characterize the drug resistance phenotype of

trypanosome populations are not field applicable
(Peregrine, 1994). Limited numbers of field isolates
can be characterized and all of the systems take many
months to provide definitive data (see section Tests
for resistance detection below). There is therefore a
requirement for new assays that will rapidly quantify
the drug resistance phenotype of large numbers of
trypanosome isolates.

VETERINARY TRYPANOCIDES : DOSAGE,

PHARMACOKINETICS , MODE OF ACTION AND

RESISTANCE

Diminazene aceturate

Diminazene aceturate (Table 1) was introduced for
the treatment of babesiosis and African trypanosom-
iasis in livestock in 1955. It belongs to the diamidine
class of compounds, a member of which (pentami-
dine) has also been used for HAT since the 1930s
(Steverding, 2010). Ironically, it was pursuing a
structure-activity iterative synthesis from a com-
pound belonging to a different class, Surfen C [at
the time of its introduction in the 1930s, the best
available agent against T. congolense infections
(Bennett, 1936)], that led to diminazene develop-
ment (Hawking, 1963). Although it was anti-T. con-
golense activity in experimental rodents that initially
drove development, today’s in vitro systems, where
anti-parasite potency can be tested without con-
founding issues related to pharmacokinetic behav-
iour in hosts, show that diminazene is substantially
less potent against T. congolense than it is against
T. brucei group trypanosomes. This feature is attrib-
utable to the fact that its uptake into the latter para-
sites via the P2/TbAT1 transporter (see later) allows
concentrative and rapid uptake (De Koning et al.
2004). In T. congolense, which lacks an orthologue
of TbAT1 (Munday et al. 2013), uptake is less
robust, explaining its lower activity.
Diminazene is today the most commonly used try-

panocide in cattle, sheep and goats, due to its activity
against both T. congolense and T. vivax and its rela-
tively low toxic side effects. The compound also
effectively cures surra and is, for example, the main-
stay of treatment of T. b. evansi in the Philippines
(Reid, 2002). The recommended therapeutic dose
is 3·5 mg kg−1 body weight for AAT due to T. con-
golense and T. vivax (7 mg kg−1 may be recom-
mended against resistant isolates) and 7 mg kg−1 is
indicated for AAT due to T. brucei and for surra,
administered by intramuscular or subcutaneous in-
jection (Connor, 1992). The common practice of
administering 3·5 mg kg−1 of the drug to treat
T. b. evansi infections is considered an underdosing,
and this misuse may have contributed to the emer-
gence of resistant strains in South-East Asia
(Desquesnes et al. 2013a). The fact that higher
doses appear to be needed to treat T. brucei group
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trypanosomes, in spite of these parasites being more
sensitive to the drug, probably relates to their wider
tissue dispersal compared with T. congolense and T.
vivax, underlining the key role of host
pharmacokinetics.
Diminazene is only applied as a curative agent and

is not used for prophylaxis, as it is rapidly metabo-
lized and excreted (Peregrine and Mamman, 1993).
After rapid absorption (the peak blood level is
reached within 1 h of dosing), elimination follows a
biphasic or triphasic behaviour depending on the
animal species and formulation; elimination half-
life values following intramuscular administration
varied from 11–19 h in sheep and goats, to 74
to >200 h in cattle (Mamman et al. 1993; Peregrine
and Mamman, 1993; Mdachi et al. 1995; El
Banna et al. 1999). Cattle excrete diminazene
mainly in the urine, together with two main metabo-
lites: p-aminobenzamidine and p-amino-benzamide
(Kellner et al. 1985). Diminazene residues may
persist for several weeks in the edible tissues of
cattle and other food-producing animals, especially
in the liver and kidney, whereas the drug levels in
milk peak at 6 h and fall to below detection limits
after 48 h (FAO, 1990). For this reason it is
advised that cattle and sheep destined for human
consumption are subject to a 21–35 days pre-slaugh-
ter withdrawal (discard) from drug, while a 3-day
milk discard period is recommended (FAO, 1990;
Peregrine and Mamman, 1993); however, product-
specific withdrawal periods as given on product
labels should be adhered to.
The trypanocidal mode of action of diminazene

has not been completely elucidated. The compound
binds the minor groove of the DNA at AT-rich sites
(Wilson et al. 2008). In trypanosomes, the kDNA is
a known target of the drug, and kDNA binding can
cause inhibition of replication and kDNA loss
(Shapiro and Englund, 1990), possibly exacerbated
by an inhibitory effect on mitochondrial type II
topoisomerase (Portugal, 1994). It had long been
believed that loss of the kinetoplast might not be
sufficient to kill trypanosomes, as viable dyskineto-
plastic strains do occur naturally and also can be pro-
duced artificially in the laboratory (Schnaufer et al.
2002). However, the discovery in laboratory gener-
ated-dyskinetoplastic T. b. brucei of a compensating
mutation in the nuclear genome-encoded γ-subunit
of the mitochondrial ATP synthase (Dean et al.
2013) meant that the kinetoplast has been resur-
rected as the potential drug target of diminazene.
These dyskinetoplastic lines do indeed show signifi-
cant in vitro resistance to diamidines (including
diminazene aceturate) and phenanthridines (Gould
and Schnaufer, 2014). Furamidine (DB75), a
closely related diamidine, whose fluorescent proper-
ties enabled tracking of its cellular distribution, was
shown to bind to T. b. brucei kDNA and nuclear
DNA in situ, and also to accumulate in other

organelles identified as acidocalcisomes (Mathis
et al. 2006). The compound was also shown to inter-
fere with the mitochondrial membrane potential
(Lanteri et al. 2008). Interestingly, it has been sug-
gested that diminazene can also modulate the host
immune response by dampening pro-inflammatory
cytokines and excessive immune activation, which
might also influence the in vivo effects of the drug
(Kuriakose et al. 2012).
Chemically, diminazene is an aromatic diamidine

made of two benzamidine moieties linked by a tria-
zene bridge. Due to its charged nature, diminazene
can only cross membranes via specific carriers and
this has three important consequences: (a) the drug
is not active on CNS infections as it cannot cross
the blood–brain barrier; (b) the compound is select-
ively toxic to trypanosomes, as they express trans-
porters that specifically accumulate diminazene;
and (c) trypanosomes may become resistant to the
drug by losing these transporters or their activity.
As mentioned above, diminazene uptake in T.
brucei mainly occurs via an aminopurine transporter
called P2 or TbAT1, which is also implicated in the
uptake of the related diamidine pentamidine and the
melaminophenyl arsenical melarsoprol, two drugs
licensed for HAT (Carter et al. 1995; Barrett and
Fairlamb, 1999; De Koning, 2008). Diminazene
uptake into T. brucei is fast, with a Km of 0·45 µM
and a Vmax of 0·049 pM 107 cells−1 s−1 (De Koning
et al. 2004) and is inhibited by pentamidine and ad-
enosine, the main physiological substrate of this
carrier. Loss of P2/TbAT1 activity was shown to
cause diminazene resistance in T. b. brucei (Matovu
et al. 2003), T. b. equiperdum (Barrett et al. 1995;
Stewart et al. 2010) and T. b. evansi (Witola et al.
2004). Another gene, named TeDR40, has also
been implicated in resistance in T. b. evansi
(Witola et al. 2005). However, using that gene to
search for orthologues in other trypanosomatids
at the TriTrypDB database (www.tritrypdb.org),
indicates that it is actually a variant surface glycopro-
tein (VSG) gene, part of the parasite’s system of
antigenic variation whereby it avoids host immunity.
It is possible that, in the process of selection of resist-
ance, the parasites switched expression of a VSG
gene independently of the resistance selection,
which explains the massive increase in expression
of that gene.
The application to T. brucei of a genome-wide

