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Proper orthogonal decomposition (POD) and its extension based on time-windows have 
been shown to greatly improve the effectiveness of recovering smooth ensemble solutions 
from noisy particle data. However, to successfully de-noise any molecular system, a large 
number of measurements still need to be provided. In order to achieve a better efficiency 
in processing time-dependent fields, we have combined POD with a well-established 
signal processing technique, wavelet-based thresholding. In this novel hybrid procedure, 
the wavelet filtering is applied within the POD domain and referred to as WAVinPOD. 
The algorithm exhibits promising results when applied to both synthetically generated 
signals and particle data. In this work, the simulations compare the performance of our 
new approach with standard POD or wavelet analysis in extracting smooth profiles from 
noisy velocity and density fields. Numerical examples include molecular dynamics and 
dissipative particle dynamics simulations of unsteady force- and shear-driven liquid flows, 
as well as phase separation phenomenon. Simulation results confirm that WAVinPOD 
preserves the dimensionality reduction obtained using POD, while improving its filtering 
properties through the sparse representation of data in wavelet basis. This paper shows 
that WAVinPOD outperforms the other estimators for both synthetically generated signals 
and particle-based measurements, achieving a higher signal-to-noise ratio from a smaller 
number of samples. The new filtering methodology offers significant computational 
savings, particularly for multi-scale applications seeking to couple continuum informations 
with atomistic models. It is the first time that a rigorous analysis has compared de-noising 
techniques for particle-based fluid simulations.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Particle-based simulations, e.g. molecular dynamics, are well suited to investigate the effects of fluid–solid interactions 
and are widely used to study a broad range of complex physical phenomena [1]. For example, molecular dynamics (MD) can 
be performed to solve classical many-body problems from various fields, including rheology, tribology, and biological systems 
at the molecular scale. Dissipative particle dynamics (DPD) is another particle-based method that is gaining popularity and 
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can be viewed as a coarse-graining of molecular dynamics (a DPD particle is a collection of MD molecules), allowing for 
mesoscale modelling of complex fluids, e.g. surfactant solutions.

In particle simulations, the system evolves from some initial condition to a final state, preserving constraints of motion. 
The output of the calculation is a system variable, X , as a function of time. According to the quasi-ergodic hypothesis, the 
mean value of a sampled quantity, X(t), for an equilibrium system is equal to its ensemble average, 〈X〉. In general, the mean 
of a property is often subject to fluctuations making any statistical interpretation of the data challenging. Uncertainty in the 
measurements is increased through thermal fluctuations introduced by thermostats and sampling with a finite number of 
particles. These effects are generally referred to as noise, and a major challenge in particle simulations is to filter, or de-noise, 
the fluctuations to obtain an accurate ensemble prediction. To produce a good approximation, cumulative averaging over 
large time intervals can be performed, but the computational intensity of the simulations is then substantially increased. 
Additionally, in unsteady flow simulations, it is difficult to establish the number of time-steps over which the averaging 
should performed. The development of an efficient filtering technique that provides clean particle distribution functions 
and smooth gradients, particularly when coupling across different length and time-scales (multi-scale modelling), is highly 
desirable.

Proper orthogonal decomposition (POD) is a statistical method that identifies a low-dimensional space by separating 
independent variations from linearly dependent aspects of data. In other words, it extracts correlations from the measure-
ments through a low-rank approximation. The use of POD in interpreting coherent structures in turbulence is now well 
established [2] and the technique has recently been applied as a noise reduction tool for MD and DPD simulations [3]. 
Wavelet thresholding, on the other hand, is a non-linear procedure pioneered by Donoho and Johnstone [4] that was pro-
posed from several optimality criteria, such as asymptotic minimax. It allows the analysis of signals at different resolutions 
and smooths out unwanted variations at a chosen level of detail. Both techniques have had some success but retain certain 
weaknesses. Classical orthogonal methods require large matrices to extract de-noised information, whereas wavelet-based 
thresholding is sensitive to the choice of filters used for the wavelet transform (WT). Wavelet thresholding can also over-
smooth analysed signals or introduce Gibbs-like oscillations [5], and does not reduce the dimensionality as well as POD.

The aim of this work is to develop a method with the capability to improve the efficiency of estimating the unknown 
structures from particle-based simulation by solving the statistical inverse problem. We will briefly outline the theoretical 
basis of POD and wavelet transforms, along with their application to noise filtering. For particle-based simulations, we 
discuss an extension to POD based on time windows (WPOD) [3]. By considering their strengths and weaknesses, we propose 
a new approach, WAVinPOD, which shows good potential for improving the analysis of simulation data. Our method allows 
for a more efficient noise reduction, obtaining higher average signal-to-noise ratios and smaller errors in L2 and Frobenius 
norm than either POD or wavelet thresholding alone. Our paper is organised as follows: the basic theory for the methods 
is briefly described in Sec. 2, followed by the results of applying WAVinPOD, POD, and wavelet thresholding to synthetic 
signals. A comparison of the performance of each technique in de-noising particle-based simulations is presented in Sec. 4, 
followed by some concluding remarks on the new approach.

2. Theoretical background

This section provides a brief mathematical description of POD and wavelet thresholding. Our novel procedure, WAVinPOD, 
is also introduced. A more extensive discussion on proper orthogonal decomposition can be found in Refs. [2,6,7], and a more 
detailed review of wavelet theory is given in Refs. [8–10].

2.1. Proper orthogonal decomposition

Proper orthogonal decomposition is often used for finding a low-dimensional approximate description of high-
dimensional data that contains a large number of interrelated variables. In addition to order reduction, POD is also applied 
for feature extraction by revealing coherent structures within the data. The method was introduced to the turbulence com-
munity by Lumley [11]. However, the same procedure was developed independently by several groups and is known under 
different names, including Principal Component Analysis and the Karhunen–Loéve Decomposition, depending on the area of 
application.

