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ABSTRACT
Software energy consumption has emerged as a growing con-
cern in recent years. Managing the energy consumed by a
software is, however, a difficult challenge due to the large
number of factors affecting it – namely, features of the pro-
cessor, memory, cache, and other hardware components,
characteristics of the program and the workload running,
OS routines, compiler optimisations, among others. In this
paper we study the relevance of numerous architectural and
program features (static and dynamic) to the energy con-
sumed by software. The motivation behind the study is
to gain an understanding of the features affecting software
energy and to provide recommendations on features to op-
timise for energy efficiency.

In our study we used 58 subject desktop programs, each
with their own workload, and from different application do-
mains. We collected over 100 hardware and software met-
rics, statically and dynamically, using existing tools for pro-
gram analysis, instrumentation and run time monitoring.
We then performed statistical feature selection to extract
the features relevant to energy consumption. We discuss
potential optimisations for the selected features. We also
examine whether the energy-relevant features are different
from those known to affect software performance. The fea-
tures commonly selected in our experiments were execution
time, cache accesses, memory instructions, context switches,
CPU migrations, and program length (Halstead metric). All
of these features are known to affect software performance,
in terms of running time, power consumed and latency.

1. INTRODUCTION
With rising energy costs and the need for environmental

improvements, one of the key challenges faced by the ICT
industry now and in the coming years will be reducing its
carbon footprint and energy consumption while still deliver-
ing the performance and quality that users expect. Energy
consumption is not only an issue for the mobile embedded
systems domain, but also for servers, desktops and laptops
which constitute more than a third of ICT energy consump-
tion [38].
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Measuring and managing the energy consumed by a soft-
ware is, however, a difficult challenge due to the large num-
ber of factors affecting energy consumed – namely, charac-
teristics of the processor (clock frequency, voltage, pipeline
depth), memory (instruction and data cache reads, writes
and misses), communication network, GPU, sensors for mo-
bile devices, compiler and optimisations enabled, features of
the program and workload running (number of instructions,
input data, number of branches, number of operators and
operands, algorithmic complexity, multi-threading) among
others. Before we embark on proposing optimisations for
software energy consumption, we believe it is imperative to
first identify and understand the factors that contribute to
energy consumption. Our ultimate goal is to use this un-
derstanding to guide techniques in choosing factors to op-
timise for energy. We would also like to ascertain if the
factors affecting software energy are the same as those af-
fecting software performance, in which case there is no need
to propose new optimisation techniques specifically target-
ing energy. Existing optimisation techniques targeting per-
formance may also be adequate for energy.

Existing literature, particularly in the embedded systems
domain, has estimated energy consumption based on sev-
eral architectural features [44, 47, 42]. Recent literature in
the mobile devices domain estimated energy consumption
using features related to the application and several other
integrated hardware components [26, 21]. The goal in all
of these studies has been to profile or estimate energy based
on architectural and, in some cases, application features [43,
47]. Our empirical study does not aim to estimate energy
but instead tries to understand the statistical relevance of
features, both architectural and program specific when taken
together, to energy consumed. We then select the relevant
features as targets for energy optimization techniques. The
selection technique we use takes interaction between features
into account and eliminates redundancy in the selection.
Our empirical study has the following salient features
• We collect data on energy consumption and over a

hundred features, static and dynamic, related to the
architecture and the program.
• Our data is collected using 58 subject programs, each

with their own workload, from different domains. Many
of these programs are part of industry standard bench-
marks.
• We use a statistical machine learning technique called

feature selection to select the features relevant to
energy consumption.
• We analyse the features selected, discuss their use as

potential targets for optimisation and determine if they
are different from optimisations proposed for software
performance.

The feature selection technique we use is the LASSO tech-
nique [48]. To validate the usefulness of the features selected
by Lasso, we compared accuracy of energy predictions using



only the selected features against energy predictions from
a linear regression model using all the features. We found
the features selected in our study were the same as known
features in existing optimisations for execution time.