RNA interference target sequencing (RIT-seq)
screen, where any gene whose loss of function is
identified by reduced drug sensitivity, was able to
identify additional plasma membrane proteins
(P-type H+-ATPases), as well as a putative
protein phosphatase, that were linked to the action
of the related diamidine pentamidine (Alsford
et al. 2012). The HAPT1/TbAQP2 carrier (De
Koning, 2001b), encoded by the TbAQP2 gene
(Baker et al. 2012), has a key role in uptake of
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pentamidine and the melaminophenyl arsenicals in
T. brucei, although its role in diminazene uptake is
less pronounced (Teka et al. 2011; Munday et al.
2014) and loss of P2/TbAT1 alone is sufficient to
give high level of resistance to this latter drug
(Matovu et al. 2003). It has recently been proposed
that TbAQP2 acts as a receptor for pentamidine,
with high affinity, and its uptake then occurs via re-
ceptor-mediated endocytosis (Song et al. 2016);
further work is needed to confirm or refute this hy-
pothesis, although other evidence points to pent-
amidine actually entering through the channel,
enabled by a unique selectivity filter and the high
degree of flexibility of the pentamidine chain
(Munday et al. 2014, 2015a).
Trypanosoma congolense appears to lack a func-

tional equivalent of TbAQP2. A putative P2/
TbAT1-type transporter, TcoAT1, was identified
in T. congolense and a particular allele proposed to
be associated with diminazene resistance (Delespaux
et al. 2006). This conclusion was curious, given that
the so-called resistance allele was not always asso-
ciated with resistant form parasites isolated in one
region (Delespaux et al. 2006) and was also abundant
in areas where diminazene had not been used
(Chitanga et al. 2011). Furthermore, TcoAT1 is
not the orthologue of TbAT1, instead correspond-
ing to a related, but distinct, member of the nu-
cleoside transporter family (Munday et al. 2013).
Its heterologous expression has proven that the
encoded protein does not enable diminazene
uptake, instead facilitating the uptake of adenosine
and inosine (Munday et al. 2013). Hence, it can be
definitively ruled out that the gene misnamed
TcoAT1 has any role in diminazene uptake, action,
or resistance.
Diminazene resistance is generally believed to be

difficult to produce experimentally in T. congolense
(in contrast to T. brucei). High levels of resistance
to the drug were obtained in mice infected with
T. b. evansi, but only when using immunocomprom-
ised animals, a result which stresses the importance
of the link between immunity and chemotherapy,
as the efficacy of trypanocides appears to be
reduced by immunosuppression, hence favouring
development of resistance (Osman et al. 1992). In
vitro experiments with T. b. brucei and T. b. evansi
demonstrated that a shared mechanism of internal-
ization accounts for the cross-resistance between
diminazene and other diamidines as well as melami-
nophenyl arsenicals (melarsoprol and melarsomine)
(Matovu et al. 2003). By contrast, no cross-resistance
was observed with other chemically unrelated com-
pounds including suramin or quinapyramine. A
degree of cross-resistance has been observed
between isometamidium and diminazene in T.
brucei group trypanosomes, although the functional
basis of this is not clear (Zhang et al. 1991; Witola
et al. 2004).

Homidium salts

Homidium bromide or ethidium bromide, also
available as a chloride salt (Novidium®, Table 1),
was introduced for field use in 1952, as an improve-
ment to previous phenanthridine-based trypanoci-
dal agents (Wainwright, 2010). It is widely used in
Africa to treat T. congolense and T. vivax infections
in cattle, sheep and goats, in spite of its proven mu-
tagenic and possible carcinogenic properties as a
DNA intercalator (Sutcliffe et al. 2014). Due to its po-
tential toxicity, the use of homidium is today highly
discouraged (Sutcliffe et al. 2014). Widespread resist-
ance to the drug in the 1960s and 1970s reduced its
usage. Today, the number of doses of homidium
used annually is reported to be down to around 10%
of the total African trypanocide market, but this
value may be a significant underestimate of its real
use (Frans van Gool, personal communication, 2015).
Although used as a curative drug, homidium also

possesses chemoprophylactic properties, but these
are less pronounced than those of isometamidium
(see subsection Isometamidium chloride below). For
both purposes, homidium is administered at the
dose of 1 mg kg−1 by a single, deep intramuscular in-
jection (Peregrine, 1994). Homidium excretion is
faster than isometamidium, its serum concentration
declining rapidly over the first 24 h following both
intravenous and intramuscular injection at a stand-
ard dosage (Murilla et al. 1999). Elimination half-
life ranged from 178 h in Boran cattle to 488 h in
Friesian cattle following intramuscular injection
(Murilla et al. 1999). However, low levels of the
drug (0·1–0·3 ng mL−1) do persist in circulation for
several weeks when given intramuscularly, provid-
ing an 8–17-week prophylaxis period (Dolan et al.
1990; Murilla et al. 1999). Homidium has an exten-
sive extravascular distribution and accumulates pre-
dominantly in the liver and the kidneys (Murilla
et al. 1996), a factor which presents some risk in pro-
ducts from treated animals destined for human con-
sumption. Homidium can be used as sanative pair
with diminazene, but not with isometamidium,
where the shared phenanthridine core underlies
cross-resistance (Peregrine et al. 1997).
Intracellular localization of homidium can be

monitored by microscopy, exploiting the intrinsic
fluorescence of the compound. Work on T. brucei
showed that homidium localizes in the nucleus and
the kinetoplast of treated trypanosomes (Cox et al.
1984; Boibessot et al. 2002). Treatment with the
drug induces dyskinetoplasty in a similar way to
other phenanthridines and diamidines (Riou et al.
1980; Shapiro and Englund, 1990) and disruption
of genome function has long been believed to under-
lie its trypanocidal effects. Indeed, it was found that
homidium blocks both kinetoplast and nuclear DNA
replication in T. brucei by distorting and changing
the double helix topology (Roy Chowdhury et al.
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2010). The inhibition of minicircle replication and,
consequently, loss of the kinetoplast network, was
found to be the primary killing mechanism at low
doses (0·02 µg mL−1), but at higher doses homidium
was also shown to affect nuclear DNA, which could
account for its ability to kill dyskinetoplastic trypa-
nosomes (Roy Chowdhury et al. 2010). The reason
for the initial targeting of the kinetoplast over the
nucleus is believed to be the result of the preferential
accumulation of lipophilic cations (such as homi-
dium) in the mitochondrion, as shown with other ex-
perimental trypanocides (Lanteri et al. 2008;
Ibrahim et al. 2011; Alkhaldi et al. 2016). The mech-
anism of resistance to homidium is not known, but it
is likely to be similar to that of the related compound
isometamidium.

