

Edinburgh Research Explorer

Diplomat: Mapping of multi-kernel applications using a static
dataflow abstraction
Citation for published version:
Bodin, B, Nardi, L, Kelly, PHJ & O'Boyle, MFP 2016, Diplomat: Mapping of multi-kernel applications using a
static dataflow abstraction. in 2016 IEEE 24th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS) . IEEE, London, UK, pp. 241-250,
2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, London, United Kingdom, 19/09/16. DOI: 10.1109/MASCOTS.2016.35

Digital Object Identifier (DOI):
10.1109/MASCOTS.2016.35

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/77046217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/MASCOTS.2016.35
https://www.research.ed.ac.uk/portal/en/publications/diplomat-mapping-of-multikernel-applications-using-a-static-dataflow-abstraction(5076f40e-4db2-423b-9e23-8a2001b5d74e).html

Diplomat: Mapping of Multi-kernel Applications
Using a Static Dataflow Abstraction

Bruno Bodin
The University of Edinburgh,
Edinburgh, United Kingdom
Email: bbodin@inf.ed.ac.uk

Luigi Nardi & Paul H. J. Kelly
Imperial College London,
London, United Kingdom

Email: {l.nardi,p.kelly}@imperial.ac.uk

Michael F. P. O’Boyle
The University of Edinburgh,
Edinburgh, United Kingdom
Email: mob@inf.ed.ac.uk

Abstract—In this paper we propose a novel approach to
heterogeneous embedded systems programmability using a task-
graph based framework called Diplomat. Diplomat is a task-
graph framework that exploits the potential of static dataflow
modeling and analysis to deliver performance estimation and
CPU/GPU mapping. An application has to be specified once, and
then the framework can automatically propose good mappings.
We evaluate Diplomat with a computer vision application on two
embedded platforms. Using the Diplomat generation we observed
a 16% performance improvement on average and up to a 30%
improvement over the best existing hand-coded implementation.

I. INTRODUCTION

Mobile and embedded systems on chip (SoC) integrate
multiple computing resources. They contain multiple CPU
cores, a GPU and in some cases also a DSP. Such complex
architectures have the potential for good performances but are
hard to program. They have a mapping problem, i.e. how
to associate computational tasks to hardware resources in
order to meet the application’s response time, throughput
objectives and power budget. OpenCL [1] has emerged as
a standard to program heterogeneous systems and allows
program portability, i.e. the ability of a single program to
be executed on different devices. The OpenCL programming
interface allows a programmer to express a task under the form
of a function (called kernel in OpenCL) and to execute it on
compatible resources. However, developing applications using
such systems and achieving acceptable performance is a non-
trivial task. Even if a programmer has perfect knowledge of
the target architecture and a deep understanding of OpenCL,
performance portability remains a challenge.

Meanwhile, the emergence of computationally intensive
mobile vision applications makes the use of embedded het-
erogeneous platforms increasingly important. Mobile vision
applications have performance constraints and need efficient
mappings. They are excellent candidates to evaluate new
mapping techniques.

Prior work on mapping exists. While most work deals with
single-kernel applications, recent research focuses on multi-
kernel applications. These represent more realistic real-world
applications. Static dataflow frameworks such as StreamIt [2]
provide languages to statically express multi-kernel applica-
tions and communication channels with specific constraints
on the amount of transferred data through the channels.

They provide an automatic mapping, yet these models are
overly restrictive. As an example, many vision applications
include dynamic behavior, such as early exit conditions,
which are not supported by those models. Tools such as
Qualcomm Symphony [3] (previously known as MARE) are
more expressive. Symphony lets a programmer represent an
application using a task-graph, a more general representation
of the dataflow model where communications are no longer
static. However, Symphony tasks are dynamically defined and
mapping decisions are performed manually. Ideally we would
like a framework that is both flexible and able to provide high
performance mappings automatically.

In this paper, we address the mapping problem of multi-
kernel applications. For this purpose we introduce the Diplo-
mat framework, a task-graph model embedded in the Python
language and combined with off-line performance charac-
terization to compute relevant mappings. It mainly targets
streaming applications, which are common in computer vision.
In Diplomat, an application is defined as a task-graph. In
contrast with static dataflow modeling, the tasks and com-
munication channels are not necessarily known at compile-
time. Diplomat automatically collects performance profiling
information to evaluate tasks’ workload; then it uses a static
dataflow model to evaluate performance and explores different
mappings for a given platform. The library generates C++
code, which can then be integrated into an embedded system’s
firmware. This code is derived automatically from the task-
graph, and uses a runtime library to implement the necessary
communication and buffering between tasks. We show that a
class of computer vision applications can be abstracted to a
static dataflow representation via the Diplomat task-graph. We
observe up to 30% speed improvement over the best existing
hand-written implementation.

The contributions of this paper are:
• A task-graph model, suitable for dynamic streaming

applications, and which can be easily abstracted into a
Synchronous Dataflow (SDF) model.

• A framework which implements this abstraction and
performs workload profiling together with static analysis
to find a mapping that achieves best performance on
heterogeneous platforms.

• We show that our approach adapts automatically to differ-
ent architectures for truly performance-portable software.

II. MOTIVATION

To illustrate choices that have to be made while designing
an embedded system application on modern devices, we will
consider the SLAMBench benchmarking framework [4] and
in particular the KFusion benchmark. KFusion performs real-
time localization and scene reconstruction for a camera mov-
ing through an unknown environment, i.e. it estimates the pose
of a depth camera while building a highly detailed 3D model
of the environment. This application is composed of more than
10 different communicating tasks (refer to Figure 1). To im-
plement this application and to reach acceptable performance,
a designer must optimize its algorithm while considering a
good mapping at the same time. Thus, in Figure 2 we present
several possible mapping solutions.

