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Abstract:

Lossy linear stiff string vibration plays an important role in musical acoustics. Experimental stud-
ies have demonstrated the complex dependence of decay time with frequency, confirmed by
detailed modelling of dissipated power in linear strings. Losses at a particular frequency can
be expressed as a function of the physical parameters defining the system; damping due to
air viscosity is predominant at low frequencies, whereas internal friction prevails in the higher
frequency range. Such a frequency domain characterisation is clearly well-suited to simulation
methods based on, e.g., modal decompositions, for experimental comparison or sound synthesis.
However, more general string models might include features difficult to realise with such models,
in particular nonlinear effects. In this case, it is useful to approach modelling directly in the
space-time domain. This work is concerned with the translation of the frequency domain damp-
ing characteristics to a space-time domain framework, leading, ultimately, to a coupled system of
partial differential equations. Such a system can be used as a starting point for a time-stepping
algorithm; an important constraint to ensure numerical stability is then that of passivity, or dissi-
pativity. Candidate loss terms are characterised in terms of positive real functions, as a starting
point for optimisation procedures. Simulation results are presented for a variety of linear strings.
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Improved frequency-dependent damping for time
domain modelling of linear string vibration

1 Introduction
Realistic sound synthesis for musical strings has employed physical modelling methods, in the
frequency and time domain. Linear models, in particular, can describe the behaviour of most
musical strings to a reasonable extent [1]. Previous string models have used modal decom-
position [2], travelling wave solutions [3], or direct resolution of a discretised wave equation
[4, 5, 6].

While the undamped stiff string problem is defined by a set of easily measurable physical pa-
rameters, realistic modelling must account for the frequency dependence of the loss profile.
A pioneering study by Cuesta and Valette [7] provided a theoretical expression for the qual-
ity factor of harpsichord string modes as a function of frequency, closely fitting experimental
measurements. This frequency-domain description of damping in linear strings was straight-
forwardly implemented in a modal simulation of guitar strings [8]. More damping models have
been investigated in other structures [9, 10].

However, deriving a suitable loss profile for time domain models is far from straightforward. In
particular, models relying on a discretisation of a space-time domain system/system of par-
tial differential equations [4, 5, 6], arguably the best suited to include more complex, possibly
nonlinear phenomena and interactions, have often employed simplified descriptions of damping
processes. In this work, we propose a passive system of partial differential equations describ-
ing the oscillations of a damped, stiff string. Suitable approximations are made in the transform
domain, leading to a tractable optimisation problem, fitting coefficients to match the theoretical
loss profile of the string defined by its physical parameters.

Section 2 presents a basic model for linear, undamped stiff string vibration, in the space-time
framework. Section 3 introduces the theoretical loss profile for a set of physical parameters
defining a particular string. Section 4 introduces losses in the space-time domain system,
by the means of positive real functions of the Laplace variable. Section 5 links the proposed
model to the theoretical profile, by means of approximations and optimisation. Finally, Section 6
briefly presents preliminary simulation results, obtained by direct resolution of the discretised
time-domain system, and Section 7 discusses possible extensions to this work.

2 A space-time domain model of the stiff string
2.1 The lossless Euler-Bernoulli stiff string equation

Consider a lossless stiff string, defined over x ∈ D = [0,L], with L the string length in m. The
evolution of the transverse displacement u(x, t) of the string over time t ∈ R+ is described by:

∂2
t u = c2∂2

xu− κ2∂4
xu c2 =

T
ρπr2 κ2 =

EI0

ρπr2 (1)

where ∂t and ∂x represent partial time and space derivation, respectively; T is the tension, in N;
ρ is the string density, in kg/m3; E is Young’s modulus of the string material, in Pa; and I0 = πr4
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is the area moment of inertia for a string of circular cross-section, with r the string radius in m.