Isometamidium chloride

Isometamidium chloride hydrochloride is a hybrid
phenanthridine with amphiphilic and cationic prop-
erties, synthesized by coupling homidium with the
diazotized p-aminobenzamide moiety of dimina-
zene, modified with the amidine group in the meta
position (see Table 1 for structures). It has both
curative and prophylactic properties and, since its
launch in the 1960s, it has remained the only drug
available for chemoprophylaxis of AAT, after quina-
pyramine was discontinued due to problems linked
to toxicity and, particularly, the induction of
multi-drug resistance (Peregrine, 1994; Geerts and
Holmes, 1998). The veterinary formulations are typ-
ically a mixture of four phenanthridine compounds:
isometamidium chloride hydrochloride [8-(3-m-
amidinophenyl-2-triazeno)-3-amino-5-ethyl-6-phe-
nylphenanthridinium chloride hydrochloride], the
positional red isomer [3-(3-m-amidinophenyl-2-
triazeno)-8-amino-5-ethyl-6-phenylphenanthridinium
chloride hydrochloride], the blue isomer [7-(m-
amidinophenyldiazo)-3,8-diamino-5-ethyl-6-phenyl-
phenanthridinium chloride hydrochloride], and the
disubstituted compound [3,8-di(3-m-amidinophenyl-
triazeno)-5-ethyl-6-phenylphenanthridinium chloride
dihydrochloride]. A protocol for their individual
purification from the mixture and a detailed struc-
tural analysis of each compound were described in
a recent publication (Igoli et al. 2015). In commer-
cial products isometamidium is the principal compo-
nent (guidelines establish it must be at least 55% of
the total material), with the other components
accounting for less than 40% (Sutcliffe et al. 2014).
As the in vitro and in vivo trypanocidal activity on
T. congolense is lower for the red and blue isomer it
is paramount that the product composition follows
strict quality standards (Sahin et al. 2014). The di-
substituted compound has poor trypanocidal activ-
ity but it has a good prophylactic effect, possibly
because it can act as a pro-drug that is cleaved to iso-
metamidium in vivo (Sahin et al. 2014).

Isometamidium is used primarily to treat and
prevent T. congolense and T. vivax infections in live-
stock in Africa. Its activity against T. brucei spp. is
less marked, but this drug can also be utilized
against some T. b. evansi strains, although not
when these have reached the CNS, as the compound
does not cross the blood–brain barrier. The drug is
administered to cattle at single doses of 0·25–1·0
mg kg−1 for cure, and at doses of 0·5–1 mg kg−1 for
prophylaxis (Leach and Roberts, 1981). The dosage
for T. b. evansi infections is generally 1–2 mg kg−1,
but in horses it is recommended not to exceed 0·5
mg kg−1 due to toxicity issues (Uilenberg, 1998;
Desquesnes et al. 2013a). Multiple intramuscular
administrations of isometamidium can cause severe
fibrous lesions, hence damaging the carcass and
meat quality from livestock. Intravenous administra-
tion has been successfully used to abrogate muscular
damage, but it has been suggested that this could
result in compromised prophylactic activity, due to
the lack of a drug depot at the injection site (Dowler
et al. 1989; Munstermann et al. 1992). The duration
of prophylactic activity following intramuscular ad-
ministration in cattle is typically 2–3 months and
may be up to 6 months, but can vary greatly, depend-
ing on the formulation and dosage used and on the
parasite strain, as well as on other factors, including
susceptibility of the particular breed and its general
health status (Toro et al. 1983; Kinabo and Bogan,
1988).
Isometamidium plasma concentrations reach their

peak within 1 h after administration and then fall
relatively quickly during the first week post-treat-
ment and thereafter more gradually (Kinabo, 1993;
Eisler et al. 1994). Three months after cattle had
been injected, the circulating drug concentration
was measured at 0·75 ng mL−1 (Eisler et al. 1994).
This study showed that the serum concentration
fits a bi-exponential model, with half-life of approxi-
mately 25 days for the second phase in cattle (Eisler
et al. 1994), while another study (Eisler, 1996) indi-
cated an elimination half-life of 9–19 days. In sheep
and goats isometamidium appears to be eliminated
more rapidly than in cattle (Wesongah et al. 2004).
The drug accumulates in the liver, kidneys and
spleen as well as at the injection site, and from here
it is slowly released to the plasma exerting its
prophylactic activity (Kinabo and Bogan, 1988).
Persistence of isometamidium residues is much
longer than for diminazene. For this reason, a with-
drawal period of 30 days was established for con-
sumption of produce from cattle treated with the
drug (FAO, 1990), although in practice the with-
drawal (discard) period is always product-specific.
Excretion occurs mainly via bile and levels in cattle
milk are generally very low (Kinabo, 1993).
Isometamidium may be used as part of a sanative

pair with diminazene, the two drugs being used se-
quentially to minimize the risk of resistance
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development (Leach and Roberts, 1981; Peregrine,
1994). Despite this recommendation, there are mul-
tiple reports of field isolates, from many African
countries, indicating isometamidium resistance, par-
ticularly in T. congolense but also in T. brucei species
and T. vivax, sometimes detailing cross-resistance
with diminazene (Ainanshe et al. 1992; Clausen
et al. 1992; Codjia et al. 1993; Afewerk et al. 2000;
Sinyangwe et al. 2004; Mamoudou et al. 2008).
However, other reports found no cross-resistance
(e.g. Gray et al. 1993; Joshua et al. 1995) and we con-
clude that cross-resistance does not necessarily
occur, but may be a consequence of the level of re-
sistance that has been established, whereas in other
cases resistance to both drugs may have been
induced separately. In addition, the chance of
cross-resistance developing may be different for the
various animal trypanosome species, given their
known differences in biochemical physiology and
drug transport.
By taking advantage of isometamidium’s intrinsic

fluorescence, accumulation in the kinetoplast was
observed (Wilkes et al. 1995; Boibessot et al.
2002). Although closely related to the intercalating
phenanthridine homidium, isometamidium is not
known to be carcinogenic, and was reported to
bind kDNA with an unconventional ‘sideways’
geometry (Dougherty and Waring, 1982). Its high
affinity for the kDNA might underlie its trypanoci-
dal activity. Linearization of kDNA minicircles in
T. b. equiperdum following interaction of the drug
with the kinetoplast was observed (Shapiro and
Englund, 1990). Moreover, naturally occurring dys-
kinetoplastic T. b. evansi (Brun and Lun, 1994) and
in vitro-generated T. b. brucei lacking a functional
kinetoplast (Gould and Schnaufer, 2014) are highly
resistant to the drug. Efficacy against some
T. b. evansi strains might relate to these parasites
retaining kDNA (albeit dispersed in dyskinetoplas-
tidy) while others are akinetoplastic (i.e. retain no
kDNA at all) and may be less susceptible to the
drug. However, the drug would still accumulate
preferentially in the mitochondrion, as the mito-
chondrial membrane potential is unaffected by the
loss of the kinetoplast in cells carrying a compensa-
tory mutation in the γ-subunit of the F1F0-ATP
synthase (Dean et al. 2013), providing a driving
force for cations. A mutation in this ATP synthase
subunit is sufficient to cause a substantial level of iso-
metamidium and homidium resistance, although
further drug pressure was shown to increase this
even further. Interestingly, this very high level of re-
sistance is indeed associated with a loss of mitochon-
drial membrane potential, preventing further
isometamidium accumulation in this organelle (Eze
et al. 2016).
Despite possessing the recognition motif for the