Running the KFusion benchmark on just one 2GHz ARM
A15 core of an embedded SoC (Samsung Exynos 5422, see
Table II), we observe low performance on a single CPU core,
less than 2.5 Frames Per Second (FPS). By exploiting data
parallelism (using the KFusion OpenMP implementation), the
speed-up is 2.5x. We can also take advantage of the task paral-
lelism through a task-graph runtime (namely Symphony [3]),
and again, we improve performance by a further 20%. Thus,
with these optimizations and by only using the multi-core
CPU, this application can reach 7.4 FPS. Alternatively, we
can use the GPU implementation (with OpenCL), and yields
a 2x speed-up comparing with the best CPU version, which is
14.9 FPS.

It is evidently appealing to use both CPU and GPU at the

Input
frames

Reconstructed
3D scene

preprocessing
mm2meter

bilateralfilter

Tracking
depth2vertex
vertex2normal

halfsample
track

reduce

Integrate
integrate

Raycast
raycast

RenderDepth RenderTrack RenderVolume

Fig. 1: The KFusion algorithm is composed of 7 main tasks,
a total of 12 different OpenCL kernels.

0 5 10 15
Frames Per Second (FPS)

Diplomat (GPU+CPU)
Partitioning (GPU+CPU)
Smart Mapping (GPU/CPU)
OpenCL (GPU)
Task-graph (CPU)
OpenMP (CPU)
Sequential (CPU)

17.2
12.8
12.8

14.9
7.4

6.3
2.5

Fig. 2: Performance comparison of different possible mappings
for KFusion (higher FPS is better).

Tasks' implementation in
C++, OpenMP, OpenCL, ...

DIplomat DSL
Task graph representation

Generated source code
C++, OpenMP, OpenCL, ...

Code generation

Static dataflow
abstraction

Time profiling

Dataflow analysis,
e.g. mapping

1

3

4

5

6

2

Fig. 3: Overview of the Diplomat framework. The user pro-
vides (1) the task implementations in various languages and
(2) the dependencies between the tasks. Then in (3) Diplomat
performs timing analysis on the target platform and in (4)
abstracts the task-graph as a static dataflow model. Finally, a
dataflow model analysis step is performed in (5) and in (6)
the Diplomat compiler performs the code generation.

same time and to combine those speed-ups through a more
complex mapping, but implementing such behavior is not
easy. The communication between CPU and GPU becomes
a potential bottleneck, and the resulting performance might be
worse.

For single-kernel applications, various solutions have been
proposed to handle the mapping problem. But these are
not well suited to multi-kernel applications. As an example,
following a speed-up based mapping methodology [5] we
obtain a 16% slow-down compared to the OpenCL version.
A partitioning technique similar to the one presented in [6]
also results in a 16% slow-down.

In contrast, using our approach, we are able to generate
a mapping that reaches 17.2 FPS, which is a 15% speed-up
compared to the OpenCL version. This example shows that
mapping using dataflow analysis tools can outperform existing
techniques.

III. DIPLOMAT FRAMEWORK

A. Framework Overview

The Diplomat framework combines task-graph modeling
and static dataflow analysis to perform the mapping of stream-
ing applications. An overview of the framework is given in
Figure 3.

1) Front-end: The Diplomat front-end allows the frame-
work to gather fundamental information about the application:
the different possible implementations of the tasks, their
expected input and output data sizes, and the existing data
dependencies between each of them.

2) Static analysis: At compile-time, the framework per-
forms static analysis. In order to benefit from existing dataflow
analysis techniques, the initial task-graph needs to be turned
into a dataflow model. As the dataflow graph will not be used
to generate the code, a representation of the application does
not need to be precise. But it needs to be accurate enough to
obtain good performance estimations. Diplomat performs the
following steps. First, the initial task-graph is abstracted into a
static dataflow formalism. This includes a timing profiling step
to estimate task durations and communication delays. Then, by
using existing static analysis techniques [7], [8], a throughput
evaluation and a mapping of the application are performed.

3) Code generation: Once a potential mapping has been se-
lected, a functional C++ code is automatically generated. This
produced implementation takes advantage of task-parallelism
and data-parallelism. It can use OpenMP, OpenCL and it
may apply partitioning between CPU and GPU when it is
beneficial.

After this short overview, we now discuss the Diplomat
framework in further detail.

B. Diplomat front-end

Diplomat is composed of three classes, namely Kernel,
Buffer and Loop. These classes enable the definition of
an application as a task-graph, such as in Figure 4. Using
the Diplomat framework implies two requirements: a) to
identify the tasks that compose an application; b) to provide
different implementations of these tasks for CPU and GPU
hardware resources, i.e. C++, OpenMP and OpenCL. Once
these requirements are fulfilled, and the task-graph expressed,
all the remaining work is automated. We now define the three
classes of Diplomat.

1) Kernel: The Kernel class defines tasks. First, it speci-
fies the name of the C++ function or of the equivalent OpenCL
kernel that this task is referring to. In order to respect data
dependencies during the code generation, it also specifies
input and output buffers. Then, Argument is used to specify
arguments needed by the corresponding function. Additionally,
the dimensions and globalworksize are both OpenCL
specific arguments, required for OpenCL code generation.

Kernel(name = "functionName",
input = [inBuffer],
output = [outBuffer],
dimensions = 2,
globalworksize = "computationSize",
params = [

Argument(name = "outBuffer",
buffer = outBuffer,
ptr = True),

Argument(name = "inBuffer",
buffer = inBuffer,
ptr = True)])

Bilateral
Filter

HalfSample Depth2Vertex Vertex2Normal

for i = 1 to N

ScaledDepth

i-1 i

0
Vertex

i

for i = 0 to N

Normal

i

Fig. 4: The Diplomat model is a composition of kernels,
buffers, and loops. In this figure kernels are represented with
rounded boxes, buffers with straight boxes and loops with
dotted boxes. This graph is related to a subgraph issued from
the KFusion application visible on Figure 7.

