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ABSTRACT 23	

We use fast transient transmission and emission spectroscopies in the pulse laser heated diamond 24	

anvil cell to probe the energy-dependent optical properties of hydrogen at pressures of 10-150 25	

GPa and temperatures up to 6000 K. Hydrogen is absorptive at visible to near-infrared 26	

wavelengths above a threshold temperature that decreases from 3000 K at 18 GPa to 1700 K at 27	

110 GPa. Transmission spectra at 2400 K and 141 GPa indicate that the absorptive hydrogen is 28	

semiconducting or semi-metallic in character, definitively ruling out a first-order insulator-metal 29	

transition in the studied pressure range. 30	

 31	

TEXT 32	

 Realizing metallic hydrogen and understanding its properties is fundamental for 33	

achieving predicted high temperature superconductivity [1], exploring the regime of inertial 34	

confinement fusion [2], and resolving the structure and dynamics of giant planetary interiors [3-35	

7]. The metallic state has not been reached yet in the solid at pressures as high as 360 GPa [8-36	

10], but experiments [3,11-16] and theoretical calculations [5,16-27] probing the fluid state at 37	

high temperature document an insulator-metal transition (IMT). This fluid metallic state has been 38	

theorized to be even the ground state at sufficiently high pressures [19,20], however recent 39	

experiments suggest more complex behavior [16,28]. 40	

 While the underlying physics of metallization in hydrogen is thought to be related to a 41	

Mott-like mechanism (band overlap), the essential parts of this phenomenon remain uncaptured 42	

because of difficulties in finding appropriate theoretical approximation methods [25-27] and 43	

experimental challenges. With increasing pressure, the fluid IMT is expected to exhibit a critical 44	

point where it transitions from being continuous to discontinuous (first-order), and merge with 45	
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the melting line in the limit of high densities [19,20]. Different theoretical studies agree about the 46	

transition character, but the location of the critical point varies substantially, with modern 47	

estimates ranging as low as 90 GPa [4,5,19,21,22,25-27]. 48	

 Experiments on fluid hydrogen using shock compression measured gradual increases in 49	

electrical conductivity and optical reflectivity to constant, metallic values with increasing 50	

temperature and pressure up to 90 GPa [11,13,14], evincing a continuous IMT below this 51	

pressure. Between 90 and 140 GPa shock experiments were conducted without direct 52	

temperature measurements, leaving the gradual increase and saturation of conductivity detected 53	

in this region [3,12,29] open to interpretation: the data are consistent with a continuous IMT 54	

[3,12,29] but also show characteristics of a first order IMT naturally broadened by adiabatic 55	

compression (e.g. Ref. [30]). Recent isentropic compression measurements suggest the IMT 56	

becomes first order by 285 GPa [16], but also assumed temperature, leaving a broad pressure 57	

range [3,12,16,29] where the nature of the IMT remains poorly characterized. Static 58	

compression, diamond anvil cell (DAC) experiments showed that direct temperature 59	

measurements are possible in the metallization regime at high pressure, and detected a fluid 60	

phase transition at ~120 GPa, though were not able to provide any characteristics of the 61	

transformed state [15]. 62	

 Hydrogen is a highly reactive and diffusive material, so is challenging to contain in high 63	

temperature and pressure experiments for long periods [28,31]. Dynamic compression has 64	

probed hydrogen beyond several thousand K at high pressures on microsecond or faster 65	

timescales [3,11-14,29], whereas DAC experiments limited to longer timescales reached 1000 66	

and 1800 K using resistive [28] and laser heating [15,31,32], respectively. 67	
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 In this Letter we describe microsecond, single-pulse laser heating DAC experiments on 68	

hydrogen that reach novel conditions not previously characterized by dynamic or static studies 69	

(Fig. 1). Time-resolved optical emission and transmission spectroscopy determines sample 70	

temperature T and corresponding optical absorptivity α during heat cycles [33,34]. A 4-10 µs 71	

long laser pulse heats a metallic (Ir) foil in a hydrogen sample, and heat propagates across the 72	

adjacent hydrogen creating a localized heated excited state of several µm in linear dimensions 73	

and a few µs long. Transient absorption probing using a continuous laser (CW: 532 nm) and 74	

pulsed broadband supercontinuum (BB: 1 MHz, 150 ps, 400-900 nm) was performed by 75	

transmission through a hole in the foil at the heated region. Fits of emission spectra to a Planck 76	

distribution determined temperature with a time resolution of 0.5-5 µs. 77	

 To ensure our measurements probed pristine hydrogen, several precautions were taken. 78	

Pressure was measured before and after the heat cycles using Raman spectra of the hydrogen 79	

vibron [35] and diamond edge [36], and ruby fluorescence [37]. Vibron signal from the heated 80	

area was confirmed before and after heating [34]. Continued heating resulted in decreasing 81	

vibron signal, pressure changes (usually but not always negative), decreasing foil hole diameters 82	