P2/TbAT1 transporter and despite being a high-
affinity inhibitor of this carrier (De Koning,

2001a), the internalization of isometamidium
depends at most partially on this route (Delespaux
and de Koning, 2007). Passive diffusion across the
membrane may be feasible but is not likely, given
the two positive charges on the molecule and
partial characterization of isometamidium transport,
linking drug resistance, at least in part, to reduced
uptake (Sutherland et al. 1992; Wilkes et al. 1995,
1997). High-throughput RIT-seq (Baker et al.
2015) failed to identify involvement of any of the re-
ceptor-mediated endocytosis pathways as previously
identified for suramin (see subsection Suramin
sodium below) using this approach (Alsford et al.
2012), although alternative endocytic routes could
not be ruled out.
Resistance to isometamidium is encountered in

the field. InT. congolense a mechanism behind resist-
ance was proposed to relate to diminished mitochon-
drial membrane potential (Wilkes et al. 1997). This,
in turn, would diminish the accumulation of drug in
the mitochondrion, having a net effect of reduced
uptake at the plasma membrane, presumably due
to rapid equilibration of intracellular and extracellu-
lar concentrations when the mitochondrial sink is
lost. Active extrusion by plasma membrane trans-
porters has also been proposed (Sutherland and
Holmes, 1993). A recent application of the RIT-
seq approach, conducted on T. brucei, identified
mutations to many subunits of the vacuolar
ATPase (found in the lysosomes and acidocalci-
somes), in the trafficking protein AP-3 (an adaptin
that mediates delivery of proteins to lysosome-
related organelles) and in EMC (an ER membrane
complex) that reduced drug activity, potentially con-
tributing to dug resistance (Baker et al. 2015).
Secondary loss of kDNA was found to be possible
once vATPase and AP-3 subunits are lost from the
cells, pointing to an intriguing, but as yet ill-
defined, interaction between the vacuolar system
and mitochondrion. The fact that kDNA is lost in
cells selected for resistance to isometamidium was
classically interpreted to point to its role as target.
However, the discovery that kDNA loss can occur
as a consequence of changes to the vacuolar system
complicates this interpretation.

Quinapyramine sulphate

Quinapyramine sulphate was developed from the
early trypanocide Surfen C (Curd and Davey,
1950) and came into use around 1950. The com-
pound was applied to treat cattle infected with trypa-
nosomes until 1976, when it was withdrawn from
many areas due to emergence of widespread resist-
ance (Connor, 1992). The drug was subsequently
reintroduced in 1984 to treat T. b. evansi in camels
and horses (Peregrine, 1994), and is still used today
(Ranjithkumar et al. 2014). In horses with acute
infections of T. brucei spp. quinapyramine is
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considered the most effective treatment (5 mg kg−1

via subcutaneous injection), although the drug
induces severe but transient side effects in these
animals (Auty et al. 2008). The prosalt form of qui-
napyramine (a mixture of the soluble sulphate and
the insoluble chloride salts) was the first prophylac-
tic drug available for animal infections. A 7·4 mg
kg−1 dose of this prosalt suspension has both a cura-
tive and a prophylactic (up to 4 months) effect on
T. b. evansi infections in horses and camels
(Williamson, 1970).
Quinapyramine is a quinoline pyrimidine

(Table 1) and, as isometamidium and diminazene,
a dication at physiological pH (homidium is
monocationic). As seen for the other charged trypa-
nocides, quinapyramine is unable to cross the blood-
brain barrier, which explains its failure to cure
T. b. evansi infections in equids when the CNS is
affected (Ranjithkumar et al. 2014). However, it is
important to note that some cationic trypanocides
do penetrate the blood–brain barrier, the clearest
example being compound DB829 (Wenzler et al.
2013). Pentamidine has actually been used to treat
‘early-late stage’ HAT (Doua et al. 1996) but its
movement across the blood–brain barrier is counter-
acted by active efflux mechanisms, including P-
glycoprotein and multi-drug resistance transporters
(Sanderson et al. 2009).
Plasma levels of quinapyramine decline rapidly

after dosing and, in the case of the prosalt, its persist-
ence is probably due to slow release from the sub-
cutaneous depot formed at the injection site
(Spinks, 1950). Quinapyramine accumulates in the
liver and kidneys, where its concentration remains
high for weeks and can cause organ-specific toxicity.
Excretion occurs mainly via urine (Spinks, 1950).
Quinapyramine’s mode of action remains

unknown. Hypotheses include the interference
with nucleic acid synthesis and inhibition of cyto-
plasmic ribosomes (and, therefore, protein synthe-
sis) (Newton, 1962, 1966). However, its dicationic/
aromatic nature would strongly suggest a mitochon-
drial accumulation, as with the phenanthridines and
bis-benzamidines.
Trypanosoma congolense and T. b. evansi lines re-

sistant to the drug can easily be obtained by in vivo
selection in mice (Ndoutamia et al. 1993; Liao and
Shen, 2010). As quinapyramine resistant T. congo-
lense trypanosomes show cross-resistance to isometa-
midium, homidium and diminazene, the use of this
compound to treat infections in cattle is not recom-
mended (Peregrine et al. 1997). Given the lack of
cross-resistance between diminazene and homidium,
the fact that quinapyramine is cross-resistant to both
is intriguing. Although the mechanism underpin-
ning quinapyramine resistance remains unknown,
it is likely that all these trypanocides have a mito-
chondrial target and that any single change that dra-
matically reduces the mitochondrial membrane

potential, or the loss of organic cation carriers in
the inner mitochondrial membrane, could result in
resistance to all of them.

Suramin sodium

Suramin sodium is a symmetrical polyanionic sulfo-
nated naphthylamine (Table 1). It is the oldest try-
panocide still in use, having been introduced in
1921 for the treatment of surra in camels and re-
placing the then-standard treatment of intravenous
tartar emetic (potassium antimonyl tartrate)
(Uilenberg, 1998). A single dose of 6–10 g of
suramin sodium per camel was described as 100%
effective (Bennett, 1930). Suramin is also the stand-
ard treatment for equine trypanosomiasis (T. brucei
spp.), being more effective than diminazene and
less toxic than quinapyramine (Williamson, 1970).
The current treatment for camels and horses is 10
mg kg−1, administered intravenously. Intramuscular
administration is avoided as it causes intense local ir-
ritation. Suramin has further been used for cure and
prophylaxis of onchocerciasis and other microfilarial
infections including Brugia pahangi (Delespaux and
de Koning, 2007), as well as for the treatment of
early stage HAT since 1922 (Apted, 1970). Although
suramin is effective against T. b. gambiense (Kno-
bloch et al. 1984; Pepin and Khonde, 1996), it is
mostly used against HAT due to T. b. rhodesiense,
for which it is still available today (Voogd et al.
1993), whereas it was replaced with pentamidine
for the form due to T. b. gambiense. Although the
drug has good efficacy against T. simiae in pigs
(Stephen, 1966; Williamson, 1970), it is relatively
ineffective against T. congolense and T. vivax
(Leach and Roberts, 1981), presumably due to the
aforementioned differences in biochemical physi-
ology that distinguish T. brucei group organisms
from these other species.
Old work showed that suramin can be used as a