2) Buffer: The Buffer class represents memory locations
as logical regions. To make the code generation possible, data
type and data size of these memory locations are required.

Buffer(name = "floatDepth",
ptr = True,
type = "float",
size = "n")

In this example, floatDepth is a float pointer. In
the previous Kernel example, the variables inBuffer and
outBuffer were referring to Buffer instances.

3) Loop: In the Diplomat task-graph representation, a task
can only be executed once. Because this requirement is restric-
tive, we introduce the Loop operator, and two more concepts,
the buffer instances and the buffer initialization values.

A Loop expresses the replication of Kernel. Let us
consider a classical loop of N − 1 iterations of a function
(e.g. halfSample):

for(int i = 1 ; i < N ; i++){
halfSample(scaledD[i],scaledD[i-1])

}

We can use the Loop operator to express it :

HFLoop = Loop(variable ="i",
from ="1",
to ="N-1")

halfSample = Kernel(...,
input = [ScaledD.sub("i-1")],
output = [ScaledD.sub("i")],
loop = HFLoop)

After instantiating a Loop (i.e. HFLoop), we can associate
a Kernel to this loop using the loop argument. The argu-
ments variable, from and to defined in the Loop class
are used to enumerate the replication of this Kernel.

A B

C

1 1
.0

8

6

.

0

6

8

. .
. .

. .
. .

. .

20

Fig. 5: An example of SDF.

a) Buffer instances: To easily maintain determinism, a
buffer can only have one writer, i.e. it is only defined once as
an output in Kernel arguments. Thus, to reuse them through
a Loop, we introduce the buffer instances. A Buffer can be
composed of logical instances accessible with the sub(id)
function. The id argument of the sub function specify an
identifier for each instance. An example of buffer instances is
given in the previous Loop example.

b) Buffer initialization values: A Buffer can be initial-
ized. This means that its first instance (identified by sub(0))
contains an initial value.

Buffer(name = "pose",
pointer = False,
type = "Matrix4",
initvalue = "*oldPose",
init = True
size = "sizeof(Matrix4)")

In this example, pose is a Buffer with an initialized
value set to *oldPose. It is important to understand that
a Kernel cannot specify this Buffer as an output unless
using an instance different than sub(0). The advantage of
this initial value is that it can be used with Loop to express
data reuse; this can later result in a deadlock-free dependency
cycle in the obtained dataflow abstraction.

C. Static analysis

In order to determine potentially good mappings, Diplomat
relies on dataflow static analysis. It consists of two main
stages. First, Diplomat abstracts the task-graph into a static
dataflow; this includes automatic timing profiling. Second, it
combines throughput evaluation and mapping exploration to
select high-performance candidates.

1) Dataflow modeling and static analysis: Applications are
described as directed graphs where nodes represent operations,
or functions, and arcs represent data dependencies. One of
the most common models of this kind is the Kahn Process
Network (KPN) [9]. In a KPN each arc corresponds to a FIFO
buffer with only one writer and one reader. Two basic rules
have to be respected: a) read operations are blocking, which
means that when a task is reading an empty buffer it has to
wait until new data arrives; b) tasks are non-reentrant, which
means, a task cannot be executed if a previous execution of
the same task is still in progress. Following these rules, a KPN

is deterministic, i.e. whatever the execution order of the KPN
tasks is, the overall execution result remains the same. Yet, the
KPN does not provide enough information to predict a valid
execution schedule of an application at compile-time.

To overcome this restriction, static dataflow models can be
used. One popular static model is the Synchronous Dataflow
(SDF) model [10]. The SDF is a dataflow model where each
execution produces and consumes a known constant amount of
data. Even though the SDF has reduced expressivity compared
to other models, it is an appropriate model for the Diplomat
analysis module that targets streaming applications. This kind
of application, even with data-dependences and dynamic be-
haviors, keeps following the same execution pattern. When this
pattern is successfully captured by the static dataflow model,
efficient mapping candidates can be found.

SDFs describe an application as a directed graph in which:

• Each node t is a task.
• Each arc b = (t, t′) is an unbounded FIFO buffer which

connects a task t to t′.
• Buffers contain data (called tokens) and the initial amount

of tokens in a buffer is called its initial marking.

Tasks can be executed; then they consume (resp. produce)
tokens in their inputs (resp. outputs). A task execution is only
possible if there are enough tokens in its inputs. The SDF
model also assumes that each task has a known execution
duration. Figure 5 shows an SDF with three tasks A, B and
C communicating through three buffers. The initial number of
tokens for the buffer between C and A is 20. At each execution
of the task A, 8 tokens will be consumed in b, and at each
execution of the task C, 6 tokens will be produced.

2) Static abstraction: Static dataflow models are not ex-
pressive enough to represent dynamic applications. However,
despite dynamic behavior, streaming applications often keep
following constant execution patterns. This is an important
observation that is at the core of the Diplomat language tar-
geting streaming applications. This execution pattern regularity
is caught by the front-end and abstracted to a SDF model.

To perform this abstraction, we limit our analysis to specific
configurations of the application by fixing dynamic values
(through the application arguments). This selection is done
only once, by the designer of the application. In Section VIII
we explore potential candidates to replace the SDF model in
order to relax this constraint.

a) Model generation: The abstract SDF model is com-
posed of tasks and buffers which respectively correspond to
Diplomat Kernels and Buffers. The initial values in
Diplomat will imply initial values in the SDF. The produc-
tion and consumption of each task will be set to 1. As an
example, with the task-graph in Figure 4, and by following
this abstraction method, we obtain the SDF on Figure 6.

Once an application is modeled through this SDF model, a
range of analysis tools can be used. However, to fully apply
them, timings are required.

b) Timing profiling: The timing information is specific
to each platform. It consists of the computation time of every

Bilateral
Filter

Dup Depth
Vertex

Vertex
Normal

Half
Sample

Depth
Vertex

Vertex
Normal

Half
Sample

Depth
Vertex

Vertex
Normal

1 1
.0

1

1

..........