[34], and occasional anvil fracturing, evincing rapid hydrogen diffusion and loss. Complete loss 83	

occurred within ~1 ms of total heating time. Weak Raman lines attributed to Ir hydride [38] 84	

appeared in one sample subjected to prolonged heating at high temperature [34], but not in 85	

reported experiments. 86	

 Upon increasing laser power, time histories of thermal emission during heat cycles 87	

exhibited a drastic shift in behavior, similar to that seen in noble gases as a consequence of high-88	

temperature absorption onset [33]. For low peak laser power, the temperature followed the laser 89	

power history (Fig. 2a), having a distinct initial peak. With increasing power, there was a 90	
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transition to a different thermal response, where temperature did not follow laser power, but 91	

instead rose and remained roughly constant, forming a plateau that persisted for an especially 92	

long duration (Fig. 3). To examine this transition we performed finite element (FE) models 93	

[33,34,39] to investigate how properties of hydrogen samples, such as a temperature-dependent 94	

absorption, control temperature history. The lower-temperature behavior is expected for a 95	

transparent sample, i.e. where the laser is absorbed entirely in the foil surface. The higher-96	

temperature behavior could not be explained if the sample remained transparent; instead an 97	

abrupt increase in sample absorption with temperature (to α ≈ 0.1 to 1 µm-1) is needed to 98	

reproduce the long temperature plateau, which occurs near the temperature of transition to the 99	

absorptive state. In this regime, hydrogen is heated directly by bulk absorption of laser energy, 100	

and this delocalization of heat energy compared to absorption at the foil surface limits the 101	

achievable temperature, producing the plateau effect. 102	

 Transient absorption measurements (Fig. 2) confirm the change in thermal history is 103	

correlated with increased optical absorption. Here, absorption coefficient 𝛼 = −ln (𝐼!/𝐼!)/𝑑, 104	

where d is the thickness of the hot region (estimated from FE calculations, and of order 1 µm at 105	

141 GPa), while IC and IH are transmitted probe intensities through cold and hot samples, 106	

respectively. Peak α near 1 µm-1 are consistently inferred, with total uncertainty of about an 107	

order of magnitude largely due to thickness uncertainty and reproducibility.  108	

 To compare our optical measurements in a wide, previously unexplored region of the 109	

phase diagram to prior data, we interpolated direct-current (DC) conductivity (𝜎!) measurements 110	

on fluid hydrogen [3,11,12,29,40] using an experimentally-consistent model [34] having the 111	

form 𝜎∗ = 𝜎!∗ − 𝜎!∗ 1− 0.5 erfc[(𝑇∗ − 𝑇!∗)/𝑇!∗ ] , where 𝜎∗ = log 𝜎!  and 𝑇∗ = 1/𝑇. This 112	

model has a sigmoidal temperature dependence that reproduces the Arrhenius- or semiconductor-113	
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like proportionality of 𝜎∗ ∝ 𝑇∗ during the IMT [11,12,29], with constant conductivity in purely 114	

metallic (𝜎!∗ ) [13,14,29] and insulating (𝜎!∗ − 𝜎!∗) [40] states; the transition temperature (𝑇!∗) and 115	

width (𝑇!∗) were taken to vary linearly with density [34]. 116	

 Absorption spectra at 141 GPa and 2,400 K show increasing absorption with photon 117	

energy across the visible (Fig. 4a). Semiconductor-like absorption is one possible explanation: 118	

electronic band gaps on the order of the present optical energies have been reported in dense 119	

hydrogen [3,8,9,12,16,29,41,42]. The data do not permit the exact assignment to existing 120	

semiconductor or semi-metal models. However, given the disordered nature of the material and 121	

rather large values of the absorption coefficients (up to ~106 m-1), we suggest that observed 122	

absorption is due to optical processes between extended states, which are well described by 123	

Tauc’s relation 𝛼 = 𝐴(ℏ𝜔 − 𝐸!)!/ℏ𝜔. This well fits the data, implying a gap Eg of 0.9±0.3 eV. 124	

In this semiconductor picture, hydrogen is electrically conductive due to thermal excitation of 125	

electrons. Assuming an effective carrier mass of 0.5-1 me [13,33] the DC conductivity at these 126	

conditions is predicted to be 5-23 S/cm for Eg=0.9 eV, in agreement with that determined from 127	

shock data (~15 S/cm) [43]. The spectral character is consistent with theory for semiconducting 128	

hydrogen at similar pressure and lower temperature [16] which may be similarly described by the 129	

Tauc model. 130	

 Conductivity at optical frequencies is 𝜎 = 𝑛𝛼𝑐𝜀!, where n is the real index of refraction 131	

[44,45] which is weakly dependent on material properties, and always of order 100 [34]. Thus, 𝜎 132	

is determined principally by 𝛼, which varies by many orders of magnitude during electronic 133	

transformation. The conductivity at 2400 K and 141 GPa varies between ~70 and ~220 S/cm 134	

from 1.55 to 2.3 eV, and this extrapolated to zero energy is consistent with the DC conductivity 135	
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of ~15 S/cm (Fig. 4b). The decrease in conductivity with energy is inconsistent with the simple 136	

Drude model of free carriers widely used for hydrogen at extreme conditions [2,11-14,16,17]. 137	