prophylactic agent when administered subcutane-
ously as an insoluble complex with one of the cation-
ic trypanocides (e.g. with quinapyramine, in a 1:3
molecular proportion, reflecting the six negative
charges of suramin vs the two cationic charges of
quinapyramine), resulting in 3–6 months protection
at 40 mg kg−1 of quinapyramine in pigs
(Williamson, 1970) and >160 days protection in
cattle (Williamson and Desowitz, 1956). This ap-
proach could be effective for the eradication of
T. b. gambiense in pigs, which are reportedly acting
as reservoir hosts of this species (Mehlitz et al.
1982). Complexes of suramin with homidium, qui-
napyramine and prothidium also gave protection in
experimental infections in cattle (Desowitz, 1957).
The pharmacokinetic parameters of suramin in

animals (Kinabo, 1993) have not been subject to
the same extensive characterization as occurred in
humans, where the compound has also been trialled
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for the treatment of AIDS and cancer (Barrett et al.
2007). Most of the drug (>99%) binds to plasma pro-
teins yielding a slow clearance. The terminal half-life
in humans ranges between 40 and 50 days or more,
depending on the infusion protocol applied (Jodrell
et al. 1994). This slow clearance underpins limited
(i.e. several weeks) prophylactic action in animals
too when the drug is used on its own. Suramin
does suppress infection, but is dependent on the
host’s immune response to be fully effective (Leach
and Roberts, 1981). Because of its large molecular
size and highly anionic nature, suramin does not
cross the blood–brain barrier.
Suramin strongly binds to human serum proteins

and various trypanosome enzymes by electrostatic
interaction (Voogd et al. 1993). The drug was pro-
posed to enter trypanosomes via receptor-mediated
uptake bound to LDL and to accumulate in the lyso-
some (Vansterkenburg et al. 1993). This hypothesis,
however, looked doubtful after it was demonstrated
that inT. brucei (procyclic form at least) suramin and
LDL uptake are not coupled (Pal et al. 2002). A
definitive mode of action for the compound has not
been determined. Fairlamb and Bowman proposed
that suramin curbs glycolytic ATP production in
T. brucei by inhibiting glycerol-3-phospate oxidase
and NAD+-dependent glycerol-3-phosphate de-
hydrogenase (Fairlamb and Bowman, 1980).
However, being highly charged, suramin binds
many enzymes when assayed and a multitude of pu-
tative targets have been proposed (Gutteridge,
1985), including 6-phosphogluconate dehydrogen-
ase, of the pentose phosphate pathway, of which it
is a competitive inhibitor (Hanau et al. 1996).
More recently, a RIT-seq screen in bloodstream T.
brucei identified 28 genes that contribute to
suramin action, including: a surface glycoprotein
family (ISG75), which appears to be the ligand to
which the drug binds; cathepsin L, believed to
release the drug from ligand within the lysosomal
system; a number of deubiquitinating enzymes and
various proteins involved in the endocytic pathway
(Alsford et al. 2012). It appears that inhibiting
uptake of suramin, or its normal passage through
the endocytic pathway following binding to a
specific receptor, is sufficient to render parasites re-
sistant to the drug, although it remains unknown
how suramin kills once accumulated intracellularly.
Extensive use of the compound in the first half of

the 20th century resulted in emergence of wide-
spread resistance in T. b. evansi in Africa (Boid
et al. 1989; El Rayah et al. 1999) and South-East
Asia (Gill, 1971; Zhou et al. 2004), in some cases
leading to withdrawal of suramin as a treatment (El
Rayah et al. 1999). However, even in the absence
of drug pressure, the resistance phenotype has per-
sisted in the field, as found for some Sudanese
T. b. evansi strains (El Rayah et al. 1999). Stability
of the suramin resistance phenotype was also

observed in T. brucei lines generated in vitro (Scott
et al. 1996) and in T. b. evansi parasites selected in
mice (Mutugi et al. 1994). However, the drug was
effective against T. b. evansi isolates in Brazil,
where it had not been used (Faccio et al. 2013).

Melarsomine dihydrochloride

An early reported case of an attempt to cure an
animal afflicted with trypanosomiasis was that of
Dr David Livingstone, the Scottish missionary
whose travels in Southern Africa in the mid-19th
century were exceptionally well recorded. In a
letter to the British Medical Journal in 1858 he
described the use of arsenic oxide (Fowler’s solu-
tion) to treat a case of ‘fly disease’ in a horse
(Livingstone, 1858). Although the treated horse
was not cured, there was a temporary relief in symp-
toms. Over 50 years later, once the trypanosome had
been implicated, H. W. Thomas and A. Breinl, and
then P. Ehrlich, revisited arsenic chemistry to seek
trypanocides in the early days of chemotherapy
(Williamson, 1970). By the 1950s melarsoprol had
been introduced for the treatment of late-stage
HAT; the drug was created by coupling of melarsen
oxide to 2,3-dimercaptopropanol (Steverding,
2010). The formulation displayed diminished tox-
icity while retaining potent trypanocidal activity.
Melarsomine dihydrochloride (Table 1) is a mela-

mino-phenylarsine, synthesized by linking melarsen
oxide (Barrett et al. 2007) to two equivalent of
cysteamine (Berger and Fairlamb, 1994). The com-
pound has improved aqueous solubility over melar-
soprol. It was introduced to the market in 1992 and
is the latest addition to the veterinary trypanocidal
list. The drug (Immiticide®) is also used in the treat-
ment of heartworms in dogs, where it kills adult
worms (McCall et al. 1994), albeit with a low
margin of safety. It is registered for use against
T. b. evansi in camels at a dose of 0·25 mg kg−1,
but it has also been evaluated and proven efficacious
against T. b. evansi infections in cattle (Desquesnes
et al. 2011), goats (Gutierrez et al. 2008) and
horses (Tamarit et al. 2010), although at higher
dosages than that applied to camels (i.e. 0·5 mg
kg−1 or above). Melarsomine also proved curative
in cattle infected with T. b. evansi strains resistant
to suramin (Payne et al. 1994). Moreover, treatment
regimens with both 0·25 and 0·5 mg kg−1 of the drug
were proven effective in curing acute and chronic
T. b. equiperdum infections in horses, resulting in a
reduction of neurological symptoms (Hagos et al.
2010) and offering a possible treatment for these
infections. Side effects to the drug are usually mild
(salivation, lacrimation, muscle tremors, increased
gut motility and frequent urination), but a severe
adverse reaction has also been documented (Berlin
et al. 2010). Reports of neurological sequelae in
dogs (Hettlich et al. 2003), albeit perhaps not
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analogous to the reactive encephalopathy associated
with melarsoprol treatment of humans (Blum et al.
2001), are notable. Should the reduced neurotoxicity
of melarsomine be replicated in man it might be con-
sidered as a replacement for melarsoprol, although
it is doubtful that comparative clinical trials of the
two arsenicals would receive ethical clearance, espe-
cially since melarsoprol is being phased out in favour
of nifurtimox–eflornithine combination therapy
(Simarro et al. 2012). The paucity of compounds
that kill adult filarial worms is of note too, and,
should the safety profile of melarsomine be accept-
able, it could be considered for use against the
human filariases.
The mode of action of melarsomine is unknown.