0

1

1

..........

0

1 1
.0

1 1
.0

1 1
.0

1 1
.0

1 1
.0

1 1
.0

Fig. 6: A dataflow model generated by fixing dynamic values
of this application (level = 3).

task on every resource, i.e. CPU-only and GPU-only measure-
ments in C++, OpenMP and OpenCL, and the communication
overhead between CPU and GPU memory transfers. To get
timing estimations, the Diplomat framework automatically
generates and run samples which summarize enough mapping
configuration to cover all the possible timing configurations.
As a result a timed SDF can be created, which provides
insights on the application general execution behavior.

The partitioning is expressed using the partitioning ratio that
is a decimal from 0 to 1 included. The partitioning execution
time is inferred simply by assuming that the computation time
of a kernel on a CPU or GPU resource vary linearly with
respect to the amount of the input data or iteration space. As
an example, if the partitioning ratio of a given kernel is 0.5,
Diplomat will assume that the timing to execute on CPU will
be half of the CPU-only timing and that the timing to execute
on GPU will be half of the GPU-only timing.

3) Throughput evaluation: Once a timed SDF is available,
the Diplomat framework can evaluate the maximum through-
put of this application on specific platforms. This evaluation
takes into account all possible partitioning ratios. A first
analysis provides an upper bound of the maximum reachable
throughput of the application. This is valuable information as
it will inform the designer that, for any possible mapping of
the application, there is no better possible performance on the
chosen platform. This analysis also provides a list of critical
tasks which must be optimized at first in order to improve
performance.

Considering a particular mapping on a platform, the
throughput evaluation is also used in Diplomat to estimate
its performance. This throughput evaluation method will be
used as a performance metric to solve the mapping decision
problem in the next step.

4) Mapping: The mapping of a Diplomat application asso-
ciates computation resources to each task. These computation
resources can be either the CPU or the GPU, or both at
the same time in case of kernel partitioning. The solution
space of this problem is exponential. Application mapping

on heterogeneous systems has been widely studied in the
last decades [8]. In Diplomat, the mapping is selected using
a genetic-based space exploration technique. In this genetic
algorithm, candidate solutions are specific mapping of the
application. Their properties are the partitioning ratio for each
task on each computing resource. The fitness metric of this
exploration is the throughput evaluation method previously
defined.

After exploring the space, in order to eliminate potentially
bad predictions, we run the most interesting candidates on
the targeted platform. This step results in a number of good
mappings ready to be generated.

D. Code generation

In the code generation phase, Diplomat generates an actual
implementation of the application for a specific mapping.
Because each kernel implementation has already been pro-
vided, Diplomat need to produce a version of the task-graph
which will call each kernel in the specified implementation.
In the case of partitioning, Diplomat required a particular
implementation of the CPU kernels (where the data size is
an extra argument).

It is important to note that this code generation is not done
from the dataflow model, but from the task-graph represen-
tation. The internal SDF model is exploited by Diplomat to
explore mapping solutions but it cannot be used for code
generation. The code generation produces multiple threads
depending on the parallelism of the application. Each thread
is then responsible for a set of task executions on different
devices. The task scheduling over those threads is decided by
data dependencies as expressed by the Diplomat task-graph
model.

IV. EXPERIMENTAL SETUP

A vision application, namely KFusion, is used as a case
study to evaluate Diplomat on two heterogeneous embedded
platforms. We first present the use case and the targeted
platforms.

A. The KFusion application

KFusion is a computationally intensive vision algorithm and
a good candidate for augmented reality applications. In this
section we present the core algorithm of KFusion and the
configuration we considered in the experiments.

1) KFusion algorithm: In the context of computer vision,
simultaneous localization and mapping1 (SLAM) systems aim
to perform real-time localization and mapping “simultane-
ously” for a camera moving through an unknown environment.
The KFusion algorithm [11] utilizes a depth camera to perform
localization and mapping. KFusion records and fuses the noisy
stream of measured depth frames obtained as the scene is
viewed from different viewpoints into a highly detailed 3D
geometric map.

1Unlike previous sections, the term mapping in the computer vision domain
refers to the 3D reconstruction of an environment.

1: for depthFrame in depthStream do
2: mm2meters(floatDepth,depthFrame)
3: bilateralFilter(scaledD[0],floatDepth)
4: for i in range (1,len(levels)) do
5: halfSample(scaledD[i],scaledD[i-1])
6: end for
7: for i in range (0,len(levels)) do
8: depth2vertex(scaledV[i],scaledD[i])
9: vertex2normal(scaledN[i],scaledV[i])

10: end for
11: oldP = P
12: for lev in range (len(levels),0) do
13: for i in range (0,levels[lev]) do
14: track(tracking,scaledV[lev],scaledN[lev],V,N,P)
15: reduce(reduction,tracking)
16: if updatePose(P,reduction) then
17: break
18: end if
19: end for
20: end for
21: if checkPose(P,oldP,reduction) then
22: integrate(volume,floatDepth,P)
23: end if
24: raycast(V,N,volume,P)
25: renderVolume(out,volume)
26: renderTrack(out,tracking)
27: renderDepth(out,floatDepth)
28: end for

Algorithm 1: KFusion algorithm

In our work, we focus on the SLAMBench [4] implemen-
tation of KFusion. SLAMBench is a benchmark that pro-
vides portable KFusion implementations in C++ (sequential),
OpenMP, CUDA and OpenCL, that have been evaluated on
desktop and embedded sytems [4]. This fulfills the Diplomat
prerequisites of implementations. A simplified pseudo-code of
KFusion is given in Algorithm 1. For the sake of brevity, we
removed arguments and behaviors that do not induce any data
dependencies.