 A modified Drude model, after Smith [46], given by 𝜎 = 𝜎![1+ 𝐶 (1− 𝜔!𝜏!)/(1+138	

𝜔!𝜏!)]/[(1+ 𝐶)(1+ 𝜔!𝜏!)] and incorporating reduced electron mobility through a 139	

backscattering term C, does provide an adequate representation of the data including the DC 140	

limit (Fig. 4b). This model has features typically observed in poor metals at the boundary of 141	

metallization transitions such as mercury [46] and argon [33], suggesting its applicability for 142	

hydrogen at the IMT. The parameter C, a measure of how closely the spectrum follows the 143	

Drude (free-electron) approximation, ranges from 0 to -1, with C = 0 (minimum backscattering) 144	

corresponding to the Drude form. Fits to our data show C is closer to -1 at conditions of incipient 145	

metallization (Fig. 4c). This is consistent with theories for conducting hydrogen [17,21,23,24], 146	

which are well described by a Smith-Drude model with C ≠ 0 [34]. Scattering times 𝜏 from 147	

Smith-Drude fits are insensitive to pressure and temperature (Fig. 4d) despite conditions sampled 148	

by experiment and theory ranging from 24-6,000 GPa, 1,000-125,000 K, and 0.3-5.4 g/cc in 149	

pressure, temperature, and density, respectively [17,21,23,24], and are consistent with the 150	

expected minimum scattering time (Ioffe-Regal limit) [12,13] where scattering occurs at the 151	

interatomic spacing. Conductivity peaks at 𝜔! ≈ 1/𝜏 when C ≈ - 1, or ℏ𝜔! ≈ 10 eV for the 152	

present data. The fact that conduction is maximized in conjunction with the shortest-distance 153	

carrier motion possible indicates that transport is dominated by motion of bound carriers, such as 154	

hopping [18], as opposed to unimpeded long-distance flow. 155	

The temperature at which absorbing hydrogen appears (at detection limit α ≈ 0.1 µm-1) 156	

decreases weakly with pressure, remaining at 1700-2500 K at 30-110 GPa (Fig. 1). Here 157	

𝜎! ≈ 10!! S/cm, which is below the optical conductivity, 𝜎 ≈  10! S/cm. The data at 141 GPa 158	
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and 2400 K have 𝜎! ~ 10! S/cm, and 𝜎 ~ 10! S/cm at visible frequencies (Fig. 4b). Fluid 159	

hydrogen thus shows optical properties characteristic of a weak metal [17,21,23,24] and a 160	

semiconductor undergoing gap closure [16] (𝜎 increasing with frequency) throughout the 161	

observed pressure range at temperatures of 1700-2500 K. Measured optical conductivities (Fig. 162	

4) are less than those of the metallic state (~2000 S/cm) [12,29], whereas optical reflectivity R, 163	

estimated by assessing the Fresnel reflectivity between insulating (cold) and optically 164	

transformed (hot) states in the experiment, is 𝑅~[(4𝑛𝜔/𝛼𝑐)! + 1]!! or less than ~1% at 165	

presently examined conditions. 166	

 Our data directly show hot fluid hydrogen retains a significant band gap to above 140 167	

GPa pressure (Fig. 4) and temperatures of 2000-3000 K. Prior interpretations of conductivity 168	

data, assuming a density-dependent, temperature-independent gap, predicted metallization at 169	

these conditions (densities above 0.32 mol-H2/cc) via compressive gap closure [3,12,29]. The 170	

difference between our direct measurement and the prior model result is attributed to temperature 171	

dependence of the gap. Indeed, the temperature at which absorption appears in fluid hydrogen is 172	

nearly density- and pressure-independent between 30 – 110 GPa, suggesting gap closure is 173	

primarily thermal rather than compressive. 174	

 Our definitive observation of a weakly conducting, semiconductor-like state of hot fluid 175	

hydrogen in measurements to 150 GPa rules out the possibility of a rapid or first-order 176	

transformation between insulator and metal at these pressures. This is inconsistent with some ab-177	

initio theoretical predictions [5,19,21,22] and supports more recent theories employing nonlocal 178	

density functionals and nuclear quantum effects [25] or quantum Monte Carlo molecular 179	

dynamics [27], which place a critical point at 250-375 GPa. Isentropic compression 180	

measurements find the IMT becomes first order by 285 GPa [16], suggesting together with our 181	
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results an experimental critical point between 150 and 285 GPa. Also, the gap in temperature 182	

between insulating and metallic conditions appears to be decreasing with pressure in the studied 183	

range, consistent with the transition sharpening towards a critical point at higher pressures (Fig. 184	

1): at 22 GPa, reflectivity [14] onsets 3710 K above absorption; at 45 GPa, the difference is 1540 185	

K). Parallel behavior is seen in the DC conductivity (Fig. 1). 186	

 Prevailing first-principles models for hydrogen and hydrogen-bearing systems at high 187	

pressure and temperature in giant planets [4,5,47] thus require a significant reassessment. 188	