As for other trypanocidal arsenicals, the disruption
of the thiol-redox balance is a possible mechanism
(Fairlamb, 2003). The drug (or, rather, its metabol-
ite melarsen oxide) enters T. brucei via the same P2/
TbAT1 adenosine nucleoside transporter (Carter
and Fairlamb, 1993; De Koning and Jarvis, 1999)
and TbAQP2 (Munday et al. 2014) that carry other
melaminophenyl arsenicals and the diamidine trypa-
nocides. Selective uptake probably accounts for most
of the selective toxicity of the arsenicals (Baker et al.
2013). Reduction of P2/TbAT1 activity is a known
reason behind onset of cross-resistance between the
compounds that enter via this route: trypanosomes
of the T. brucei group resistant to melarsomine are
often also less sensitive to diamidines and other ar-
senical drugs as melarsoprol, but not to suramin
(Zhang et al. 1991; Pospichal et al. 1994). In vitro
and in vivo selected melarsomine-resistant
T. b. evansi (Suswam et al. 2001) revealed that the
decrease in P2/TbAT1 transporter activity was
linked both to reduced transporter expression and
changes in binding properties (Suswam et al.
2003). In a T. b. brucei strain selected for melarso-
mine resistance in mice the TbAT1 gene was still
present but its transcript was lost (Stewart et al.
2010). The lack of authentic orthologues of TbAT1
and TbAQP2 in T. congolense and T. vivax (see sub-
section Diminazene aceturate above) may explain
why the drug is less potent against these parasites.

DRUG RESISTANCE IN THE FIELD: DEFINITION

AND EXTENT OF THE PROBLEM

Drug resistance is suspected when treatment failure
occurs using standard drug dosages. However, in the
field, this interpretation can be erroneous, as treat-
ment failure can result from many factors other
than the parasite’s increased tolerance to drugs.
For example, the presence of parasites in treated
animals could correspond to a new infection rather
than to recrudescence, particularly in areas of high
challenge (Rowlands et al. 2001). Using microsatel-
lite DNA markers to strain type T. congolense from
cattle in Ethiopia following treatment with

diminazene, essentially equal occurrences of new in-
fection (40%) and actual relapse (37·5%) were
proposed (Moti et al. 2015). Other causes of treat-
ment failure not linked to true drug resistance
could be related to the poor health state of the
animal (e.g. malnutrition, immunosuppression, con-
current infections), or to incorrect drug use (e.g. ir-
regular treatment or prolonged intervals between
treatments), or to under-dosage. The latter can
result from poor drug quality (either due to inappro-
priate storage or to the use of counterfeit products)
(Sutcliffe et al. 2014), or from incorrect drug usage
(wrong dilution, use of unsterilized water or errone-
ous dosage due to inaccurate estimation of the animal
weight) (Van den Bossche et al. 2000; Grace et al.
2009). For phenanthridines, in particular isometa-
midium, the adverse reaction which often appears
at the injection site might possibly alter drug absorp-
tion and diminish the levels of drug in circulation
(Kinabo, 1993), thus determining under-dosage. It
is widely believed that under-dosing could represent
a major determinant in drug resistance development
in the field through parasite exposure to sub-curative
drug concentrations (Leach and Roberts, 1981). A
similar phenomenon could derive from failure to
comply with strict dose timing, which could lead
to periods where sub-prophylactic drug levels are
present (Leach and Roberts, 1981). Moreover, as a
mutagen, homidium might also directly contribute
to resistance appearance through induction of muta-
tions in parasites that are then selected under drug
pressure. Constant parasitological monitoring is ne-
cessary to distinguish treatment failure from appear-
ance of true resistance.
In the previous section, we have outlined that

there are issues associated with selected resistance
to each of the drugs used against the animal trypano-
somiases. Cases of resistance to veterinary trypano-
cides started to be reported in the field soon after
their introduction, and their numbers have been in-
creasing ever since (Delespaux et al. 2008b). A
review of available literature in 2008 reported loss
of efficacy of the available AAT trypanocides in at
least 17 African countries (Delespaux et al. 2008b).
Available data, in 2001, indicated that resistance to
isometamidium was more widespread than resist-
ance to diminazene (Geerts et al. 2001), however,
this may no longer be so, as prevalence of resistance
may change substantially over a few years
(Delespaux et al. 2008a). Treatment failure against
T. congolense and T. vivax infections with either of
these drugs has been observed in both West
(Kupper and Wolters, 1983; Pinder and Authie,
1984; Knoppe et al. 2006; Mungube et al. 2012;
Vitouley et al. 2012) and East Africa (Mbwambo
et al. 1988; Chitambo and Arakawa, 1992a;
Dagnachew et al. 2015; Moti et al. 2015). More
worryingly, strains of T. congolense resistant to
both isometamidium and diminazene have been
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detected in several locations, including Cameroon
(Mamoudou et al. 2008), Burkina Faso (Clausen
et al. 1992), Ethiopia (Codjia et al. 1993; Afewerk
et al. 2000; Moti et al. 2012), Somalia (Ainanshe
et al. 1992) and Zambia (Sinyangwe et al. 2004), ren-
dering their use as a sanative pair inoperative. These
multiple resistant stocks might be the result of separ-
ate selection processes for the two drugs, as cross-
resistance between diminazene and isometamidium
has been considered a rare phenomenon.
Drug resistance to animal trypanocides has also

been reported from outside of Africa. For example,
T. vivax strains refractory to diminazene were iden-
tified in South America, where the compound is the
first line drug to treat these infections (Desquesnes
et al. 1995; Cadioli et al. 2012). Diminazene treat-
ment failure against T. b. evansi infections in
horses and mules in Thailand has also been reported,
following decades of use (Tuntasuvan et al. 2003).
Trypanosoma b. evansi strains resistant to suramin
(Zhou et al. 2004) and quinapyramine (Zhou et al.
2004; Liao and Shen, 2010) have been reported in
China as well as in Africa (El Rayah et al. 1999).