The basis of POD is to describe a function, f (t, x), as a finite sum of its variables:

f (t, x) ≈
r∑

n=1

αn(t)φn(x), (1)

where t and x represent the temporal and spatial components of the data, respectively. When r (a total number of elements) 
approaches infinity, the estimate becomes exact. Applying POD establishes a set of orthonormal basis functions (modes), 
φn(x), such that the first k < r terms provide the best approximation of the function f (t, x). Define an element A(τ s, x) of 
the real N × M matrix as a measurement from the x-th probe taken at the τ s-th time instant. An orthogonal decomposition 
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will determine the optimal approximation of the matrix, Ak (Ak ≈ A), by first performing singular value decomposition 
(SVD) of the original real matrix A1:

A(τ s, x) = U�V T , (2)

where, in case of full SVD, U ∈ R
N×N , V ∈ R

M×M are orthogonal matrices, the superscript T indicates a matrix transpose 
since A ∈R, and � is an N × M diagonal matrix. In Eq. (2), columns U and V are left and right singular vectors, respectively. 
Singular vectors can be considered as rotations and reflections, and � as a stretching matrix. Diagonal entries of �, called 
singular values of A, are non-negative numbers arranged in descending order, s1 ≥ s2 ≥ . . . ≥ sr ≥ 0. The number of non-zero 
singular values defines the rank of the original matrix A (r = rank(A) = min(N, M)). Equation (2) can also be expressed in 
the form

A(τ s, x) = Q V T =
r∑

n=1

qn v T
n , (3)

where Q = U�, A represents the function f (t, x) from Eq. (1), qn is a column matrix corresponding to αn(t), and v T
n is a 

transpose of a vector matrix representing φn(x). The description in Eq. (3) is an accurate approximation as the data-set has 
a finite size. To construct an optimal lower-rank estimate of A, for a determined value k < r, the diagonal matrix �k can be 
obtained by setting sk+1 = sk+2 = ... = sr = 0, resulting in

Ak(τ
s, x) = U�k V T =

k∑
n=1

snun vn. (4)

Throughout this work, the rank of the best matrix approximation, k, will be referred to as the number of dominant modes.

2.1.1. Noise filtration with POD/WPOD
Proper orthogonal decomposition may also be considered as an energy decomposition which has the capability to filter 

out low energy spectra (i.e. noise) from raw data. If the previously considered matrix, A, is now a collection of M noisy 
measurements at N instants in time, it can be represented as a composition of the form A = Atrue + B , where Atrue is an 
N × M matrix that contains the true signal, and B is a matrix that denotes the unwanted noise. In general, we only know 
the original matrix A and we need to remove the noise to extract the information contained in Atrue. For the special case of 
a synthetically generated matrix A, we will know Atrue and corrupt the signal with artificially generated noise, represented 
by matrix B . Using POD, we can remove the noise from matrix A by creating a corresponding approximation matrix of rank 
k, Ak , that contains all the correlations from the original data, i.e. Ak ≈ Atrue. The approximation is obtained by truncating 
the singular values as described in Eq. (4); such a procedure is referred to as truncated SVD. The key property of POD is 
that Ak is optimal in the sense that min 

{‖Atrue − Ak‖2
F

} = ∑min(N,M)

n=k+1 s2
n , where ‖.‖F is the Frobenius norm.

In the case of simulation data, Grinberg [3] developed an extension to POD for particle measurements that is based on 
time-windows and generally referred to as WPOD; in the approach, the data is defined as A = NPODNts�t , where NPOD
is the number of time averages used, Nts defines how many observations are in one average, and �t is the simulation 
time-step. In this work, WPOD is utilised to filter out noise in molecular simulations based on the approach presented by 
Grinberg (note, in Grinberg’s paper the matrix A is defined as TPOD). For a set of noisy observations (snapshots) A(τ s, x), 
defined as a field at positions in space xεRd , d = 1, 2, 3 and at discrete times τ s , s = 1, 2, ..., NPOD, WPOD calculates a set 
of orthogonal basis modes by applying SVD to the POD window, SVD(A). Throughout this work, the singular vectors are 
referred to as temporal or spatial POD modes depending on whether they hold information either about the shape of the 
signal or its time nature. In the case of the matrix A(τ s, x), a temporal POD mode (related to temporal coefficient αk(t)
from Eq. (1)) corresponding to mode number k is a left singular vector, uk (column k of matrix U ), and a spatial POD mode 
is a right singular vector, vk .

To obtain the best estimate of Atrue, the number of singular values k needs to be carefully determined. The main rationale 
of using SVD (or EVD) to filter out noise is based on the assumption that, unlike unwanted fluctuations, important (coherent) 
structures are energetic. One natural criterion for choosing k is to select the cumulative percentage of total energy (e.g. 90%) 
that the selected modes contribute. The energy threshold is often chosen arbitrarily, and it can depend on some practical 
details of a considered data-set. In the case of particle simulations, defining a cut-off based on energy poses difficulties, as 
it often happens that structures of interest contain very little energy when compared to dominant features. For that reason, 
some additional criteria need to be met in order to establish an appropriate subset of significant modes. In the present 
work, apart from studying the energy content of eigenvalues, most of the data is analysed with the log-eigenvalue diagram 
(LEV) [12] and by investigating the smoothness of temporal modes [3]. In some cases, the choice of k is verified with a 
recently proposed singular value hard threshold (SVHT) [13].

1 Proper orthogonal decomposition can also be done by eigenvalue decomposition (EVD) of the symmetric matrix C = A A† (A† A if N > M).
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Fig. 1. One step of DWT with filter banks.

2.2. Multiresolution and fast wavelet transform

Multiresolution theory developed by Mallat [14] and Meyer [15] introduces the orthogonal discrete wavelet transform 
(DWT), where a signal is analysed at scales varying by a factor of 2. The transform utilises a shifted and scaled mother 
wavelet, ψ , forming a basis (children) defined as

ψ j,m(t) = 1√
2 j

ψ

(
t − m2 j

2 j

)
, (5)

where 2 j is a discrete dilation parameter, an integer j ∈ Z represents a scale resolution, and m2 j is a discrete shift (m ∈
Z). The mother wavelet satisfies the admissibility condition, Cψ = ∫ +∞

0

∣∣ψ̂(ω)
∣∣2

ω dω < +∞, where ψ̂(ω) = ∫ +∞
−∞ ψ(t)e−iωtdt . 

Wavelet function, together with a dilated and translated scaling function φs (father), φs j,m (t) = 1√
2 j

φs

(
t−m2 j

2 j

)
, decomposes 

the signal into coefficients given as follows:

f (t) =
∑
m∈Z

c j0,mφs j0,m (t) +
∑

j,m∈Z
d j,mψ j,m(t). (6)

The coefficients in Eq. (6) are obtained by integrating the product of the functions with the signal; c j0,m =
〈

f , φs j0,m

〉
is a smoothed (coarse) approximation, d j,m = 〈

f ,ψ j,m
〉

are the fine scale details at different resolutions − J ≤ j < 0 and 
0 ≤ m < 2− j , where J is the maximum number of decompositions and j ≤ j0. In other words, the details, d j,m , and the 
approximation, c j0,m , are projections of the signal onto certain complimenting subspaces.