Compared with these theories, metallic conditions occur at higher pressure and temperature (i.e. 189	

deeper within the planets), potentially influencing atmospheric coupling with the metallic layer 190	

[6,7] and the conditions of hydrogen-helium phase separation. For example, as conditions of 191	

phase separation are correlated with the location of the critical point [4,5,47], the increased 192	

pressure of the critical point required by our direct observations to 150 GPa suggests phase 193	

separation is unlikely to have occurred in Jupiter [34]. 194	

Our optical properties measurements on hydrogen cover a wide, previously unexplored 195	

region of the phase diagram and bridge large gaps between prior dynamic and static compression 196	

measurements of transformation and transport properties. Our data show the presence of an 197	

intermediate absorptive but not metallic state of hydrogen at the boundary between insulating 198	

and metallic regimes in a wide pressure range (10-150 GPa). This is inconsistent with first-order 199	

insulator-metal transition and compression-driven gap closure that were previously inferred in 200	

this region from experiments and theory. 201	
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FIGURE CAPTIONS 211	

 212	

FIG. 1. (color) Phase diagram of hydrogen. Black lines are phase boundaries. Present 213	

measurements are filled circles for transparent (white), and absorbing (grey, black) hydrogen; 214	

black points are characterized via direct transient absorption measurement (Fig. 2) whereas grey 215	

points correspond to anomalous temperature responses observed upon increasing heating laser 216	

power (Fig. 3). A thermal pressure of 2.5 GPa/1000 K [48] is included. The heavy black line is 217	

onset of absorbing hydrogen in the present data. Prior measurements are the onset of reflectivity 218	

in shock compression [14] (crosses and dotted line), the onset of visible absorption in isentropic 219	

compression [16] (squares and dashed line), the location of anomalies in temperature with 220	

increasing heating laser power in the DAC [15] (stars), and the DC conductivity (color map) 221	

based on interpolated data [3,11,12,29,34,40]. The melting curve is taken from Ref. [28] and the 222	

metallization line is the saturation of DC conductivity. White lines are interior conditions of 223	

Jupiter [49] and Saturn [50]. 224	

  225	

FIG. 2. (color) Transient absorption and emission measurements in hydrogen at 141 GPa. (a) 226	

Laser power (upper panel) and spectrogram showing transient absorption (lower panel). (b) Time 227	

histories of absorption at different wavelengths using pulse referencing [33,34]. (c) Transmission 228	

spectrum averaged over 2 to 5 µs where absorption (and temperature) is roughly constant. (d) 229	

Emission spectrogram (20 spectrograms stacked), with inset showing gray-body Planck fit to 230	

data at 2 to 5 µs. Temperature in this time interval was 2400(300) in a series of heat cycles at this 231	

laser power. 232	

 233	
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FIG. 3. (color) Temperature histories at 30 GPa with finite element model predictions. Two 234	

measurements (open symbols: vertical bars are temperature uncertainty, horizontal bars are time 235	

resolution) are presented with finite element models [33,34,39] with and without an onset of 236	

infrared absorption in hydrogen at a critical temperature of ~3300 K (solid and dashed lines, 237	

respectively). Below the critical temperature (blue points), models (grey) are indistinguishable 238	

and follow behavior typical for a transparent sample with laser energy absorption on the foil 239	

surface [39]. For experiments achieving the critical temperature (red points), models (black) 240	

show the result of sample absorption: rather than an initial peak and decay that scaled with laser 241	

power, temperature is limited to values near the critical temperature [33]. Laser power increased 242	

from 65 to 155 W between the models. Above 100 GPa transient absorption occurred without 243	

this effect, since thinner samples at high pressure did not become infrared-optically thick when 244	

heated.  245	

 246	

FIG. 4. Optical properties of hydrogen. Data at 141 GPa and 2400(300) K are open circles (error 247	

bars are systematic), theoretical predictions are crosses, and fits are lines. (a) Absorption spectra 248	

with Tauc fits, with theory for semiconducting states at 1600-1700 K, 101-159 GPa [16]. (b) 249	

Conductivity spectra with Smith-Drude fits. The DC conductivity corresponding to the present 250	

data and used in the fitting is 𝜎! = 15 S/cm (triangle). Theory for metal and nonmetal states are 251	

for 1000 K, 170 GPa [21]. (c) Smith-Drude backscattering parameter C and (d) scattering time 𝜏 252	

are from theory [17,21,23,24,34] and experiment; shaded region in (c) is the conditions for 253	

metallization [12,21,29] and in (d) the calculated minimum scattering time (Ioffe-Regal limit) 254	

[12,13] for relevant conditions. 255	

 256	
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FIGURES 258	
 259	
 260	

 261	
 262	

FIG. 1 263	
 264	
 265	
 266	
 267	
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FIG. 2 269	
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FIG. 3 275	
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FIG. 4 278	
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SUPPLEMENTARY TEXT 365	

Sample Preparation and Characterization 366	

Diamond anvil culets diameters of 300 µm flat, or beveled 300 µm with 100 µm culet 367	

were used with Re gaskets. Foils were 30-60 µm across with holes of 5-10 µm diameter, and 3-368	