Boundary conditions are assumed to be of the simply supported type:

u(0, t) = u(L, t) = 0 ∂2
xu(0, t) = ∂2

xu(L, t) = 0 (2)

2.2 Characteristic polynomial and energy analysis

Examining the behaviour of (1) with a test function u(x, t) = est+ jβx, where s =σ+ jω is a complex
frequency (ω = 2π f ) and β a wavenumber, leads to the following characteristic polynomial in s:

s2 + c2β2 + κ2β4 = 0 ⇒ σ = 0 , ω =

√
c2β2 + κ2β4 (3)

where σ = 0 implies the absence of exponentially decaying solutions. This is confirmed by an
energetic analysis of the space-time domain system; multiplying Equation (1) by ρL∂tu (where
ρL = ρπr2), and integrating the result over the length of the string, yields:

dHu

dt
= 0 , Hu =

∫ L

0

[
ρL

2
(∂tu)2 +

T
2

(∂xu)2 +
EI0

2

(
∂2

xu
)2

]
dx (4)

The system is indeed strictly energy conserving (lossless).

3 A frequency-domain damping model
The basis of this work is the set of experimental measurements performed on harpsichord
strings by Cuesta and Valette [7]. They measured the decay times of the transverse modes
of a range of strings, and plotted, for each string, the value of the quality factor Q( f ) for each
of these modes as a function of frequency. The strings were fixed at both ends on a rigid,
non-resonant bench. The resulting graph showed a clear maximum, for all strings, between 1
and 4 kHz, indeed corresponding to the part of the spectrum where the human ear is most
sensitive. The calculated value of Q(ω), with ω = 2π f , for each mode, was given by:

Q(ω) = −
ω

σ
(5)

where σ(ω) = −
log(10)

∆t is the negative decay constant, in s-1, with ∆t(ω) the 10 dB decay time of
each mode, in s.

Four different damping mechanisms were then examined, two of them found to be non-negligible:
air viscosity (prevalent at low frequencies), and internal friction (including string viscoelasticity,
prevailing at higher frequencies; heat transport; and dislocations in the string material). The
combination of losses due to these four processes provided a very good fit to the experimental
data points. Damping due to heat transport and dislocations were found to be indistinguishable
from each other in the measured data, and the frequency-independent losses from dislocations
showed to be as good a fit as the frequency-dependent losses from heat transport; the former
was used in the subsequent theoretical study for the sake of simplicity.

An important and extremely useful aspect of Cuesta and Valette’s study is that it provides an
expression for Q(ω) as a function of available physical parameters, that fits the measured data.
This is of prime interest for the design and implementation of string physical models, as it
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Table 1: Physical parameters used in this work, for a cello D string vibrating in the air.

Symbol Parameter Value Units Symbol Parameter Value Units

ρ String material density 5,535 kg/m3 r String radius 4.55×10−4 m

ρa Air density 1.225 kg/m3 T String tension 147.7 N

µa Air kinematic viscosity 1.619×10−5 m2/s E Young’s modulus 2.5×1010 Pa

eliminates the need to resort to empirical (and hardly realistic) loss coefficients and processes.

The quality factor Q(ω) as a function of frequency is given by [7]:

Q−1 = Q−1
air + Q−1

visc + Q−1
disl (6)

where Qair(ω) is the quality factor associated with air viscosity, Qvisc(ω) is associated with string
viscoelasticity, and Qdisl is associated with the vibration of dislocations in the string material
[7, 11, 12]:

Q−1
air =

ρa

ρ

 √2
M

+
1

2M2

 , M =
r
2

√
ω

µa
Q−1

visc =
0.003Eρπ2r6ω2

4T 2 Q−1
disl =

1
18000

where ρ, r, T and E are defined in Section 2.1; ρa is the air density, in kg/m3; µa is the kinematic
viscosity of air, in m2/s.

The theoretical, frequency dependent, experimentally validated decay constant σth(ω) is now:

σth(ω) = d0 + d1
√
ω+ d2ω+ d3ω

3 (7)

d0 = −
2ρaµa

ρr2 d1 = −
2ρa

ρr

√
2µa d2 = −

1
Qdisl

d3 = −
0.003Eρπ2r6

4T 2

In the remainder of this paper, we will be considering a cello D string vibrating in the acoustic
field. Table 1 gives physical parameter values for this particular system.