Mallat [9] and Daubechies [16] established a link between filter banks in signal processing and wavelets, allowing for a 
fast decomposition. The fast wavelet transform algorithm does not make use of the wavelet and scaling function, but of the 
quadrature mirror filters (QMFs)2 that describe their interaction. In the fast transform, the signal is convolved with both a 
high-pass filter (Hfilter, determining the wavelet function), which produces the details of the decomposition, and a low-pass 
filter, (Lfilter, associated with the scaling function) which gives the approximation of the signal. The process is shown in 
Fig. 1. Given a signal f ∈ R

M , the fast wavelet transform can consist of maximum J = log2 M levels (e.g. for M = 512 only 
J = 9 stages of decomposition are possible). At each stage, the two sets of coefficients are produced by convolving the signal 
with the low and high-pass filters followed by dyadic decimation. The signal now has half of the number of samples which 
means that the scale is doubled. Details, d j+1, are stored while the smoothed image (approximation, c j+1) of the signal 

2 QMFs in digital signal processing are odd index alternated reversed versions of each other.
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is again convolved with the QMFs resulting in a further set of coefficients. The process is repeated until a desired level of 
decomposition is reached. This algorithm progressively drains the signal of its information. The approach can be perceived 
as a mathematical microscope allowing us to see the signal at different dyadic magnifications, offering a powerful way 
of decomposing data into its elementary constituents across scales. Inverting the decomposition with an inverse wavelet 
transform consists of inserting zeros (upsampling) between samples and convolving the results with the reconstruction 
filters. If the signal length is not a power of 2, then extending the samples is needed. In the present work, the symmetric 
boundary value replication is applied [17]. The algorithm can be naturally extended to encode two-dimensional signals 
(e.g. images) [9]. This kind of two-dimensional transform leads to a decomposition of the signal into four components: 
approximation and details in three orientations (horizontal, vertical, and diagonal).

2.2.1. Signal de-noising with wavelets
There exist many variants of wavelet-based de-noising [9]. The procedures consist of wavelet decomposition, threshold-

ing of the detail coefficients, and applying the inverse transform to reconstruct the signal. Donoho and Johnstone [4] showed 
that de-noising can be performed with hard thresholding, defined as T H (d j,m) = d j,m1{|d j,m|>Tu} , as well as with soft thresh-

olding (wavelet shrinkage), T S (d j,m) = max
(

0,1 − Tu|d j,m|
)

d j,m , where 1 is an indicator function and Tu is a threshold value. 
Here, we focus only on the second approach with a universal threshold:

Tu = σn

√
2 log(M). (7)

The white noise level estimate is defined as σn = MAD/0.6745, with MAD being the median absolute deviation3 of the 
fine scale wavelet coefficients [18]. Soft thresholding has the ability to efficiently smooth the signal but with loss of some 
characteristics, e.g. peak heights, over-smoothing the edges. The hard threshold method generally reproduces sharpness and 
discontinuities of the signal better, but at the cost of visual smoothness (can generate Gibbs-like oscillations) [18]. As most 
of the simulation results are corrupted by correlated noise, a level-dependent variance estimation introduced by Johnstone 
and Silverman [19] can be employed.

In the present work, for simplicity, only filters associated with Daubechies family of orthogonal wavelets were utilised 
[16], particularly db3 and db4 as they provided a good compromise in terms of signal-to-noise ratio and smoothness of data 
reconstruction; the numbers, 3 and 4, define how many vanishing moments are used. Most applications, including noise 
reduction, require that a function is approximated with few non-zero wavelet coefficients, i.e. has sparse representation. 
This depends mostly on the regularity of the signal, the number of vanishing moments of ψ and the size of its support 
[9]. Daubechies wavelet family is the most popular due to its orthogonal and compact support abilities. However, other 
wavelets, such as the Coiflets, Symmlets of Daubechies can be used for efficient data processing offering different beneficial 
properties. For example, the linear-phase biorthogonal filters can perform symmetric transforms solving the problem of edge 
discontinuities.

2.3. Wavelet thresholding within POD

In order to achieve a better efficiency of POD in processing non-stationary fields, we combined the method with wavelet-
based filtering with fixed threshold (see Eq. (7)). In this new procedure, wavelet thresholding is applied within the POD 
domain as shown in Fig. 2. A significant benefit of this approach is that applying wavelet filtering in the SVD domain pre-
serves the dimensionality reduction. Wavelet de-noising is used to eliminate remaining high frequencies from the dominant 
modes which would require larger amounts of data for POD or WPOD alone. In the following sections, it is shown that 
WAVinPOD outperforms the other estimators in de-noising synthetic and particle measurements.

Combining the wavelet transform and SVD (or EVD) has already been proposed in literature. Most of the procedures 
involve using SVD (or EVD) for noise level estimation, transforming a signal to the wavelet domain, and performing SVD 
(or EVD) on the chosen coefficients, or the whole matrix, as in Bakshi’s Multiscale PCA [20] or its extension – multivariate 
wavelet de-noising developed by Aminghafari et al. [21]. However, these methods appear to be computationally expensive, 
considering the number of operations performed, making them unsuitable for de-noising particle-based simulations.

In this paper, unless stated, the left singular vectors arising in the WAVinPOD analysis are left unchanged. Applying the 
same filtering to un and vn in cases where N � M may not offer much improvement in noise reduction. This is due to 
the fact that processing short functions weakens their orthogonality property, resulting in unwanted aliases. However, when 
N ∼ M , processing both sets of vectors can add to the performance as discussed in the following section.

More precisely, the general procedure for WAVinPOD de-noising is as follows:

• Step 1: Perform SVD on matrix data A.
• Step 2: Define the number k and set sn = 0 for n > k.
• Step 3: Perform a wavelet transform of the k modes corresponding to the most energetic singular values.

3 Median of absolute value can also be applied.
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• Step 4: Apply wavelet de-noising (soft or hard) to detail coefficients and reconstruct the modes with the inverse wavelet 
transform.

• Step 5: Multiply the matrices according to Eq. (4) to obtain data approximation.

When the method is applied during a simulation run, the moving window is used in the same manner as in WPOD (see 
Sec. 2.1.1).

3. Analysis of synthetic data corrupted with noise

This section presents the results of applying POD, wavelet thresholding and WAVinPOD to synthetically generated data. 
These studies allow a straightforward comparison of the effectiveness of the methods in analysing various signals. All data 
processing was performed using the commercial software package MATLAB R2014b (the MathWorks Inc., Natick, MA, 2014). 
Three objective measures, averaged signal-to-noise ratio (SNR), relative error in the L2 matrix norm, δ2, and error in the 
matrix Frobenius norm, δF , were applied to a range of accepted test problems. For each observation, SNR was calculated as 
a ratio of the summed squared magnitude of the true signal to that of the noise, and expressed in the logarithmic decibel 
scale. The relative errors in the L2 and Frobenius norms are given as

δ2 = ‖Atrue − Ak‖2

‖Atrue‖2
, δF = ‖Atrue − Ak‖F

‖Atrue‖F
, (8)

where Ak is a de-noised matrix obtained with one of the methods. The L2 norm of matrix A is defined as the maximum 
singular value of A, ‖A‖2 = s1. The error in L2, i.e. δ2, compares the energy content of Ak with the original matrix. The 
Frobenius norm takes all entries of the difference, Atrue − Ak , as a single vector and measures its length. It then indicates 
which output has the shortest length of errors [22].