TESTS FOR RESISTANCE DETECTION

In vivo methods

Because of the confounding factors that can cause
treatment failures, outlined above, methods to
assess true resistance are crucial. However, reliable
tests have been relatively difficult to establish for
widespread use in settings where AAT is endemic.
Methods such as the ‘block treatment’ approach
(Delespaux et al. 2008b) have been proposed to
enable identification of probable resistance in the
field, whereby cattle in a particular location are
split into control and treated groups and followed
to first detection of parasitaemia. Broadly, the pres-
ence of resistance is measured by comparing time
to parasite detection in treated vs the untreated con-
trols (Eisler et al. 2000): the closer to the control
group, the more likely the presence of resistance.
However, although there are logistical advantages
to such tests (e.g. no requirement for parasite isola-
tion), they still require considerable investment in
time and numbers of cattle involved (typically revi-
sits every two weeks for 10–14 weeks, suggested
group sizes of 30–80 animals), and the results are
only indicative of resistance. Confirmatory trypano-
cide efficacy studies against veterinary trypanosomes
still rely primarily on infection and treatment
experiments in the natural hosts or in laboratory
animals (i.e. rodents), where parasite clearance
from blood following treatment is assessed by
microscopy (Eisler et al. 2001). However, the re-
quirement for long follow-up periods (i.e. 100 days
for in vivo tests in ruminants and 60 days when
using mice models) makes tests cumbersome,

expensive and slow, as well as susceptible to the
confounding factor of re-infection after successful
treatment when tests are undertaken in the field.
Extrapolation of rodent data to ruminants is not
necessarily an accurate reflection of treatment
success in large animals and, crucially, neither
T. vivax nor many T. congolense strains adapt
readily to propagation in mice (Eisler et al. 2001).
Nevertheless, the single-dose mouse test is currently
considered the standard test to study single or mul-
tiple resistance in T. congolense and T. brucei isolates
at an accelerated rate. In spite of its being non-quan-
titative, the test does offer a relatively rapid (60 days)
means to qualitatively assess whether parasites
respond to doses of drug routinely used in veterinary
practice or not. Substitution of microscopy with
PCR techniques, such as the ITS1 TD PCR (Tran
et al. 2014) for the detection of trypanosomes in
blood, offers a mean to improve drug sensitivity
studies using mouse models.

In vitro methods

Laboratory cultivation of bloodstream form T.
brucei transformed our ability to assess sensitivity
to drugs, especially in the quantities made possible
by large chemical libraries and robotic screening,
resulting in new lead compounds (Nare et al. 2010;
De Koning et al. 2012; Diaz et al. 2014). However,
as previously mentioned, field isolates of livestock
trypanosome species have proven difficult to
establish in culture. Initial cultivation techniques
required pre-cultivation over a feeder cell layer of
mammalian cells, and subsequently media without
the feeder layer were developed (Baltz et al. 1985;
Hirumi and Hirumi, 1994). Recently, metabolic
profiling to learn exactly what T. brucei use from
their rich culture medium has allowed development
of a refined medium for growth of these parasites
(Creek et al. 2013). It will be of interest to use the
same methods to refine the currently limited media
options for T. congolense and T. vivax.
Several in vitro assays have been developed to de-

termine the drug sensitivity of isolates in a faster
and cheaper way than in vivo tests (Kaminsky and
Brun, 1993). The Alamar blue test (Räz et al. 1997)
has become the gold standard. Other assays include
the drug incubation infectivity test (DIIT)
(Kaminsky et al. 1990) and the [3H]hypoxanthine in-
corporation test (Brun and Kunz, 1989), which do
not require in vitro adaptation of the trypanosome
strain under study, and evaluate parasite viability by
their ability to respectively infect mice, or incorporate
tritiated hypoxanthine, following 24 h exposure to
drug dilutions in a culture medium. Another option
for monitoring of resistance onset for T. congolense
has been the Drug Incubation Glossina Infectivity
Test (DIGIT) (Clausen et al. 1999): drug resistant
and sensitive parasites are distinguished by their
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ability to infect tsetse flies following their in vitro
treatment with specific doses of trypanocidal agents.

Molecular methods

Given the limitations in assessing drug sensitivity
levels of veterinary trypanosomes, the development
of molecular tests to determine parasites’ suscepti-
bility status would be of profound importance. For
T. brucei group parasites it has been shown that
mutations in TbAT1 and TbAQP2 genes can under-
lie resistance to both melaminophenyl arsenicals and
to diamidines such as pentamidine (Graf et al. 2015;
Munday et al. 2015a, b). The TbAT1 gene is also
mutated in T. brucei group parasites (including
T. b. evansi and T. b. equiperdum) when selected
for diminazene resistance (Barrett et al. 1995;
Stewart et al. 2010). Also, in T. brucei loss of the
amino acid transporterTbAAT6 underlies resistance
to the human African trypanocide eflornithine
(Vincent et al. 2010; Schumann et al. 2011;
Alsford et al. 2012). PCR-based techniques to
assess status of these resistance alleles have, there-
fore, been possible (Kazibwe et al. 2009; Graf et al.
2013). It has also been possible to develop non-
genetic tests for resistance, such as the fluores-
cence-based test to assess the presence or absence
of the P2/TbAT1 transporter (Stewart et al. 2005).
For T. congolense and T. vivax, however, no reli-

able markers for drug resistance have yet emerged.
As discussed above (see subsection Diminazene
aceturate), the assignment of a gene named
TcoAT1 as a possible marker for diminazene resist-
ance was erroneous. The MboII–PCR–RFLP was
exploited to detect the polymorphism in an ABC-
type multidrug transporter putative gene related to
isometamidium resistance in T. congolense
(Delespaux et al. 2005), although this link awaits val-
idation and has not replaced the standard in vivo
assays in West Africa (Mamoudou et al. 2008).
However, the possibility that the intrinsic fluores-
cence of isometamidium could provide a useful
marker for resistance to this drug, based on observa-
tions that reduced accumulation can underlie resist-
ance, would be useful to follow up; field application
would be feasible thanks to the introduction of small
but robust, battery-operated fluorescence micro-
scopes, using long-lived light-emitting diodes as
fluorescent light sources (Jones et al. 2007).
The paucity of reliable, standardized molecular

and diagnostic assays for drug resistance in animal
trypanosomes relates to the diversity of infecting
species and the difficulties of establishing in vitro
cultures for most of them. Neither the basis for
drug sensitivity nor drug resistance mechanisms
are necessarily shared between the main species
that cause AAT (T. brucei spp., T. vivax,
T. congolense). Accordingly, it is essential that resist-
ance mechanisms and mode of action models

developed in one are properly investigated in the
other species, rather than automatically assumed to
apply.

NEW COMPOUNDS IN THE PIPELINE

In spite of the economic importance of the veterinary
trypanosomiases (in particular of AAT) and of the
spreading spectre of drug resistance, new com-
pounds for the diseases have not emerged in many
years. A similar difficulty had befallen HAT in the
late 20th century, which sparked the emergence of
the Drugs for Neglected Diseases initiative
(DNDi) and the Consortium for Parasitic Drug
Development (CPDD) (Brun et al. 2011). These
organizations were founded to fill the gap left by
the pharmaceutical industry, who judged the invest-
ment required to bring new drugs forward to treat
diseases of the world’s poorest people had no eco-
nomic rationale. In the case of HAT, the clinical de-
velopment of pafuramidine, an orally available
prodrug of the diamidine furamidine, was halted at
an advanced stage due to unforeseen toxicity issues
(Paine et al. 2010). Since then, DNDi have intro-
duced a more effective combination of two older
drugs, eflornithine and nifurtimox (Priotto et al.
2009), and brought forward the nitroimidazole fexi-
nidazole (now in phase 2/3 trials as an oral treatment
for second stage HAT) and also the benzoxaborole
SCYX-7158 (AN5568), another orally available
compound with the potential to treat second stage
disease (Eperon et al. 2014). In 2011, the Global
Alliance for Livestock Veterinary Medicines
(GALVmed), a product development partnership
supported by the UK government’s Department
for International Development (DFID), the Bill &
Melinda Gates Foundation and the European
Commission, launched a new programme aimed at
the discovery of new drugs, vaccines and diagnostics
for animal trypanosomiases (https://www.galvmed.
org/en/livestock-and-diseases/livestock-diseases/animal-
african-trypanosomosis/), on similar principles to the
product development partnerships that have aimed
to find new treatments for human diseases. A collab-
oration with Anacor Pharmaceuticals Inc. is hoping
to develop and progress a separate benzoxaborole
compound to that in human development (Jacobs
et al. 2011; Steinmann et al. 2015) for the treatment
and prevention of AAT. Several other compounds
are entering the GALVmed portfolio, as they seek
treatments that fulfil important features laid down
in a target product profile (TPP), used to assess
what properties compounds should have if they are
to make an impact in AAT (Table 2).
Ideally, veterinary drugs, especially in resource-poor