2) Configuration selection: To fulfill static analysis require-
ments, four KFusion configurations have been selected (see
Table I). We denote them by the configurations 0, 1, 2 and 3.
These configurations have been selected by a (external to our
work) computer vision expert. Each parameter is extremely
sensitive, and a wrong combination of them could result in
incorrect behavior (i.e. a loss of the camera position or a poor
scene 3D reconstruction). These parameters also have a strong
impact on the application speed and workload.
-c is the input image ratio: the bigger this number is, the

smaller is the input data size.
-v is the data size of the 3D model representation.
-r is the update frequency of the 3D model: an update is

computationally intensive, the smaller this number is, the
slower the application.

-m is a distance that defines the update region in the 3D

Platform name ODROID-XU3 Arndale
SoC Name Exynos 5422 Octa Exynos 5250
CPU ARM ARM
CPU Name Cortex-A7+A15 Cortex-A15
Number of cores 4 + 4 2
Core frequency 2GHz / 1.4GHz 1.7GHz
GPU Mali-T628 Mali-T604
GPU frequency 600MHz 533MHz
RAM Size 2GB 2GB
Operating system Ubuntu 11.4 Ubuntu 12.04.5 LTS
C++ Compiler GCC 4.8.2 GCC 4.8.1
OpenCL Version OpenCL 1.1 ARM OpenCL 1.1 ARM

TABLE II: Summary of considered platforms during our
experiments.

mm2meter

bilateral
filter

halfsample depth2vertex

vertex2normaltrack

reduce

renderTrack

raycast

integrate

for j = 1 to level[i]

for i = 1 to len(level)

for frame in stream

renderVolume

renderDepth

Fig. 7: Graphical representation of KFusion Diplomat internal
representation. Here buffers are represented by arrows.

model: the bigger this number is, the slower an update.
-l is the tracking precision: the smaller this value is, the

longer the tracking step.
These parameters imply that the configurations 2 and 3 are the
fastest, but also less accurate. In contrast, the configuration 0
and 1 are slower, but more accurate.

B. Targeted heterogeneous platforms

As the motivation of this work is to ease mapping of applica-
tion on heterogeneous platforms, we applied our methodology
on two embedded platforms, the Arndale and the HardKernel
ODROID-XU3 boards. A brief summary of these platforms is
available on Table II.

C. Implementing KFusion with Diplomat

With a basic knowledge of the KFusion algorithm, describ-
ing KFusion with the Diplomat framework took less than
a day. This includes the debugging effort. Furthermore, the
whole description is less than 200 lines of code. However,
we do not claim this positive result can be generalized to any
applications. The purpose of Diplomat is not to be directly
used by a programmer, but to provide efficient mapping
solution for higher-level languages, such as DSLs for vision.

Once an application is described using Diplomat, an internal
representation of the task-graph is available; Figure 7 shows
this graph for the KFusion application.

Config. Arguments Accuracy (cm) 1-CPU Perf. (FPS) 1-GPU Perf. (FPS)
Arndale ODROID Arndale ODROID

0 -c 1 -m 0.2 -l 1e-04 -v 128 -r 20 < 4.1cm 0.24 0.33 3.48 3.76
1 -c 2 -m 0.2 -l 1e-05 -v 128 -r 10 < 4.2cm 0.76 1.28 9.26 10.43
2 -c 4 -m 0.075 -l 1e-06 -v 256 -r 5 < 4.4cm 1.49 2.50 11.69 14.79
3 -c 4 -m 0.1 -l 1e-05 -v 128 -r 10 < 4.6cm 2.34 3.91 15.69 20.04

TABLE I: Selected configurations of KFusion for the evaluation of Diplomat. Each of these parameters (-c,-m...) affects the
application behavior and its workload.

ARN
0

ARN
1

ARN
2

ARN
3

0.0

0.5

1.0

1.5

Sp
ee

du
p

ov
er

 se
qu

en
tia

l +0.4%
+2.2% +4.5% +5.9%

Diplomat (CPU)
Manual-OpenMP (CPU)

(a) CPU-Only on Arndale

ARN
0

ARN
1

ARN
2

ARN
3

0

2

4

6

8

10

12

14

16

18

Sp
ee

du
p

ov
er

 se
qu

en
tia

l +0.7%
+25.2%

+30.5%
+40.8%

Diplomat (CPU/GPU)
Speedup-Mapping (CPU/GPU)
Partitioning (CPU/GPU)
Manual-OpenCL (GPU)

(b) CPU and GPU on Arndale

ODR
0

ODR
1

ODR
2

ODR
3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

du
p

ov
er

 se
qu

en
tia

l

+7.5%
+31.8%

+17.2% +28.3%

Diplomat (CPU)
Manual-OpenMP (CPU)

(c) CPU-Only on ODROID

ODR
0

ODR
1

ODR
2

ODR
3

0

2

4

6

8

10

12

14

16
Sp

ee
du

p
ov

er
 se

qu
en

tia
l

+25.0%

+19.2%

+16.5%
+13.5%

Diplomat (CPU/GPU)
Speedup-Mapping (CPU/GPU)
Partitioning (CPU/GPU)
Manual-OpenCL (GPU)

(d) CPU and GPU on ODROID

Fig. 8: Evaluation of the best result obtained with Diplomat for CPU and GPU configurations, and compared with hand-
written solutions (OpenMP, OpenCL) and automatic heuristics (Partitioning, Speed-up mapping). The associated number is the
configuration number and the percent on top of Diplomat bars are the speed-up over the MANUAL implementation.

V. PERFORMANCE RESULTS

We evaluated four configurations of KFusion on two differ-
ent platforms. We compared the performance of Diplomat with
two families of solutions. We considered the original OpenMP
and OpenCL implementations of SLAMBench [4] which are
hand-written implementations, and we also considered two
automatic mapping methods.

• MANUAL-OpenMP and MANUAL-OpenCL are respec-
tively the OpenMP and OpenCL hand-written version
from SLAMBench.