Two different oscillating signals have been proposed that imitate spatially variable functions arising in various scientific 
problems. The first initially smooth N × M data matrix was generated as follows:

A1
true(t, x) = sin

(πx

M

)
cos

(
πt

N

)
+ 0.8e(−3πx/M) sin

(
9πx

M

)
, (9)

looping over t = 1 : N and x = 1 : M . The second set of signals, A2
true, was constructed with the following MATLAB code:

s =0:0 .01: (M∗0.01 −0.01);
y (1 , s /0.01)=3∗ sin ( s ) +sin (0 .5∗ s + 40) + 2∗sin (3∗ s − 60);

for t =1:N
for x=1:M

A_true ( t , x)=y (1 , x)∗cos ( pi∗ t /N)+
+sin (0 .5∗ t +40)∗cos ( pi∗x /M)+
+(0.01∗ t +2+sin ( t ) ) . ^ 2 ;

end
end

In both cases the signals were of length M = 1000 and initially only N = 20 observations were used. The number of 
time-samples required to de-noise a signal is of significance as it defines for how long the simulation has to run to provide 
enough statistics. The ranks of smooth matrices, equal to k1 = 2 and k2 = 3 for A1

true and A2
true, respectively, were increased 

by corrupting each signal with added white noise.4 The resulting noisy data-sets, A1 and A2, were full-rank because of 
the partial de-correlation of the disturbed data points. In a real situation we will not know the original signal, but only 
corrupted measurements, and often we are not sure of their nature. For the analysis with POD and WAVinPOD we have to 
rely solely on examination of the eigenspectrum in order to establish an adequate number of k for the approximation. The 
previously listed criteria were utilised here to find the number of significant modes.

The main drawback of using wavelet transform and multiresolution analysis is the amount of parameters that need to 
be considered a priori, e.g. mother wavelet, number of vanishing moments and levels of decomposition. The choice of an 
appropriate model is often problematic and may lead to data misinterpretation if any deviations from it appear. In this 
case, we know that the signals to be recovered are smooth, therefore wavelet shrinkage should be used instead of hard 
thresholding. The filters associated with Daubechies wavelet db3 appeared here to give a good representation of polynomial 
behaviour within the signals. When applying wavelet thresholding to spatial modes obtained with SVD, the choice of wavelet 
basis is less critical than applying the transform directly to the noisy data. It is due to the fact, that WAVinPOD filters only 
components of the signal that have already been partially de-noised. For clear comparison, the same wavelet parameters 
are used for wavelet thresholding applied to raw data (WAV) and WAVinPOD.

At first the original matrix A1
true was corrupted with noise of standard deviation σn = 0.1, producing A1 with SNR ≈ 12.4 

dB (see Fig. 4(a)). After applying SVD to the whole matrix, the criteria for determining k were utilised. Tests mentioned 

4 Zero-mean Gaussian noise was simply generated using a pseudo-random number generator.
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Fig. 2. Graphical representation of WAVinPOD algorithm.

Fig. 3. Investigating criteria for the choice of significant k; LEV diagram with the 1st and 3rd eigenvector and relative energy of the first three eigenvalues.

in Sec. 2.1.1 managed to recover an accurate number of significant modes. The first and second eigenvalue, λn=1 = s2
1 and 

λn=2 = s2
2, were the most energetic containing together 96.7% of total variance (E1

λ = 91% and E2
λ = 5.7%). In practice, it 

is common to select levels of energy threshold between 70% to 95% [23]. It is evident that the first two modes retained 
most of the significant information; the third eigenvalue corresponded to only 0.22% of the total energy. When the LEV 
diagram, log10(λn), was plotted, the first two eigenvalues also appeared to be fast-decaying (see Fig. 3), while the other 
points formed almost a straight line. Choosing the truncation based on LEV is motivated by the idea that, if higher modes 
represent uncorrelated noise, then the corresponding eigenvalues should decay exponentially with increasing mode number 
[24]. The eigenvalues that are distinguishable from almost a straight line on the LEV diagram represent valuable information. 
Corresponding eigenvectors were smoother than other temporal modes which clearly contained high-frequency oscillations 

as shown in Fig. 3. The choice of k was further confirmed by applying the SVHT [13], which suggested a threshold of 
th = 4.5982 for known noise, and similar th = 4.7231 for unknown variance and β = N/M = 20/1000 = 0.02; the third 
singular value was smaller than the threshold, s3 = 3.5179 < th resulting in only two modes being recovered. We also 
propose using the σn estimated from the finest wavelet coefficients (see Eq. (7)) in cases where noise level is not known 
a priori. In this approach, a slightly smaller threshold was obtained, th = 4.4097, but sufficient to retain the same number 
k = 2. It is important to consider all the criteria because any single test on its own may not provide enough information to 
capture the significant phenomena. To achieve higher confidence in selecting an appropriate k it is best to analyse POD (or 
WPOD for simulation data) results with at least two tests. For wavelet transform, 6 levels of decomposition were performed.
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Fig. 4. Reconstruction of synthetic signals, initially corrupted with Gaussian noise (SNR = 12.4134 dB), with POD, 1D WAV and WAVinPOD.

Table 1
Comparison of de-noising efficiency.

Method SNR [dB] δ2 δF t [s]

Signal with Gaussian noise SNR = 12.4134 dB; [N = 20, M = 1000]

POD 22.7478 0.0453 0.0617 0.02
1D WAV 25.2223 0.0388 0.0452 0.13
WAVinPOD 33.3264 0.0147 0.0178 0.04

Signal with Gaussian noise SNR = 12.3998 dB; [N = 240, M = 1000]