12 µm thick, whereas cavities were at least several µm thicker than the foil in typical 369	

experiments. High-purity hydrogen gas was pressure-loaded. In total, 9 sample loadings were 370	

made. 371	

 Samples were prepared, as in the prior experiment on noble gases [33], by placing 372	

metallic couplers containing small holes directly on a diamond culet, prior to pressure-loading of 373	

samples. This was done to add stability to coupler position while performing high-temperature 374	

experiments, and to ensure the coupler surfaces were orthogonal to the optical axis of the DAC. 375	

Interference fringes indicate that the gaps between the coupler and anvil on which it rested was 376	

of order a few wavelengths of light at most, so ~1 µm. Laser heating was performed by heating 377	

the coupler on the opposite surface (Fig. S1).  378	

 Low-pressure experiments (P<60 GPa) were performed with the large culets, and so 379	

corresponded to larger sample chambers, with total cavity thicknesses of 10-25 µm, and coupler 380	

thicknesses of 6-12 µm. Higher pressure experiments (P>60 GPa) with small culets 381	

corresponded to significantly smaller samples of 5-10 µm total thickness and couplers of 3-6 382	

microns in thickness. 383	

 Samples were originally configured to permit transient absorption measurement by 384	

reflection from foils [33], in addition to transmission, however foil optical changes during 385	

heating prevented successful measurements. Specifically, a permanent darkening of the reflective 386	

foil, even after a few µs heating, was observed and was attributed to fast interfacial reaction. 387	
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Anvils often fractured when subjected to the highest achievable temperatures (4,000 to 6,000 K), 388	

which was attributed to rapid hydrogen diffusion into the anvil. Above ~60 GPa hydrogen loss 389	

from the sample was reduced and anvil failure eliminated, improving sample stability, though 390	

total heating duration remained limited to less than ~1 ms. 391	

DC conductivity model for hydrogen 392	

 The phenomenological model fitted to the DC conductivity data (see text) assumed 393	

transition temperature and width varied with density 𝜌 as 𝑇!∗ = 𝑎! + 𝑏!𝜌 and 𝑇!∗ = 𝑎! + 𝑏!𝜌, 394	

where 𝜌 𝑃 = 𝜌! + 𝑐 𝑃! was given as the density on the 300 K isotherm at pressure P [51]. 395	

With these assumptions, the best fit parameters, for 𝜎 in S/cm, T in K, 𝜌 in mol-H2/cc, and P in 396	

GPa are 𝜎!∗ = 3.41, 𝜎!∗ = 20.9, 𝑎! = 2.22 ×10!!, 𝑏! = 1.41 ×10!!, 𝑎! = 5.25 ×10!!, 397	

𝑏! = −3.86 ×10!!, 𝜌! = 0.0412, 𝑐 = 0.0417, 𝑛 = 0.437. Note that these fit parameters are 398	

based on shock temperature calculations [3,29] that assumed a continuous IMT, which are 399	

considered to be consistent with the present direct observations. 400	

 We now review the design, physical significance, and phenomenological basis of this 401	

model. 402	

(1) During the IMT, it was previously found that log 𝜎!  is proportional to 1/𝑇 [11,12,29]. This 403	

model using the erfc function has such a linear relationship during the transition, such that in the 404	

transformation region it is equivalent to a semiconductor excitation model similar to that used 405	

previously for hydrogen during the IMT [3,11,12,29]. 406	

(2) The conductivity of hydrogen shows saturation when it becomes fully metallic [3,12-407	

14,16,29]. The erfc-function of the model captures this saturation, which cannot be described 408	

using only the semiconductor treatment [3,11,12,29]. This model thus describes metallic, 409	
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semiconducting and insulating (see below) regimes and so includes semiconductor-like behavior 410	

only during the transition. 411	

(3) The insulating phase in our model fit is found at T<1000 K, conditions where hydrogen is 412	

known to be a good insulator in both fluid [15,16,40], and solid [28] phases.  413	

(4) Our model implies a density- and temperature- dependent band gap for hydrogen (see below). 414	

A gap depending linearly on density only, as used in prior analytical models of the IMT 415	

[3,12,29], cannot describe the collected results. However, a linear density dependence of the 416	

temperatures of transformation (𝑇!∗ , 𝑇!∗) does provide good consistency between the model and 417	

available data. 418	

5) The increases in conductivity in our model fit follow closely related changes in optical 419	

properties. The onset of visible absorption occurs at 𝜎! = 8 x 10-4 S/cm; in the phase diagram, 420	

the contour of this conductivity accurately describes absorption onset (solid/bold line in Fig. 1); 421	

similarly, a contour of conductivity at 0.65 S/cm (dashed line in Fig. 1) describes accurately the 422	

onset of optical reflectivity [14]. Such topological agreement provides good phenomenological 423	

support for this model. 424	

6) While not occurring in the interpolated pressure range, our model allows for a discontinuous 425	

transition (i.e. where transition width 𝑇!∗ → 0). Instead, our model has a weak decrease in 𝑇!∗  426	