• PARTITIONING is a partitioning [6] of every kernel
between CPU and GPU in order to maximize the speed
and based on timing profiling.

• SPEED-UP-MAPPING is a mapping strategy [5] which
selects the fastest resource to compute each kernel.

The performance of the mapping obtained with Diplomat are
shown in Figure 8. For each case, the mapping selected by
Diplomat is the best known, after having evaluated the 20
best estimated mappings.

A. CPU only

To compare the performance of Diplomat on CPU-only
platforms, we used MANUAL-OpenMP, the OpenMP imple-
mentation provided in SLAMBench. This implementation is
not using vectorization. Diplomat does not apply code trans-
formation on the kernel code, thus it does not use vectorization
either.

1) Arndale: The Arndale has a two-core CPU and, as
visible in Figure 8a, the benefit of MANUAL-OpenMP on this
device is limited (+30% on average). With this reduced number
of cores the mapping possibilities for Diplomat are small. But
Diplomat takes advantage of task-parallelism and provides a
small performance improvement on OpenMP (no more than
5%).

2) ODROID: As shown in Figure 8c, MANUAL-OpenMP
is more efficient on the ODROID. The ODROID has a
heterogeneous CPU composed of 4 big and 4 LITTLE cores.
MANUAL-OpenMP yields a 4x speed-up for the configuration
0. This configuration’s workload is large, this is the best
condition for OpenMP data-parallelism. The performance of
OpenMP diminishes when the workload is reduced, but for
the smallest workload from configuration 3 this is still a 3x
speed-up. The benefit of Diplomat in this context remains
important and exploits task-parallelism. With the increase in
number of cores, Diplomat is able to exploit more parallelism
across configurations. On average, it provides a 20% speed-
up. While the MANUAL-OpenMP will sequentially execute
preprocessing tracking and rendering, Diplomat executes them
simultaneously.

B. CPU and GPU

We compared Diplomat with
• MANUAL-OpenCL, the OpenCL implementation of

SLAMBench,
• PARTITIONING, a partitioning solution [6] based on

timing profiling,
• and SPEED-UP-MAPPING, a speed-up based mapping

technique [5].
1) Arndale: In Figure 8b the performance of

MANUAL-OpenCL is good: we see a speed-up between 7x
and 14x depending on the configuration. This implementation
has been made in a way that it minimizes the data movement,
most of the computation happens on the GPU. On the Arndale
platform, both PARTITIONING and SPEED-UP-MAPPING
perform worse than MANUAL-OpenCL. The main reason for
this performance drop is the communication between kernels.
If automatic mapping decisions are locally good for a kernel,
these imply communications in the whole application. This
is also amplified because the Arndale CPU is not powerful
enough to provide substantial benefits.

For this platform Diplomat achieved performance improve-
ment mostly due to the code generation method we used.
Indeed the best mapping selected by Diplomat on the Arndale
board still uses the GPU only. The main difference with
the hand-written version concerns the way OpenCL jobs are
distributed. They are concurrently launched by several POSIX
threads automatically generated by Diplomat. Such a way of
running OpenCL jobs gives a more efficient use of the Arndale
GPU. This modification could have been done manually, but
this clearly is something a programmer would not consider.

2) ODROID: With the ODROID, Figure 8d, the
MANUAL-OpenCL performs well too. However this device
has a better CPU, thus classical mapping techniques such as

PARTITIONING and SPEED-UP-MAPPING can provide
performance improvement. For the configurations 0, thanks to
an important workload, the PARTITIONING provides 25%
speed-up over the manual. For configurations 1,2 and 3, as
their workloads diminish, the PARTITIONING performance
decreases. The SPEED-UP-MAPPING performs badly with
the large workloads of configuration 0: this is due to the
higher impact of bad mapping decisions. But when the
workload is smaller, this mapping strategy can schedule tasks
more efficiently; we see performance improvement of 13%
over the manual with configuration 3.

Because Diplomat has sufficient knowledge of the ap-
plication, it can avoid bad mapping decisions. For the
large workload case, it will privilege a strategy similar to
PARTITIONING, while for the other configurations, it will
adapt the mapping decision in consequence. We also no-
ticed that for two cases (configurations 0 and 3), Diplo-
mat just selected strategies similar to PARTITIONING and
SPEED-UP-MAPPING because it did not find better solutions.

VI. ANALYSIS

In this section, we analyse the evaluation process of Diplo-
mat and its prediction accuracy.

A. Timing profiling

For each platform, Diplomat profiled the task duration and
the communications overhead of each configuration within less
than one hour.

B. Throughput evaluation

For each configuration and each platform, an upper bound
of the maximum possible throughput is computed. Those are
available in Table III. The upper bound is not realistic, as
it considers instant memory copy and an unlimited number
of resources. But this analysis provides potentially useful
information about the application behavior. Typically, the
static dataflow scheduler identifies the critical circuit of the
application for these platforms which is passing through the
integrate, raycast, track and reduce kernels. In a
scenario where a programmer is hand-tuning the application,
in order to improve performance, one of the kernels in the
critical circuit must be improved. This circuit is visible in
Figure 7.

C. Mapping exploration

The mapping heuristic used in Diplomat provided more
than 20 potentially good mappings in less than an hour.

Configuration Throughput estimation (FPS)
Arndale ODROID

0 2.55 2.85
1 9.16 9.53
2 10.11 10.03
3 24.24 19.50

TABLE III: This table shows the maximum throughput esti-
mated by Diplomat.