POD 32.5555 0.0130 0.0198 0.08
2D WAV 34.2217 0.0120 0.0167 0.13
WAVinPOD 37.7215 0.0077 0.0114 0.1

The enhanced signals obtained with each technique are plotted every 5th observation in Figs. 4(b)–4(d). Table 1 sum-
marises values of averaged SNRs (in dB) and errors in L2 and Frobenius norm for each reconstruction along with the time 
(in seconds) it took to perform every operation. For both WAVinPOD and POD, the time required to determine which EOFs 
were significant was not included in the final estimation of computational cost. In other words, the processing times pre-
sented here depict how long it took to perform the whole algorithm with pre-defined k. The number of time samples 
required to de-noise the signal is of significance as it defines for how long the simulation has to run to provide enough 
data. As expected, POD did not recover the signal well for a small number of observations; the reconstructed matrix had 
SNR = 22.7478 dB, δ2 = 0.0453 and δF = 0.0617. Better result was obtained with 1D wavelet shrinkage, over 10% higher 
SNR than POD, 14% and 27% lower δ2 and δF , respectively. Applying WAVinPOD was the most successful in extracting the 
smooth signal with the highest SNR = 33.3264 dB (about 168% higher than the original noisy data; over 46% and 32% bet-
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Fig. 5. Performance of WAVinPOD, compared with WAV2inPOD, POD and 1D wavelet thresholding for increasing noise variance measured in SNR (a). In (b) 
and (c) only WAVinPOD, POD and 1D WAV are considered for clarity. Analysed matrix A1 is a set of N = 20 oscillating signals of length M = 1000. For 
WAVinPOD and WAV2inPOD, 2 modes were subject to soft wavelet thresholding with the db3 filter and 6 levels of decomposition.

ter than POD and wavelet shrinkage, respectively) and the smallest δ2 = 0.0147 and δF = 0.0178, representing a reduction 
in errors of 60% for WAV and 70% for POD. The one-dimensional wavelet transform method appeared to be the slowest, 
about t = 0.13 s. Performing the 2D transform is faster (in this case, only t = 0.03 s), but for such a small N the noise 
reduction would be less effective: SNR = 21.6070 dB, δ2 = 0.0893 and δF = 0.0906. In general, if only a small number of 
long data arrays is available, N � M , it is more beneficial to de-noise each signal separate, as there are insufficient observa-
tions to look for correlations between them. Proper orthogonal decomposition was faster than WAVinPOD but it produced 
the worst approximation. A similar discrepancy was observed with the smaller number of time samples; for N = 10 the 
signal-to-noise ratio for WAVinPOD was SNR = 30.5314 dB, while wavelet shrinkage with 1D transform and POD provided 
SNR = 24.7175 dB and SNR = 19.6530 dB, respectively.

Another analysis was performed in order to determine how many time-samples of the signal with similar noise level, 
SNR = 12.4566 dB, would be required for POD to achieve a comparable de-noising performance as WAVinPOD with N = 20. 
In this case, around 240 samples (12 times more than for WAVinPOD) allowed POD reach SNR = 32.5555 dB. The two-
dimensional de-noising with wavelet shrinkage alone recovered better SNR = 34.2217 dB, while WAVinPOD again outper-
formed both techniques achieving the highest SNR = 37.7215 dB and lowest errors in norms, δ2 = 0.0077 and δF = 0.0114. 
When a larger number of observations are available, i.e. the temporal modes are longer, applying wavelet thresholding to 
dominant left and right singular vectors (referred to as WAV2inPOD) may be beneficial, because the additional transfor-
mation does not strongly affect the orthogonality of modes. For N = 240, WAV2inPOD recovered the best approximation 
with SNR = 39.8888 dB. However, as our goal is to decrease the number of measurements required for data extraction, 
WAVinPOD is still the preferred de-noising approach.

Fig. 5 illustrates the performance of each method, measured with SNR (see Fig. 5(a)) and errors (see Figs. 5(b) and 
5(c)) of the approximations, for increasing noise level added to the matrix A1

true with N = 20. The main observation is that 
WAVinPOD filters the signals much better than POD and wavelet thresholding for any give noise variance. In addition, we 
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Fig. 6. Comparison of all the methods applied to the matrix A1 with N = 10 oscillating signals of length M = 1000. For WAVinPOD and WAV2inPOD, 
2 modes were subject to soft wavelet thresholding with the db3 filter and 6 levels of decomposition.

show that WAV2inPOD does not provide a higher SNR gain than the original procedure for thin data-sets, i.e. N << M . 
It is therefore preferable to use the less computationally expensive option, WAVinPOD. The same conclusions were drawn 
for a smaller number of signals, N = 10, where all the methods performed noticeably worse than WAVinPOD, as shown 
in Figs. 6(a)–6(c). For clarity, the errors in norms for WAV2inPOD are not included in the plots. When the number of 
time-samples is increased, WAVinPOD and POD results converge; this is presented in Fig. 7, where the error in L2 norm of 
de-noised approximations is plotted against the increasing size of A1. In contrast, it can be observed that processing both 
sets of dominant modes, i.e. performing WAV2inPOD, can offer further improvement in data quality for larger N .

As mentioned before, POD has the potential to successfully extract a clean signal and outperforms the ensemble av-
eraging that is widely applied in particle simulations. Nevertheless, the method still requires a relatively large number of 
samples in order to de-noise the data. Combining POD with wavelet thresholding improves the computational efficiency 
of the noise reduction process. For a small number of observations, POD manages to retain the mean shape of the signal 
but dominant modes still contain some energy corresponding to unwanted fluctuations. In WAVinPOD, wavelet threshold-
ing filters the dominant spatial modes from all the disturbances without modifying the signal’s profile (the most energetic 
structure). This can be observed by performing the wavelet transform on the original clean signal and its reconstruction. 
Fig. 8(a) shows a sparse representation of the smooth signal at 6 levels of resolution in the wavelet domain. The peaks at 
the beginning of the plot (on the left) are the approximation coefficients, c j0,m , which contain the coarse information. Mov-
ing from left-to-right shows decomposition of the signal from coarse-to-fine resolution. The fine detail coefficients, d j,m , 
are mostly zero as expected for an undisturbed smooth data-set. In Fig. 8(b) we show the POD approximation of A1

true
transformed into wavelet coefficients. The coarse coefficients are similar to the ones observed in Fig. 8(a). However, at fine 
resolution it can be seen that the signal still contains some noise. The line in Fig. 8(c) represents the WT of the same signal 
de-noised with WAVinPOD. For the problem considered, it was concluded that the WAVinPOD performed better than POD 
in removing noise from the data.
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Fig. 7. Comparison of all the methods applied to the matrix A1 with increasing number of oscillating signals. For WAVinPOD and WAV2inPOD, 2 modes were 
subject to soft wavelet thresholding with the db3 filter and 6 levels of decomposition. Note the convergence of WAVinPOD and POD for N = M = 1000; 
WAv2inPOD produced the lowest δ2 for N > 300.

Fig. 8. Wavelet transform coefficients; 6 levels of decomposition performed with db3.