and in transhumance societies, should be of high and
consistent quality, administrable in single doses
sufficient to eliminate or prevent infection, be low
cost with high value to the animal’s owner, be active
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on all the relevant species of trypanosomes, have good
safety profiles and, for animals destined for human
consumption, ideally have very short withdrawal
periods. The focus should be on classes of compounds
chemically different from existing trypanocides, to
minimize potential cross-resistance, and on new com-
pounds selected for slow resistance development.
As efforts to produce new trypanocides and

enhanced screening against T. congolense and T.
vivax as well as T. brucei spp. are underway, it is be-
coming increasingly clear that these three species of
parasites respond differently to the same com-
pounds, a fact that is likely due to the significant
differences in biochemical physiology and mem-
brane transporters of the causative parasites.
Different distribution within host tissues will also
influence a drug’s ability to eradicate an infection.
Hence, we can assume that the development of
new drugs for the animal trypanosomiases will not
be straightforward, will require substantial resources
to make progress over a number of years, and will be
necessarily linked to increased knowledge of the
genetic and phenotypic differences between the
three main species of African trypanosomes.

CONCLUDING REMARKS

Since the introduction of the first veterinary trypa-
nocides more than 60 years ago, treatment of

livestock trypanosomiases worldwide has seen
barely any innovation, although the available drugs
have progressively become less effective and the im-
portance of these infections has not diminished.
Indeed, the growing human population and the in-
creasing demand for food (particularly meat and
milk) in the tropical and subtropical countries,
where these diseases are enzootic, have elevated
their importance. Moreover, control of AAT is also
becoming an indispensable requisite in the context
of the ‘One Health’ approach to eliminate HAT
(Simo and Rayaisse, 2015). Hence, research into
new curative and chemoprophylactic drugs, with a
special focus on efficacy against parasite strains re-
sistant to current treatments, is key.
The search for new veterinary trypanocides would

greatly benefit from a better understanding of the
biology and the metabolism of animal trypanosomes.
This knowledge will be essential to elucidate the
mode of action of current trypanocides, understand
the molecular factors underpinning resistance, iden-
tify new drug targets and quickly screen for new
leads. This, in turn, will only be possible if improved
laboratory techniques to study these parasites are
developed. In particular, the definition of an in vitro
culture system for the bloodstream form of T. vivax
must be a high priority. At the same time, current em-
pirically formulated culture media used for other try-
panosomes should be improved, to better reflect

Table 2. Ideal TPP of a new therapeutic and prophylactic trypanocide for animal African trypanosomiasis
[from (http://www.galvmed.org)].

Attribute Therapeutic agent Prophylactic agent

Active ingredient Novel agent (no cross-resistance to existing
products)

Novel agent (no cross-resistance to existing
products)

Indication for use T. congolense, T. vivax, T. brucei, T. evansi in-
cluding strains resistant to existing products

T. congolense, T. vivax, T. brucei, T. evansi in-
cluding strains resistant to existing products

Target species Cattle, sheep, goat & other ruminants, camels,
horses, donkeys, pigs

Cattle, sheep, goat and other ruminants,
camels, horses, donkeys, pigs

Route of
administration

Injectable (IM, SC), oral option for sheep Injectable (IM, SC), oral option for sheep

Formulation Pre-formulated solution (injectable), solid
bolus or suspension/solution drench (oral)

Pre-formulated solution (injectable), solid
bolus or suspension/solution drench (oral)

Regimen Single dose Single dose
Period of protection Not applicable 6 months
Recommended time
of treatment

At first diagnosis Before (or on) introduction to infected regions
or at start of tsetse season. If also therapeutic:
use at first clinical signs of disease

Expected efficacy Absence of parasitaemia and improvement of
clinical signs

Absence of parasitaemia and improvement of
clinical signs

Target animal safety No significant adverse reactions, minimal ad-
ministration site reaction

No significant adverse reactions, minimal ad-
ministration site reaction

Withdrawal period Milk 0 (<7) days, meat <14 days Milk 0 (<7) days, meat <21–28 days
Special requirements
for animals

Compatible for concomitant use with common
treatments

Compatible for concomitant use with common
treatments

Special requirements
for persons

No special precautions required No special precautions required

Price to user Preferably <US$ 2/dose Preferably <US$ 2/dose
Storage requirements Ambient temperature, ⩽40 °C/75% RH Ambient temperature, ⩽40 °C/75% RH

IM, intramuscular; SC, subcutaneous.
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physiological availability of nutrients and make their
response to (experimental) drugs more predictive of
the in vivo situation, including the rapid detection
of resistance development in the field.
While waiting for new trypanocides to become

available (which may be some years away) a correct
and rational use of the few already licensed drugs is
paramount to ensure continuity of their effective-
ness. This requires an integrated approach that
includes both vector control and appropriate live-
stock management. Improved, more sensitive diag-
nostics to promptly detect infected animals, correct
treatment of these with the appropriate drug, and
improvement of animal general health to help their
immunological response to infection, are all import-
ant actions to be undertaken that will prolong the
useful lifetime of any drug. Use of trypanotolerant
breeds (in Africa) and restricting the movement of
potentially infected animals (in particular those har-
bouring mechanically transmitted trypanosomes)
are other important control measures to be imple-
mented. The use of sanative pairs (such as dimina-
zene and isometamidium) is essential, although
ineffective on its own where multiple-drug resistant
trypanosomes are present.
Constant monitoring of drug use and drug resist-

ance appearance will be crucial for correct trypano-
cide use and to readily improve recommendations
for first use and for back up drugs to be utilized in
a certain areas when resistance has been confirmed.
More efforts and resources will be needed in this
field, in order to better understand the extent and
the distribution of the trypanosomiases and of resist-
ance to the veterinary trypanocides. The FAO, in
collaboration with the International Atomic
Energy Agency (IAEA) and the framework of the
Programme Against African Trypanosomosis
(PAAT) are working in this direction with the
launch of the ‘Atlas of tsetse and AAT’, aimed at
developing a geospatial database of AAT and
Glossina species (Cecchi et al. 2014). For an accurate
map of drug resistance occurrence, however,
improved tools for its detection in the field are
needed, and their development will highly depend
on a more thorough understanding of the basic pro-
cesses that determine resistance onset.
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