1E
92

5D
D

48
4F

F
85

14
44

56
92

9B
10

93
C

8
0B

4D
C

0
4B

A
E6

A
E4

03
D

5
47

A
4D

A
11

A
B

B
4

A
C

03
07

83
B

09
5

A
66

8D
0

1E
D

D
2E

A
D

53
A

5
05

2B
C

C
A

53
D

E2
07

E6
F5

40
E2

11
9F

A
E2

2
B

B
D

13
8

8A
12

8B
68

0F
F1

A
ED

40
B

FC
F3

C
C

6A
1F

32
4C

16
24

Mappings (id)

0

100

200

300

400

500

600

700

800

900

1000
Pe

rio
d

(m
s)

estimation
minimum

(a) ODROID-XU3

83
B

09
5

9A
14

3F
65

37
93

7A
A

04
5

C
08

68
E

40
31

0A
34

F2
5F

58
3B

04
EE

FB
59

15
0A

A
C

D
48

4F
F

F3
83

0E
E7

D
28

6
FE

B
45

4
E4

03
D

5
1E

92
5D

A
60

A
6A

C
8D

4B
9

E6
9A

54
85

14
44

B
E7

74
9

A
53

EB
C

59
A

45
7

A
22

3E
A

31
55

53
F4

E4
EA

6A
1F

32
24

1E
19

07
A

FC
3

4C
16

24

Mappings (id)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Pe
rio

d
(m

s)

estimation
minimum

(b) Arndale board

Fig. 9: Estimation of mapping performance on several possible
mappings compared with their actual performance on the
platforms of Table II using configuration 2. The last case
(4C1624) is the sequential case.

We manually ran the best of them and compared the ac-
tual performance to the predicted performance in Figure 9.
Figure 9(a) and Figure 9(b) represent the mapping predictions
respectively on the Arndale and the ODROID boards. Even if
the order of magnitude is the same, we can see that there is
a significant gap between prediction and actual performance.
This is because we use a static model and worst case execution
times to predict a dynamic application. The important observa-
tion regarding those predictions, is that, by considering them
ordered by performance (as done in Figure 9), the ordering
of the actual performance is similar. This means that mapping
can be performed using the prediction model instead of actual
execution.

VII. RELATED WORK

The Deadalus RT [12] framework targets hard-real-time
embedded streaming systems and is probably the most similar

approach. It provides a specific input language, the Poly-
hedric Process Network (PPN), and relies on Cyclo-Static
Dataflow (CSDF) to analyse the application. But the PPN
expressivity is limited to static affine nested loop programs
and the CSDF generated can be used to produce the real-
time application schedule. On the contrary, there is no such
constraint in Diplomat. The SDF model considered will re-
main an abstraction of the task-graph as this model is less
expressive. Similarly, toolchains like StreamIt [2] or Sigma-
C [13] express applications through a static dataflow model.
They provide all the static analysis tools required to make
efficient mapping decisions. But these models do not support
OpenCL generation, and are not expressive enough to support
the modern vision applications we are considering.

In [14], a framework is proposed to generate heterogeneous
code (using OpenCL and C++) from an SDF representation of
an application. This framework suffers from the same limita-
tion regarding the expressivity, and does not take partitioning
into account.

The MAPS [15] framework undertakes this expressivity
limitation using the KPN model. Applications are described
using the C for process networks (CPN) language. Through-
put analysis and mapping are only possible using trace-
based analysis tools, which remains less accurate than the
information collected by Diplomat. Furthermore, MAPS does
not provide an OpenCL back-end nor a task partitioning
policy. Meanwhile, it is important to note that MAPS supports
multi-application analysis. Concurrent applications analysis is
important on modern embedded systems where devices are
no longer designed to serve a single application. Diplomat is
currently not dealing with multi-application.

In [16] a similar two-step framework is proposed. The
tuning of the kernels is performed first and then a mapping
is provided by solving a Constraint Program (CP). For the
mapping part, they use a Directed Acyclic Graph (DAG)
representation of the application, which is a less sophisticated
representation than the one used in Diplomat.

In contrast, StarPU [17], OmpSs [18] and OpenStream [19]
are runtime systems that make it possible to dynamically
express an application as a set of tasks connected by data
dependencies. These frameworks dynamically schedule tasks
and were initially focused on homogeneous platforms. The
main limitation of these frameworks is that they only consider
runtime scheduling with limited static knowledge of the cur-
rent application. Then, they do not deliver enough information
to estimate achievable performance or predict good mappings
beforehand. In a recent StarPU extension [20], the runtime
scheduling policy is improved to target embedded platforms.
Yet, the same limitation aforementioned applies also to their
extension. With heterogeneous platforms, dynamic policies
are becoming less efficient. More recently, the Symphony [3]
task-graph runtime has been proposed to target heterogeneous
embedded SoC using both CPU, GPU and DSP at the same
time. However, this tool requires to manually specify the
mapping.

The PetaBricks [21] framework shares common features

with Diplomat but it mainly deals with single-kernel applica-
tions. In PetaBricks, a DSL is used to represent an algorithm
as the combination of several methods and transformation
rules. In a recent extension [22], it also considers OpenCL
code generation and partitioning. Expressing a multi-kernel
application in this formalism is difficult: it requires to express
too many rules and the search space becomes too big.

To improve the information provided by OpenCL, He-
lium [23] provides a high-level representation of the appli-
cation. It avoids unnecessary data movements and integrates
multi-kernel transformations such like kernel merging, which
are not considered in Diplomat. This framework is dynamic
and it has the advantage to be transparent for the user. How-
ever, Helium does not gather required information, i.e. timings,
to make mapping decisions.

VIII. CONCLUSION

In this work we apply dataflow static analysis to perform
static mapping of multi-kernel applications in heterogeneous
embedded platforms. Using our methodology, we observed
performance improvement over state-of-the-art for a streaming
computer vision application.

In future work we will consider more expressive dataflow
models. To cope with the poor expressivity of the SDF
model used in this work, several dynamic variables have been
fixed to perform static analysis of the application. To fix
these values automatically, Diplomat has to consider more
expressive models such as the PSDF [24], the SADF [25]
or PiMM [26]. From the HPC community, DAGuE [27] is
a runtime system modeled using an intermediate language,
namely JDF. This language is based on the compact DAG
representation [28], which is similar to the model proposed
by Diplomat. An interesting research direction is to consider
JDF as a Diplomat front-end and to directly tackle the static
analysis from this language.