4 Transfer to time domain
4.1 Characteristic equation

Suppose one desires to introduce energy dissipation in the string model presented in Section 2.
This is equivalent to introducing a non-zero real part to the complex frequency s. Propose the
following characteristic equation:

s2 + c2β2 + κ2β4 + s
(
F(s) +β2G(s)

)
= 0 (8)

where F(s) and G(s) are positive real functions of s, that is [13]:

<(s) > 0 ⇒ <(F(s)) > 0 , <(G(s)) > 0 and =(s) = 0 ⇒ =(F(s)) = 0 , =(G(s)) = 0 (9)

4



4.2 Condition for passivity

The proposed system must be passive, or dissipative: all solutions for the transverse displace-
ment of the string must be exponentially decaying, that is to say that all solutions of Equa-
tion (8) must satisfy <(s) = σ 6 0 at all frequencies and wavenumbers. Let us assume that
σ > 0, and prove that (8) has no such solutions. Dividing (8) by s, and equating the real part to
0, yields:

σ

1 +

(
c2β2 + κ2β4

)
σ2 +ω2

︸                  ︷︷                  ︸
A

+< (F(s)) +β2< (G(s)) = 0 (10)

Since A > 0, and by (9), <(F(s)) > 0 and <(G(s)) > 0, Equation (10) has no solutions. The
positive realness condition (9) is therefore sufficient so that all solutions of (8) are decaying.

4.3 Previous models

Candidate functions for F(s) and G(s) must be positive real, and convenient to transfer to a
space-time domain system of partial differential equations. Previous linear string modelling
works [6, 14] have used:

F(s) = b0 , G(s) = b0
′ , b0,b0

′ > 0 ⇒ s2 + c2β2 + κ2β4 + b0s + b0
′sβ2 = 0 (11)

which translate directly into space-time domain as:

∂2
t u = c2∂2

xu− κ2∂4
xu−b0∂tu + b0

′∂t∂
2
xu (12)

The first loss term models frequency-independent damping, constant across the spectrum,
while the second term introduces frequency-dependent losses. However, this model requires
two difficult to calibrate free parameters.

4.4 Rational functions of s

Propose the following:

F(s) = b0 +

M∑
q=1

bqs
s + aq

G(s) =

M∑
q=1

bq
′s

s + aq
′

b0,aq,bq,aq
′,bq

′ > 0 (13)

F and G are positive real, rational functions of s, and have the interpretation of impedances of
two-element ladder circuit structures of the Foster type [13]. This choice of functions results in
a (2M + 2)th order characteristic polynomial in s. The equivalent system in space-time domain
is:

∂2
t u = c2∂2

xu− κ2∂4
xu−b0∂tu−

M∑
q=1

bq∂t fq +

M∑
q=1

bq
′∂t∂

2
xgq (14)

∂t fq = ∂tu−aq fq , ∂tgq = ∂tu−aq
′gq , q = 1, . . . ,M

4.5 Energy analysis

Multiplying Equation (14) by ρL∂tu, and integrating over the length of the string, yields the
following energy balance, where the boundary terms vanish under simply supported conditions:
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dH
dt

=
d
dt

(
Hu + H f + Hg

)
= −P0−P f −Pg (15)

Hu =

∫ L

0

[
ρL

2
(∂tu)2 +

T
2

(∂xu)2 +
EI0

2

(
∂2

xu
)2

]
dx

H f = ρL

∫ L

0

 M∑
q=1

bqaq

2

(
fq
)2

dx Hg = ρL

∫ L

0

 M∑
q=1

bq
′aq
′

2

(
∂xgq

)2

dx

P0 = ρLb0

∫ L

0
(∂tu)2 dx P f = ρL

∫ L

0

 M∑
q=1

bq
(
∂t fq

)2

dx Pg = ρL

∫ L

0

 M∑
q=1

bq
′
(
∂t∂xgq

)2

dx

Since all terms are non-negative, the energy H is non-increasing, and the system is indeed
(non-strictly) dissipative.