with pressure in the studied pressure range, consistent with the closing gap between absorption 427	

and reflection onset observed with pressure (Fig. 1 and text). Extrapolating to higher pressures, 428	

the model suggests 𝑇!∗ → 0 at P>270 GPa (in consideration of fit uncertainty) consistent with 429	

dynamic compression observations [16] as well as recent theory [25,27]. The transition 430	

temperature (1/𝑇!∗) similarly decreases with pressure, also consistent with optical data and 431	

theoretical expectations [5,19-22,25-27]. 432	
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 We now consider in more detail how our DC conductivity model relates to a 433	

semiconductor model, as developed previously for the IMT [3,11,12,29]. Within the 434	

transformation our model  435	

𝜎∗ = 𝜎!∗ − 𝜎!∗ −0.5 erfc[(𝑇∗ − 𝑇!∗)/𝑇!∗ ]+ 1  

is well described by a linear Taylor expansion about the central transition temperature 𝑇!∗, i.e. 436	

𝜎∗ = 𝜎!∗ −
1
2𝜎!

∗ +
1
𝜋
𝜎!∗𝑇!∗

𝑇!∗
−

1
𝜋
𝜎!∗

𝑇!∗
𝑇∗ 

If we take 𝜎∗ = ln 𝜎! , as opposed to log 𝜎! , then the form of this equation is identical to that 437	

for conductivity in a semiconductor [3,11,12,29] 438	

𝜎∗ = 𝜎!∗ −
𝐸!
2𝑘!

𝑇∗ 

and thus 439	

𝜎!∗ = 𝜎!∗ −
1
2𝜎!

∗ +
1
𝜋
𝜎!∗𝑇!∗

𝑇!∗
 

and 440	

𝐸! =
2𝑘!
𝜋
𝜎!∗

𝑇!∗
 

Here fit parameters using 𝜎∗ = ln 𝜎!  become 𝜎!∗ = 7.84, 𝜎!∗ = 48.1 (all other model 441	

parameters are unchanged). Following this treatment, our model is nearly identical to the 442	

semiconductor approach [11,12,29] in the low-pressure limit: at 20 GPa, our model implies Eg = 443	

10.4 eV during the transition (near 𝑇!∗), whereas the earlier semiconductor analysis found 444	

11.7±1.1 eV at these conditions [11,12]. However, a very different behavior is found with 445	

increasing pressure, with the band gap remaining large (10.0-12.6 eV at 𝑇!∗) through 140 GPa in 446	

our model, rather than closing by this pressure [12,29].  447	
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Thus in this model a semiconducting intermediate phase exists between the insulating and 448	

metallic states at all studied pressures, in the vicinity of 𝑇!∗, as required by our measurements. 449	

Gap closure occurs with increasing pressure at constant temperature (similar to earlier studies), 450	

but also with increasing temperature at constant pressure. These features are necessary to fit the 451	

current experimental results on hydrogen (this study and Refs. [3,11-14,16,29]) as well as 452	

provide general consistency with theory. 453	

 Finite Element Modeling 454	

The approach for time-dependent finite-element modeling of temperature in the laser 455	

heated diamond cell has been discussed previously [33,39]. The thermochemical parameters used 456	

for H2 are similar to Ref. [39], where heating of hydrogen through the melting transition was 457	

modeled. Here we tested possible material models for H2 with and without an onset of electronic 458	

transformation at high temperature. A representative set of finite element model parameters is 459	

provided in Table S1. Basic thermochemical parameters were taken from literature tables 460	

whereas transport parameters for hydrogen (absorption and thermal conductivity) were varied to 461	

obtain the best agreement with the experimental temperature histories. Measured temperature is 462	

compared to the maximum temperature in the FE models, located at the coupler surface. 463	

Geometrical parameters were chosen based on visual observations and visible interferometry 464	

measurements. Two different sample configurations were modeled: a coupler without a hole (e.g. 465	

at 30 GPa, Fig. 3) and coupler with a hole (e.g. at 141 GPa, Figs 2, 4, and S2). Our conclusions 466	

were not found to be very sensitive to the selected parameterization. To reproduce observed 467	

temperature plateaus (Fig. 3), a major increase in absorption (or, alternatively, thermal 468	

conductivity) with temperature was required, indicating a high-temperature phase transition to a 469	

conductive state.  470	
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 471	

Table S1. Finite element model parameters for Fig. 3. Parameters for the temperature-dependent 472	

absorption model in H2 are TC=3300 K and T0=100 K, with α0=106 m-1 (with absorption) or α0=0 473	

m-1 (without absorption). 474	

Property/Material Sample  
(H2) 

Absorber 
(Ir) 

Anvil 
(C) 

Density (kg/m3)_ 420 25220 3500 
Thermal Conductivity 
(W/mK) 

100 226 2000 

Specific Heat Capacity 
(J/kg K) 

15000 130 509 

Surface Emissivity N/A .35 N/A 
Bulk Absorptivity 
(1/m) 𝛼! 1− 0.5𝑒𝑟𝑓𝑐

𝑇 − 𝑇!
𝑇!