REFERENCES

[1] Khronos, “The OpenCL 1.2 specification,” 2012.
[2] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language

for streaming applications,” Compiler Construction, pp. 179–196, 2002.
[3] Qualcomm, “Qualcomm MARE: Enabling Applications for Heteroge-

neous Mobile Devices,” Qualcomm Inc., Tech. Rep., 2014.
[4] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. J. Kelly,

A. J. Davison, M. Luján, M. F. P. O’Boyle, G. Riley, N. Topham,
and S. Furber, “Introducing SLAMBench, a performance and accuracy
benchmarking methodology for SLAM,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), May 2015, arXiv:1410.2167.

[5] V. T. Ravi, M. Becchi, W. Jiang, G. Agrawal, and S. Chakradhar,
“Scheduling concurrent applications on a cluster of cpu-gpu nodes,” in
Proceedings of the 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (Ccgrid 2012), ser. CCGRID ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 140–147.

[6] K. Kofler, I. Grasso, B. Cosenza, and T. Fahringer, “An automatic input-
sensitive approach for heterogeneous task partitioning,” in Proceedings
of the 27th International ACM Conference on International Conference
on Supercomputing, ser. ICS ’13. ACM, 2013, pp. 149–160.

[7] A. H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. J.
Bekooij, B. D. Theelen, and M. Mousavi, “Throughput Analysis of
Synchronous Data Flow Graphs,” in International Conference on Appli-
cation of Concurrency to System Design (ACSD’06), 2006, pp. 25–36.

[8] A. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: Survey of current and emerging trends,” in
Design Automation Conference (DAC), May 2013, pp. 1–10.

[9] G. Kahn, “The semantics of a simple language for parallel program-
ming,” Information processing, 1974.

[10] E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[11] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFu-
sion: Real-time dense surface mapping and tracking,” in ISMAR, 2011.

[12] M. Bamakhrama, J. Zhai, H. Nikolov, and T. Stefanov, “A methodology
for automated design of hard-real-time embedded streaming systems,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2012, March 2012, pp. 941–946.

[13] T. Goubier, R. Sirdey, S. Louise, and V. David, “ΣC: A programming
model and language for embedded manycores,” in Algorithms and
Architectures for Parallel Processing. Springer, 2011, pp. 385–394.

[14] L. Schor, A. Tretter, T. Scherer, and L. Thiele, “Exploiting the par-
allelism of heterogeneous systems using dataflow graphs on top of
opencl,” in Embedded Systems for Real-time Multimedia (ESTIMedia),
2013 IEEE 11th Symposium on, Oct 2013, pp. 41–50.

[15] J. Castrillon, R. Leupers, and G. Ascheid, “Maps: Mapping concurrent
dataflow applications to heterogeneous mpsocs,” Industrial Informatics,
IEEE Transactions on, vol. 9, no. 1, pp. 527–545, Feb 2013.

[16] E. Paone, F. Robino, G. Palermo, V. Zaccaria, I. Sander, and C. Silvano,
“Customization of OpenCL Applications for Efficient Task Mapping
under Heterogeneous Platform Constraints,” in Design, Automation &
Test in Europe (DATE), 2015.

[17] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experience,
vol. 23, pp. 187–198, 2011.

[18] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “Ompss: a proposal for programming heterogeneous
multi-core architectures,” Parallel Processing Letters, vol. 21, no. 02, pp.
173–193, 2011.

[19] A. Pop and A. Cohen, “A OpenStream: Expressiveness and Data-Flow
Compilation of OpenMP Streaming Programs,” TACOS, vol. V, no.
January, 2013.

[20] H. Zhou and C. Liu, “Task mapping in heterogeneous embedded
systems for fast completion time,” Proceedings of the 14th International
Conference on Embedded Software - EMSOFT ’14, pp. 1–10, 2014.

[21] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe, “Petabricks: A language and compiler for algorithmic
choice,” in Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’09.
New York, NY, USA: ACM, 2009, pp. 38–49.

[22] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amarasinghe,
“Portable performance on heterogeneous architectures,” in Proceedings
of the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’13.
New York, NY, USA: ACM, 2013, pp. 431–444.

[23] T. Lutz, C. Fensch, and M. Cole, “Helium: a transparent inter-kernel
optimizer for opencl,” in Proceedings of the 8th Workshop on General
Purpose Processing using GPUs, GPGPU@PPoPP 2015, San Fran-
cisco, CA, USA, February 7, 2015, 2015, pp. 70–80.

[24] B. Bhattacharya and S. Bhattacharyya, “Parameterized dataflow model-
ing for dsp systems,” Signal Processing, IEEE Transactions on, vol. 49,
no. 10, pp. 2408–2421, Oct 2001.

[25] S. Stuijk, M. Geilen, B. D. Theelen, and T. Basten, “Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic appli-
cations,” in 2011 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation, SAMOS XI, Samos,
Greece, July 18-21, 2011, 2011, pp. 404–411.

[26] K. Desnos, M. Pelcat, J.-F. Nezan, S. Bhattacharyya, and S. Aridhi,
“Pimm: Parameterized and interfaced dataflow meta-model for mpsocs
runtime reconfiguration,” in Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS XIII), 2013 International
Conference on, July 2013, pp. 41–48.

[27] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra, “Dague: A generic distributed dag engine for high perfor-
mance computing,” ICL, University of Tennessee, Tech. Rep., 2010.

[28] M. Cosnard, E. Jeannot, and T. Yang, “Compact dag representation and
its symbolic scheduling,” J. Parallel Distrib. Comput., vol. 64, no. 8,
pp. 921–935, Aug. 2004.