5 An expression for σ(ω)
5.1 General expression

Expanding s = σ+ jω in (8), using the definitions of F and G given in (13), and examining the
imaginary part of the resulting equation, yields the (4M + 1)th order polynomial in σ:

M∏
q=1

((
σ+ aq

)2
+ω2

) ((
σ+ aq

′
)2

+ω2
)
·

2σ+ b0 +

M∑
q=1

bq
(
σ2 +ω2 + 2σaq

)
(
σ+ aq

)2
+ω2

+
β2bq

′
(
σ2 +ω2 + 2σaq

′
)

(
σ+ aq

′
)2

+ω2


 = 0

(16)

A root finding algorithm can be directly applied to find all the roots of (16), in terms of ω;
however, the lack of a closed-form solution leads to a difficult optimisation problem with regards
to a fit of σ to σth. We therefore seek closed-form approximations, better suited for optimisation.

5.2 Approximating σ

For the study of musical strings, one can safely assume that quality factors are large. Con-
sequently, of all the roots of (16), one will be of interest, that satisfies Q(ω) large, and so
−σ
ω � 1; all other roots will produce valid, but overdamped solutions to the stiff string equa-

tion. Additionally, the form of F(s) and G(s) under the assumption of small losses means that
b0,bq,bq

′ � 1,q = 1, . . . ,M. Finally, as aq,aq
′ have dimensions of frequency (they correspond to

the pole locations for F and G), we can assume −σ
aq
, −σaq′
� 1,q = 1, . . . ,M. We approximate:(

σ+ aq
)2
≈ aq

2 ,
(
σ+ aq

′
)2
≈ aq

′2 , q = 1, . . . ,M

Furthermore, under the small losses condition, the real part of Equation (8) yields an approxi-
mated dispersion relation between angular frequency ω and wavenumber β:

ω2 ≈ c2β2 + κ2β4 ⇒ β (ω) ≈

√
√

c4 + 4κ2ω2− c2

2κ2 (17)

which is the same as (3), found in the lossless case. This simply means that damping is
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(a) (b)

Figure 1: (a) σ (ω) as root of polynomial (16) (solid black line), superposed with approximations (18) and (19) (blue
dashed and green dotted lines, resp.) over the frequency range of interest. (b) Error (%) ∆σ =

∣∣∣∣σroot−σapprox
σroot

∣∣∣∣ between the
polynomial root and approximations (18) and (19) (blue dashed and green dotted lines, resp.).

small enough not to introduce any further inharmonicity than that brought about by the string’s
bending stiffness. Equation (16) therefore yields a first approximation for σ (ω):

σ (ω) ≈ −
1
2

b0 +

M∑
q=1

 bqω
2

aq
2 +ω2 +

bq
′β2ω2

aq
′2 +ω2



1 +

M∑
q=1

 bqaq

aq
2 +ω2 +

bq
′aq
′β2

aq
′2 +ω2



−1

(18)

A further simplification arises for σ (ω), given the previous assumptions and the behaviour of
β (ω), assuming that the denominator in (18) is approximately equal to 1:

σ (ω) ≈ −
1
2

b0 +

M∑
q=1

 bqω
2

aq
2 +ω2 +

bq
′β2ω2

aq
′2 +ω2


 (19)

As a sum of uncoupled terms, the latter approximation is more convenient to approach with a
gradient-based optimisation algorithm.

5.3 Validity of approximations

Before proceeding any further, it is helpful to visualise the approximations made in Section 5.2
with respect to the actual value of the root σ (ω) of polynomial (16) that is of interest. To this
end, we run a root-finding algorithm on (16) for the cello string described in Section 3, using
a set of inferred parameters based on preliminary calculations, and plot the resulting decay
constant curve σ (ω) against the two approximated curves from Section 5.2.