Additional analysis was performed on matrix A2 (see noisy data in Fig. 9(a)). Again, all the criteria for selecting the 
number of significant modes recovered a rank equivalent to the dimensionality of true data-set, k = 3, with N = 20. Ap-
proximations of A2

true (shown in Fig. 9(a)), initially corrupted with noise of standard deviation σn = 0.5, obtained with POD, 
1D wavelet thresholding and WAVinPOD are plotted every 5th observation in Figs. 9(b)–9(d). Fig. 10 compares the perfor-
mance of each methodology for increasing noise level with the number of observations set to N = 20. The two-dimensional 
wavelet thresholding and WAV2inPOD provided the lowest quality de-noising and are not depicted in the figures for clar-
ity. Our method, WAVinPOD, again outperformed the other techniques, producing the highest signal-to-noise ratios and 
data-sets with the smallest errors in Frobenius and L2 matrix norm.
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Fig. 9. Reconstruction of synthetic signals, corrupted with Gaussian noise (SNR = 19.7711 dB).

It is important to mention that wavelet thresholding alone does not reduce the dimensionality of a matrix as well as 
POD or WAVinPOD. Both methods based on SVD produce approximations with rank equal to the number of dominant 
modes. For the case of N = 240 observations (see Table 1), 2D wavelet analysis produced a matrix of rank = 20 (for 1D 
WAV rank = 80), whereas POD and WAVinPOD resulted in a matrix of rank = 2. Singular value decomposition gives the best 
rank reduction in all norms that are invariant under rotation [25]. The low rank of the matrix is important if compression 
of the data is of interest. Transferring the original matrix with rank 240 requires sending 240 × 1000 = 240000 samples 
of information. When the rank is lowered to 20, the matrix can be represented by 3 components that together contain 
240 × 20 + 20 × 20 + 1000 × 20 = 25200 elements, which is almost an order of magnitude lower than for the original set. 
Having an approximation of rank = 2 further reduces the size of the matrices resulting in only 2484 samples of the data 
(about 96 times less than the original!). It should be stressed that using WAVinPOD allows not only successful extraction of 
information from disturbed data, but also reduces the computational cost of further processing or storage.

4. Removing noise from simulation results

Grinberg [3] showed how non-stationary particle data can be successfully de-noised using only POD with time win-
dows. Recently, his method has been applied to study the filament dynamics [26]; these simulations will be analysed with 
WAVinPOD as part of the future work. In this paper, we report the results of applying WPOD, 2D wavelet thresholding 
and WAVinPOD (adapted to a moving window) to velocity measurements from time-dependent channel flows and density 
profiles from a simulation of phase separation phenomenon, performed with either MD or DPD. The aim is to investigate 
the benefits of applying WAVinPOD to real simulation data and compare its performance with other procedures in time-
dependent modelling. In all the problems considered, a spatial distribution of the observables was calculated using the 
binning method (see Allen and Tildesley [27]). In this approach, the system’s domain is partitioned into a number of bins 
and the mean velocity and number of particles in each bin is computed based on their position.
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Fig. 10. Result of de-noising matrix A2 (N = 20 oscillating signals of length M = 1000) with POD, 1D wavelet thresholding, and WAVinPOD. For WAVinPOD 
and WAV, soft wavelet thresholding with the db3 filter and 6 levels of decomposition was used.

The molecular dynamics simulations were carried out using the open-source mdFOAM solver which is implemented 
within the open source fluid dynamics toolbox, OpenFOAM, and developed and maintained by researchers at the University 
of Strathclyde and the University of Edinburgh.5 The model fluids were either liquid argon in a krypton channel or water 
flowing between two silicon walls. All of the parameters from the MD simulations are presented in reduced units; the 
reference values are linked to the Lennard-Jones (L-J) potentials. For water, the quantities for length, energy and mass, 
respectively, were: σr,H2 O = 3.1589 · 10−10 m, εr,H2 O = 1.2868 · 10−21 J, mr,H2 O = 2.987 · 10−26 kg, and for argon: σr,Ar =
3.405 · 10−10 m, εr,Ar = 1.6568 · 10−21 J, mr,Ar = 6.6904 · 10−26 kg. We used the rigid TIP4P/2005 water model as described 
by Abascal and Vega [28]. For the DPD modelling, this was performed using DL MESO6 and the dimensionless parameters 
were converted to physical units with the reference values of the cut-off radius, rcutr = 6.46 · 10−10 m. This was calculated 
with one DPD particle representing 3 water molecules, based on the relation described by Ghoufi et al. [29]. The DPD energy 
was kB Tr = 4.114 · 10−21 J (where kB is Boltzmann’s constant and Tr = 298 K), and the mass of one water molecule was 
mr = 2.987 · 10−26 kg. Parameters for DPD that enforce proper water compressibility for the system were taken from Groot 
and Warren [30].

The first simulations were modelled with MD and considered different types of flow involving liquid argon in a krypton 
nanochannel: flow driven by a periodically oscillating force with and without roughness and flow generated by an oscillating 
upper wall. For each case a periodic domain with dimensions: 25 × 50 × 10 (x × y × z), with the wall thickness set to 5 in 
reduced units. The Lennard-Jones parameters describing argon–krypton interaction were: σAr−Kr = 1.02σr,Ar and εAr−Kr =
1.18εr,Ar , taken from Sofos et al. [31] and Gotoh [32]. The motion of fluid particles was weakly coupled to a thermal 

5 www.micronanoflows.ac.uk.
6 www.ccp5.ac.uk/software.

http://www.micronanoflows.ac.uk
http://www.ccp5.ac.uk/software
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Fig. 11. Result of applying WPOD to the developed velocity field from an MD simulation of a periodically-pulsating flow in a smooth channel; Nts = 1 and 
NPOD = 4000.

reservoir via the Berendsen thermostat. In order to not affect the calculations, the thermostat was applied only to the 
velocity component perpendicular to the flow direction. Based on the equipartition theorem, such a configuration ensures 
that each degree of freedom of the system is close to the right temperature [33]. For all simulations, the computational 
domain was divided into M = 500 horizontal bins, where the sampling of observables took place. After the target values 
of steady-state had been reached (temperature T = 1 and density ρ = 0.8187), the density controller was switched off and 
either an oscillating force of Fx = 0.6 sin(0.0125 · 2πt) was applied to every argon particle in the fill region, or the upper 
wall was set to move with a velocity V = 0.5 sin(0.0125 · 2πt). The time-step for each simulation was set to �t = 0.0025
in reduced units, but the data was sampled every 100th time-step, �tw = 100�t = 0.25 in order to ensure statistical 
independence.