Our paper is organised as follows. Section 2 discusses re-
lated work. In Section 3 we describe the experimental setup
to gather hardware and software features over different pro-
grams. We detail and discuss the results of our experiments
in Section 4. We provide more insights into the features
selected by our experiments, and the effect of existing opti-
misations in Section 5. Threats to validity in our experiment
and conclusions are presented in Sections 6 and 7.

2. RELATED WORK
Monitoring and modeling energy consumption of applica-

tions has been and still is an active research area. As stated
earlier, the goal in our work is not to model or estimate en-
ergy but to understand the relevance of many hardware and
software features, when taken together, to energy to guide
optimisations. Nevertheless, we present relevant literature
on energy modeling since that is the most closely related
body of work.

Previous work in the embedded systems domain has fo-
cussed extensively on estimating power consumed by the
processor [49, 44, 47]. The estimations rely on a complete
characterisation of the underlying instruction set architec-
ture and inter-instruction effects to estimate power consump-
tion. Cycle-accurate simulators developed to estimate power
can simulate the actions of a processor at an architecture-
level [9, 34, 52]. They identify the architectural blocks that
are active in each clock cycle and record the input operands
seen by each architecural block. Power consumption is then
estimated for each architectural block as a function of the
input data values. Both instruction-level characterisation
and cycle-accurate simulator estimation methods are slow,
compute-intensive, and infeasible for applications outside
the embedded systems domain.

Several tools have been developed to estimate energy using
hardware component characteristics. pTop [16] estimates
energy consumption using a model based on the charac-
teristics of hardware components (such as CPU, hard disk,
ethernet). PowerAPI and BitWatts [11] use hardware per-
formance counters to learn the energy model of hardware
components. They build the model by benchmarking the
computer and collecting power measures using a power me-
ter. Jalen [32] is built on top of PowerAPI’s energy mod-
els and maps energy estimations to an application’s source
code. In [43], Seo et al. estimate energy consumption of
distributed Java applications by benchmarking Java byte
code and native methods, measuring their energy consump-
tion with a multimeter. Collected results are then used to
construct an energy model for Java components and appli-
cations.

For mobile devices, integrated hardware components, such
as the GPS, screen, or the 3G communication interface, in-
troduce additional complexity into the energy models. Re-
cent literature [36, 26, 21] has focussed on energy models
for mobile devices. Eprof [36] maps back energy consump-
tion of hardware components to applications by adopting
a last-trigger policy. For example, it associates tail energy
drains of a hardware component 1 to the last application
that triggered the usage of that component. Hao et al. [21]
and Li et al. [26] propose an approach called eLens to esti-
mate energy usage at the source code level. They estimate
the energy consumption of mobile applications using pro-
gram analysis and linear regression analysis. Applications

1Tail energy happens when a component, such as the GPS,
continues to be active and consumes energy even after the
application that triggered its usage has ended.

are first instrumented to determine paths traversed during
execution. This along with instruction energy costs are used
to predict source line energy.

3. EXPERIMENT DESCRIPTION
The experiment we conducted is comprised of two phases,
Phase 1: Data Collection - We ran a series of experi-
ments on programs from three different benchmark suites to
measure energy consumed and features related to the hard-
ware and program. The benchmarks, features measured,
and tools used for measurements are explained in the fol-
lowing sections.
Phase 2: Prediction Models - Using the measurements
in the data collection phase, we trained our model to select
features2 that are relevant to the energy consumed. The
statistical feature selection technique we use is Lasso regres-
sion and is described in Section 3.4. In order to validate
the accuracy and usefulness of the selected features, we also
trained and constructed a Linear regression model using all
the features. We then compared the energy prediction error
of Lasso regression (with the selected features) against that
of Linear regression using all the features.
Phases 1 and 2 are described in the following sections.

We ran our experiments using a desktop computer pow-
ered by an Intel Core 2 Duo E8400 processor at 3 GHz, 2
GB of DDR2 memory at 800 MHz, 128 KB of L1 cache and
6 MB of L2 cache. The machine was running Ubuntu Server
14.04 with Linux kernel 3.16.0.33.