As seen in Figure 1, even with both approximations very close to the true polynomial root,
the second approximation is clearly inferior to the first one. The error between the polynomial
root and the two respective approximations is shown in Figure 1, (b); at most, (18) differs by
approximately 0.4% from the root value, whereas the maximal error slightly exceeds 2% for
(19). The last step in Section 5.2 is therefore a significant one, and its validity must be verified
on final results.
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5.4 Optimisation

For a range of Nω angular frequencies ωi, corresponding to a 10 Hz — 20 kHz range, we seek
to fit our approximation for σ(ωi) to the theoretical curve σth(ωi). As Q(ω) was the measured
quantity in the initial experiment, we optimise Q = −ωσ instead of σ directly. The least squares
method then seeks to minimise the following cost function:

E(γ) =

Nω∑
i=1

(
ωi

σth (ωi)
−

ωi

σ (ωi,γ)

)2

(20)

with γ=
[
b0,b1, . . . ,bM,b1

′, . . . ,bM
′,a1, . . . ,aM,a1

′, . . . ,aM
′
]

a vector containing the 4M+1 parameters.

We employ a combination of gradient descent and Newton’s method for optimal convergence.
Initial guesses are randomised around 0.1 for b0,bq,bq

′, and across the frequency range for
aq,aq

′. Figure 2 features three optimised curves for Q(ω), where σ (ω) is approximated to differ-
ent orders. M = 2 already offers a reasonably good fit to the theoretical curve, with a maximal
error around 4%; M = 3 brings ∆Q under 1%; M = 4 offers a much more significant improve-
ment, with a maximum error at 0.002%, at low frequencies.

(a) (b) (c)

Q

Figure 2: Qth (ω) (black line), superposed with optimised approximations to various orders (green line), and associated
error ∆Q =

∣∣∣∣ Qth−Q
Q

∣∣∣∣ (%). (a) M = 2; (b) M = 3; (c) M = 4.

6 Simulations
We can now discretise System (14) into an energy-balanced, dissipative finite difference scheme
[15]. Choosing an interleaved, implicit scheme allows for the stability condition to remain un-
changed from that of the well-known lossless case [16]. A two-step implicit recurrence can be
derived, allowing to compute the state of the string at a given time step using results at the
two previous time steps. σth is first computed from the physical parameters of the string and
air; then, the optimisation routine is performed, yielding the appropriate damping coefficients;
finally, these coefficients are injected into the scheme, and the recurrence is implemented, cal-
culating the string displacement step by step, at audio sample rates. The string position is
initialised with a triangular function whose peak lies at the desired plucking location; the out-
put signal is read out as the displacement of the last moving grid point before the boundary.
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Synthetic sound examples are available online1, for plucked isolated strings, including the cello
string used in this paper, as well as a few more musical strings.

7 Discussion
In this paper, we presented a passive model for frequency-dependent losses in linear strings,
adaptable to time-domain physical models of musical strings. The loss profile depends directly
on the physical parameters of the string and the surrounding air, allowing for realistic damping,
tailored to each different string, eliminating the need to rely on heuristic parameters.

This theoretical work still needs quantitative validation; measurements of the same nature that
those of Cuesta et al. [7], performed on simulation results, would ensure that the approxi-
mations made throughout this work hold until the final modelling steps. If they do, the high
reproducibility of simulated results could allow for an exploration of the limits of the original
theoretical model.

Another obvious exploration would involve verifying simulation results for different orders of
approximation; we saw that for a cello string, M = 2 already provided a good fit to the theoretical
curve, within a few percent. As M is directly related to computational complexity (which is a
major consideration in physical modelling techniques), satisfactory results with a low order of
approximation would be undeniably advantageous.

The present model is optimised for the continuous description of linear string vibration; how-
ever, simulation and time-domain sound synthesis relies on a discretisation of the system,
bringing about further numerical dispersion. To obtain optimal simulated sounds, the damping
parameters should be optimised so that this numerical dispersion is taken into account.

Finally, extending this framework to more realistic string modelling could involve nonlinear ef-
fects, both in the string itself (geometric nonlinearity) and in the context of collisions with exter-
nal objects, for excitation (hammers, stoppers, friction) or coupling with parts of the instrument
(barriers). Coupling with longitudinal waves was observed in the original experimental paper,
which could lead to a full quantitative study and design of a physical model.
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