The moving window was utilised in the manner as described by Grinberg [3]. While the WPOD window moved through-
out the simulation, the matrix was being updated every Nts of tw samples. To allow a straightforward comparison of all the 
de-noising methods, in most of the cases no averaging was applied prior to data filtering, i.e. Nts = 1. We stress that POD 
and WPOD essentially differ only in the implementation. Therefore, the results obtained from POD with a moving window 
are labelled in figures as POD approximations. Wavelet thresholding and WAVinPOD were applied to the same window, 
TPOD. The wavelet filter was again chosen from Daubechies family, but in this case the db4 was utilised with 8 levels of 
decomposition, in order to recover more smoothness.

Fig. 11(a) shows the WPOD approximation of instantaneous velocity measurements and original noisy profiles obtained 
from the oscillating force-driven flow in a smooth channel. For this problem the initial matrix contained N = 4000 observa-
tions and M = 500 velocity measurements at each time-step and a substantial reduction in noise level was achieved. Initial 
matrix contained. In this particular case, only two modes were used for velocity field extraction as a result of performing 
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Fig. 12. Analysis of de-noising performance; Nts = 1 and NPOD = 4000; for WAVinPOD and WAV soft wavelet thresholding with the db4 filter and 8 levels 
of decomposition was used.

the following analysis: examination of the energy levels of the eigenspectrum, the rate of decay of the eigenvalues, and 
studying the smoothness of the eigenvectors. The first two eigenvalues were the most energetic. The LEV diagram is illus-
trated in Fig. 11(b); it can be seen that λn=1 = s2

1 and λn=2 = s2
2 are decaying much faster than the other eigenvalues, i.e. 

they correspond to the dominant modes. Eigenvalues with k > 2 represent features with a short correlation time (noise). As 
shown in Fig. 11(c), the 1st and 2nd eigenvector (or left singular vector) described the oscillating nature of the data whilst 
the remaining modes contained higher frequencies. In addition, it should be stressed that the first eigenvector was smoother 
than the second one, which was slightly disturbed. This observation suggests that noise had not been entirely filtered out 
from the second mode. We also utilised the SVHT for singular values, but the estimated threshold was too low, even when 
the noise level was determined from wavelet coefficients. This is due to the fact that simulation data often suffers from 
correlated noise for which the optimal threshold developed by Gavish and Donoho [13] has not been derived. However, we 
observed that if the square root of the standard deviation used in Eq. (7) is inserted into the formula for SVHT with known 
noise, the same number k is retained as the value established with other tests. For all the simulations discussed in this 
section we utilised this approach. This strategy is based solely on the experience and further investigation of the optimal 
universal threshold for de-noising particle data should be conducted.

Figs. 12(a)–12(d) compare WPOD approximation with the result obtained by applying WAVinPOD and wavelet threshold-
ing to the same noisy matrix. It can be seen that WAVinPOD provides smoother profiles than WPOD for the same number 
of observations. The two-dimensional WAV approach produced the poorest result (see Fig. 12(b)), as the wavelets seemed 
to follow the noise. In addition, when only N = 400 observations (10 times less) were used for de-noising, WAVinPOD was 
still capable of extracting similar profiles, while applying the other techniques resulted in artifacts, and preserved unwanted 
frequencies. Figs. 13(a)–13(c) compare WPOD and WAVinPOD for N = 400, showing that the latter is more efficient in 
extracting information from the noisy data. Applying the criteria for defining k to the matrix with N = 400 successfully 
identified the number of significant modes, i.e. k = 2.
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Fig. 13. Filtering velocity data with smaller number of observations: Nts = 1 and NPOD = 400; for WAVinPOD and WAV soft wavelet thresholding with db4
filter and 8 levels of decomposition were used.

Fig. 14. Snapshot of the channel with introduced roughness.

Molecular dynamics simulations are often used to investigate the influence of atomistic scale surface roughness on the 
slip behaviour in liquid films [31,34]. In order to show how applying de-noising techniques can improve the study of slip 
phenomena, we introduced surface roughness to the previously described system. A periodic roughness was applied by 
placing a cavity with dimensions 5 × 3 × 10 to the lower wall as presented in Fig. 14. All other simulation parameters 
were kept the same. During one simulation run, N = 10000 velocity profiles consisting of M = 500 points were collected. 
Fig. 15(a) illustrates how poor were the original instantaneous measurements in comparison to the velocity profiles obtained 
with WPOD; refinement of the grid present in the plot indicates the position of the cavity. If statistical averaging is to be 
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Fig. 15. Filtering velocity data with WPOD with Nts = 1 and statistical averaging. Refinement of the grid indicates the position of the cavity in the lower 
wall.

Fig. 16. Comparison of velocity profiles obtained with de-noising techniques; Nts = 1 and NPOD = 10000. Note that WAVinPOD and WPOD produced almost 
identical distributions.

Fig. 17. Comparison of WPOD and WAVinPOD (with the db4 filter and 8 resolutions) for decreasing number of velocity measurements. Both methods 
allowed for more visual study of slip-phenomena. However, more data would be needed for WPOD to match the performance of WAVinPOD.
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Fig. 18. Filtering velocity data from the oscillatory Couette flow simulated with MD; comparison of WPOD, WAVinPOD and WAV de-noising technique.

employed in order to improve the quality of the results, a simulation has to be either performed several times, or, in the case 
of periodic oscillations, left to run for long enough to gather a sufficient number of samples. In the simulation, a full period 
translated to 320 velocity measurements as 80/�tw = 320, where the data was output at every �tw = 0.25 interval. In 
other words, in the collection of N = 10000 samples, there were 31 full oscillations, which were used to obtain an ensemble 
solution. Fig. 15(b) compares the quality of cumulative mean (average of 31 full periods) and the WPOD approximation. 
The latter clearly extracted smoother velocity profiles for the same number of measurements (N = 31 × 320 = 9920). To 
obtain a comparable level of de-noising with statistical averaging, much more data would have to be collected, increasing 
the computational cost. Furthermore, WPOD (or WAVinPOD) do not require any a priori information regarding the nature 
of the oscillations, which is clearly beneficial, e.g. when the frequency of fluctuations changes over time. Applying 2D 
wavelet thresholding alone did not produce satisfactory results as shown in Fig. 16. Further improvement of the de-noising 
efficiency can be obtained by utilising WAVinPOD as illustrated in Figs. 17(a)–17(b). If the velocity approximation produced 
with WPOD for N = 10000 measurements (see Figs. 15(a) and 15(b)) is considered as a desired solution, the SNR of velocity 
profiles recovered with WAVinPOD for NPOD = 500 had SNR = 32.2875 dB, while WPOD provided SNR = 28.8545 dB (about 
12% lower). In general, for a decreasing number of time samples, WPOD retains more noise, while WAVinPOD removes 
additional disturbances enhancing the analysis of slip velocity at the rough surface.