×
𝑇 − 0.8𝑇!
0.2𝑇!

 

 

N/A 0 

 475	

Index of refraction of hydrogen 476	

 Compared to the imaginary index k (or equivalently, α), which varies by many orders of 477	

magnitude in the IMT, the real index n can only vary by, at most, about an order of magnitude, 478	

so is always of order 1. Thus to estimate the conductivity of hydrogen during the IMT, we have 479	

used n of cold hydrogen at high pressure [44,45], with deviations from this value expected to be 480	

small compared with uncertainty. To further examine the validity of this assumption, we have 481	

used the Smith-Drude model to compute expected variations in real index as metallization occurs 482	

(Fig. S8). This model describes warm dense hydrogen sufficiently well (Fig. 4 and S6) and 483	

satisfies the Kramers-Kronig relations, so can accurately treat the relative variations of real and 484	

imaginary indices as electronic properties change. This analysis (Fig. S8) suggests the real index 485	

should not change by more than a factor of two as the sample becomes absorbing. Melting, 486	

which corresponds to no major electronic or density change [28], should also not correspond to 487	
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any substantial change in real index. Thus variation in the real index from the ambient 488	

temperature values are considered negligible in our experiments, compared to total uncertainty 489	

(about an order of magnitude, Fig. 4). 490	

 491	

 492	

  493	
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SUPPLEMENTAL FIGURES OVERVIEW 494	

 Fig S1 is a schematic summary of our technique [33]. 495	

 Fig. S2 is a detailed discussion of Fig. 2 in the main text, containing the full data and 496	

analysis. 497	

 Fig. S3 contains example Raman spectra discussed in the text, including a typical before-498	

and-after spectrum (a), and a spectrum from the single sample where reaction occurred during 499	

heating (b). 500	

 Fig. S4. shows transient absorption data at several pressures with varying degrees of 501	

hydrogen loss. 502	

 Fig. S5. is the data compilation [3,11,29,40] and fit used to assess DC conductivity, as in 503	

Fig. 1.  504	

 Fig. S6 is the theory compilation [17,21,23,24] used to assess the suitability of the Smith-505	

Drude model in describing warm dense hydrogen, as referenced in Fig. 4. 506	

 Fig. S7. shows implications of our results for gas giant planets, as discussed in the 507	

conclusions. 508	

 Fig. S8. considers plausible variations in the real index of refraction of hydrogen as 509	

electronic properties change. 510	

 511	
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FIG. S1. Schematic of the experiment [33]. (a) Laser heating of a metallic (Ir) foil heats the 
surrounding, initially-transparent hydrogen. Simultaneously, the sample is probed with a 
combined beam for transient absorption spectroscopy comprised of a continuous (CW) laser and 
supercontinuum broadband (BB), which is transmitted through a hole in the foil containing 
heated hydrogen. Thermal emission is collected through either anvil, and together with probe 
signal is delivered to a spectrometer with a streak-camera detector; temperatures were 
measureable from the heated side of the foil for transparent samples or either side for absorbing 
(emissive) samples. (b) Streak-camera spectrogram of transient absorption during an emissive 
heat cycle. Laser and supercontinuum probes are discriminated from emission by being 
monochromatic and pulsed, respectively.  
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FIG. S2. Detail on Fig. 2. Transient absorption and emission measurements in warm dense 
hydrogen at 141 GPa and constant laser power. Spectrograms (a-d) are (a) emission alone (20 
cycles integrated), (b) Transient absorption (1 cycle) without referencing BB pulses, and (c-d) 
transient absorption (10 cycles integrated each) with BB pulse references. The latter images are 
taken using a faster sweep to include a reference pulse at slightly different time delay, appearing 
immediately after the probe pulse, to track probe spectral instability [33]. A representative 
temperature history (e) is taken from (a). Transient absorptions (f,g) are taken from (c,d); only 
the central 7 pairs in (c,d) can be reliably analyzed. Transmission spectra (g) are based on stable 
temperature zone (e) between 2 and 5 µs. The spectra in two bands (c,d) were combined by 
assuming agreement at the region of overlap (690 nm) and including systematic offset in 
systematic error (Fig. 4). The integrated emission from 2-5 µs (h) closely matches a Planck 
distribution. The temperature between 2 and 5 µs (e) varies in the range 2,400 ± 300 K at this 
laser power. Temperature errors in (e,h) are fitting error; transmission error in (g) is random 
uncertainty (1-sigma). 
 513	
 514	

600

550

500

450

λ 
(n

m
)

-3

-3

-2

-2

 

 

0

0

2

2

4

4

6

6

8

8

10

10

12

12

 

 

14

14

 

 
t (µs)

Laser Power (a.u.)

600

550

λ 
(n

m
)

-3 -2  0 2 4 6 8 10 12  14  

5

4

3

2

T 
(k

K)

 0 2 4 6 8
t (µs)

4

6
8

0.1

2

4

6
8

1

ℑ

800700600
λ (nm)

2 to 5 µs

 cw (image C)
 bb (image C)
 bb (image D)
 average

 

3

2

1

0
In

te
ns

ity
 (a

.u
.)