The last example with liquid argon was a non-equilibrium steady-state and time-periodic molecular dynamics simulation 
of Couette flow. The influence of oscillatory shear on the boundary slip is often studied with particle-based simulations, as 
experimental analysis is challenging [35]. We applied all the techniques to a collection of N = NPOD = 6000 noisy velocity 
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Fig. 19. Statistical averaging and WPOD low-rank approximations of the velocity measurements from a water flow simulation performed with MD.

Fig. 20. Comparison of WPOD, WAVinPOD and wavelet shrinkage (with filter db4, 8 resolutions and k = 1) in de-noising velocity data from simulation of 
unsteady water flow. WAVinPOD outperformed WPOD and statistical averaging, extracting smooth profiles even for 5 times smaller N = NPOD = 1000 and 
Nts = 1.
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Fig. 21. Snapshots of the first and last time-step of the DPD simulation.

Fig. 22. Comparison of WAVinPOD, WPOD and 2D WAV applied to the density field from a DPD simulation of a phase separation phenomenon; Nts = 10
and NPOD = 2000.

profiles with M = 500 samples obtained from the shear-driven flow induced by an oscillating upper wall (see Figs. 18(a) 
and 18(b)). The results were compared in Figs. 18(c)–18(d) with a smaller data-set containing only the last N = 600 mea-
surements in order to establish whether any of the methods can reduce the computational time required to extract smooth 
data that is easy to analyse and process. Wavelet thresholding within POD extracted similar quality velocity profiles but 
WPOD required 10× more snapshots; WAVinPOD produced an ensemble with 18% higher SNR than WPOD, if we assume 
that the true solution is a set of profiles obtained with WPOD for NPOD = 5000. Two-dimensional wavelet thresholding with 
db4 and 8 resolutions was again the least successful. Our criteria for determining the number of significant modes recovered 
k = 2 for each data-set.

Molecular dynamics can be applied to many real-life problems, e.g. for studying water flow in nanostructured mem-
branes. However, such modelling is quite challenging; the complexity of the water system requires small time-steps and 
the simulations often contain substantial statistical noise that is computationally demanding to reduce. In order to assess 
how de-noising techniques can improve the analysis of such data, we applied WPOD, WAVinPOD and wavelet shrinkage to 
an oscillating Poiseuille flow of water between two rigid planar silicon walls. The proportions of the computational domain 
were kept the same as in the previous MD simulations; the periodic channel had dimensions: 25 × 50 × 10 (x × y × z), 
with thickness of the walls set to 5, expressed in reduced units for water. Water molecules were driven by a force of 
Fx = 0.6 sin(0.0125 · 2πt) (again with different reduced units than for argon). A smaller time-step, �t = 0.0012, was used 
in order to capture all the important dynamics with write-interval �tw = 0.12 (data was output every τ s = 100�t). The 
system’s temperature was set to T = 3.816, and water density was ρ = 1.047. At first, all the filtering methods were applied 
to N = 5000 and M = 500, resulting, apart from wavelet thresholding, in much improved instantaneous data quality.

Figs. 19(a) and 19(b) show how WPOD with k = 1 performed in comparison with statistical averaging over the full 
oscillatory period (one period every 80/�tw ≈ 666 observations) for the same data-set; it can be readily observed that 
the ensemble mean was still very noisy, and more measurements would be required to extract the same velocity profiles as 
with WPOD. Out of all the filtering techniques considered, WAVinPOD obtained the best results for N = 5000 (see Fig. 20(b)), 
and for a smaller system with N = 1000, as illustrated in Figs. 20(c)–20(d). Wavelet thresholding alone did not provide a 
good approximation, which shows how difficult it is to choose an adequate wavelet model to successfully de-noise the 
data.
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In order to show the versatility of WAVinPOD, we applied it to density fields from a simulation of phase separation 
phenomenon performed with DPD. The studied system consisted of a periodic box filled with 3000 particles, divided into 
2 species (1500 each). The particles from both species had the same size, and each bead had a mass = 1 in DPD units, but 
were set to repel each other in order to form two layers, as shown in Figs. 21(a)–21(b). We applied WAVinPOD together with 
WPOD to density profiles obtained from M = 400 bins spanning the x-direction. The simulation run for τ s = 20000, and an 
ensemble of NPOD = 2000 averages of Nts = 10 samples each was formed. In Fig. 22(a), the original profiles for both species 
are plotted against WPOD and WAVinPOD approximations. The profiles were extracted by retaining only k = 2 modes and 
using the db4 filter with 8 decompositions. Both de-noising techniques produced similar results. However, when the density 
profiles were plotted at different instances (see Fig. 22(b)), it was clear that WAVinPOD provided smoother estimates. Again, 
applying wavelet thresholding alone resulted in poor filtering quality. It should be stressed that no additional averaging 
could have been performed without losing information on how the system was evolving.

5. Conclusions and remarks

We have introduced a novel de-noising technique for unsteady signals that couples wavelet thresholding with proper 
orthogonal decomposition, WAVinPOD. Our procedure combines the optimal dimensionality reduction of POD with the time-
frequency localisation properties of wavelets. The new method was applied to a number of oscillating synthetic signals and 
unsteady particle-based data to investigate its capabilities to reduce noise. It was shown that the methodology outperforms 
the other techniques in extracting significant information from corrupted measurements. We demonstrated that WAVinPOD 
is beneficial in reducing noise in oscillatory flows, and can successfully extract smooth profiles of the properties. Relative 
to standard statistical averaging, WPOD, and wavelet shrinkage, WAVinPOD achieves higher signal-to-noise ratios and lower 
errors in Frobenius and L2 norms at reduced computational cost. Ensemble solutions obtained with WAVinPOD allow a more 
accurate analysis of results obtained with particle-based simulations, including molecular dynamics and dissipative particle 
dynamics. This work has therefore provided a contribution to the challenge of improving the communication in multi-scale 
modelling that couples a molecular domain to continuum-based domain, such as fluid dynamics.

Performing WAVinPOD requires an estimate of k, which denotes the number of significant structures contained in the 
data. Numerous criteria for determining which orthogonal modes are dominant have been listed in this work. Selection 
of POD modes for separating the ensemble solution from fluctuating components can be done adaptively. It can also be 
performed by the user at the end of the simulation run as part of post-processing. In addition, we proposed applying the 
singular value hard threshold to automate the filtering process of WAVinPOD. However, as the method was specifically 
designed for systems corrupted with white noise, SVHT does require some modification. Further study will be performed in 
order to optimise the threshold estimate, and provide a sound mathematical explanation.

Although WAVinPOD is shown to be a valuable tool for removing noise from particle-based simulations, there is a clear 
scope to extend its applicability. One possible extension is its application to direct simulation Monte Carlo data to analyse 
problems in rarefied gas dynamics. This will be the subject of further research.
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