600550500450
λ (nm)

 2 to 5 µs
 raw data
 fit to raw data
 smoothed data

 

2.65 ± 0.05 kk

650

600

550

λ 
(n
m
)

0 2 4 6 8

800

750

700

λ 
(n

m
)

0 2 4 6 8
t (µs)

2

4

6
8

0.1

2

4

6
8

1

ℑ

0 2 4 6 8
t (µs)

532

771
730
709
683
662
621
600
579
558
538

 771
 730
 709
 683
 662
 621
 600
 579
 558
 538
 532

(a) emission 
 only 

(e) 

(f) 

(g) 

(h) 

CW probe 

BB probe 

BB reference 

BB probe 

CW probe 

BB reference 

BB probe 

(b) extinction 

(c) extinction 

(d) extinction 

nm 



30	
	

 
FIG. S3. Raman spectra at (a) 130 GPa (linear scale) and (b) 80 GPa (log scale) before and after 
heating. The post-heat spectra in (b) contain a hydride signal near 3300 cm-1 and related vibron 
signature near 4300 cm-1 as well the pure H2 vibron (most intense peak, by 1-2 orders of 
magnitude). Raman evidence of reaction was only seen after the heating series performed in (b); 
we conclude that bulk reaction was normally prevented by the short timescales of our 
experiments. 
 515	
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FIG. S4. Transient absorption measurements at 14, 80, and 141 GPa. (a) Laser power. (b) Time 
resolved temperature, with vertical bars showing temperature fit error and horizontal bars 
showing time resolution. (c) Transmission behavior during single shots. As a consequence of 
rapid hydrogen diffusion from the heated area, foil hole diameters often decreased during heat 
cycles, such that transmission did not always return to the original level. However a high 
transient extinction due to sample absorption could still be resolved. Slower diffusive loss at 
higher pressure allowed for relatively stable hole dimensions over many heat cycles. Note that 
for the 80 GPa experiment, high-time resolution temperature data was not obtained, and sample 
cavity interference [33] prevented use of the CW probe data. At 14 and 80 GPa, the initial hole 
size was larger than the probe spot, and closure of the hole was clearly evident visually and in 
the transmission data; at 141 GPa, the initial hole size was similar in size to the probe spot and 
remains so after heating. In this experiment, small changes in hole shape during heating 
(attributed to local melting around the rim of the hole) contributed to a small permanent increase 
in transmission during heating. 
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 521	
 522	

 

FIG. S5. Detail on DC conductivity model. Dynamic compression [3,11,29] and cryogenic [40] 
conductivity data on dense hydrogen and deuterium fluid used in our fit are given by colored 
triangles. The colors (as in Fig. 1) and black solid contours labeled with corresponding 
conductivity in log units (log (𝜎!), in S/cm) are the conductivity model fit. The melt curve is the 
dashed dotted line [28]. The onset of optical reflectivity in shock compression (crosses) [14] 
follows the trend of fitted conductivities, with the critical conductivity for reflectivity ~1 S/cm. 
Pressure and temperature conditions of transformation are similar in deuterium and hydrogen 
[3,12,14,29], allowing for this global fit; small differences in the phase diagrams are averaged 
over, as there is good coverage of data for both isotopes in the examined domain. 
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 526	
 527	

 
FIG. S6. Detail on Fig. 4. Smith-Drude [46] fits (dashed curves) to conductivity theory for warm 
dense hydrogen and deuterium at metallization; results are for 24-6000 GPa, 1000-125000K, and 
0.3 to 5.4 g/cc [17,21,23,24]. Smith-Drude fits were obtained from the range 0-8 eV. In some 
cases where spectra had Drude-like character the fit was not fully constrained, in which instances 
C was set to zero for the fit (Drude model). 
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FIG. S7. Effect of high-pressure metallization in hydrogen on phase separation in giant planets. 
Shown are the predicted maximum temperatures of immiscibility in the hydrogen-helium system 
(red solid [5] and dashed [47] curves, red band showing upper limit) with corresponding location 
of the critical point (blue circle) and first-order metallic transition (blue line) [5,47]. Shifting the 
critical point to higher pressures (green arrow) as required by our measurements to 150 GPa, the 
upper limit on immiscibility, tied to the first-order metallization [4,5], shifts (green band) to fall 
outside the conditions of Jupiter's [49] interior (solid black line). Also shown is Saturn's interior 
[50] (dashed black), where immiscibility conditions remain plausible. 
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Fig. S8. Effect of metallization on the index of refraction, according to the Smith-Drude model. 
Results are at optical energy of 2 eV, assuming τ =10-16 s, a range of σ0 (values listed in S/cm), 
and C=0 (red) or C=-0.999 (blue); fit to present data at 141 GPa is the black point. The fractional 
change in real index n relative to that of the insulating state (n0) is given as a function of the 
imaginary index k = αc/2ω. At conditions where k<1 the change in n is less than a factor of two, 
and it is a few percent at conditions of the 141 GPa measurements (Fig. 4). 
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