Phase 1 - Data Collection
3.1 Benchmarks

The programs in our experiments are from a range of ap-
plication domains such as image processing, biomolecular
simulation, networking, automotive, fluid dynamics, operat-
ing system, signal processing among others. The programs
perform diverse tasks varying in the type and intensity of
computation, file I/O, amount and frequency of memory
operations, and several other features. For test cases and
benchmarks that run in just a few milliseconds, we run them
in a loop (ranging from 1 to 10,000 cycles) to get execution
times that are large enough for measurement. Collected data
is then averaged for a single program run and compared with
the other programs. The programs and benchmark families
used in our experiments are as follows.

3.1.1 SIR
We used 9 programs from the SIR (Software-artifact In-

frastructure Repository) repository [15]. Programs include
GNU projects (gzip 1.0.7 and sed 1.17), two lexical analy-
sers (printtokens and printtokens2), two priority schedulers
(schedule and schedule 2), a pattern matching program (re-
place), a statistics program (totinfo), and an aircraft colli-
sion avoidance system (tcas). Test cases were either pro-
vided, or generated using the Make-test-script program and
test plans described in universe files. The test cases exercise
the parameters and behaviour of the programs as described
in [15]. We run our experiments and collected metrics for
test cases over each SIR program. We performed two dif-
ferent analysis on the SIR programs, (1) For each SIR pro-
gram, we used 300 randomly selected test runs to collect
observations. We performed feature selection over these ob-
servations for each SIR program, (2) We randomly selected
30 test runs for each SIR program, resulting in a total of 270
observations over all 9 SIR programs. We then performed
feature selection across observations over all SIR programs.
We limited the test runs in order for the total number of

2Features in our estimation model refers to the hardware
and program related metrics



observations per benchmark family to be comparable. It
is worth noting that each observation in our context is a
record of the energy consumed along with measurements of
the different hardware and program features for that test
run.

3.1.2 Parboil Benchmark
We used all 11 programs from the Parboil benchmark [46],

which is an open source benchmark suite with benchmarks
collected from throughput computing application researchers
in many different scientific and commercial fields includ-
ing image processing, biomolecular simulation, fluid dynam-
ics, and astronomy. Applications in the benchmarks per-
form a variety of computations including ray tracing, finite-
difference time-domain simulation, magnetic resonance imag-
ing, 3-D stencil operation. Parboil provides applications im-
plemented as both serial C++ and OpenMP, along with
workloads specific to the programming model. We run both
the base and parallel OpenMP versions of these programs.
We collected 51 observations over all the programs in Par-
boil.

3.1.3 EEMBC Benchmark
Embedded Microprocessor Benchmark Consortium

(EEMBC) [37] provides a diverse suite of processor
benchmarks organised into categories that span numerous
real-world applications, namely automotive, digital media,
networking, office automation and signal processing, among
others. There are a total of 38 programs – 17 from
automotive domain, 6 from consumer, 4 in networking, 5
in office, and 6 from telecom. We used the workload in the
benchmarks to generate a total of 304 observations over all
38 programs.

The features measured and tools used are explained in the
next section.

3.2 Measurements
For every run of every program, we used existing run time

monitoring and program analysis tools to measure,
Hardware performance features reflecting CPU, cache

and memory performance. We measure these features
since they are known to impact power and energy [9,
13, 16, 18].

Dynamic program features relating to types of program
instructions generated, memory operations performed,
and register utilisation. Different types of instructions
are associated with different base energy costs [49].
Inter-instruction effects, and operands also affect the
energy consumed. Memory operations are also associ-
ated with high energy costs. Finally, effective register
utilisation during machine code translation is shown
to help improve energy efficiency [42].

Static program features such as number of basic blocks,
number of loops, branches, global variables, cyclomatic
complexity. We measure these high-level program fea-
tures since they have been shown to be useful in esti-
mating energy consumed by software [47], and are the
primary guide in creating and measuring adequacy of
test runs (over which execution time and energy are
measured) [45, 22, 41].

In addition to the above features, we also measured the ex-
ecution time and energy consumed by each of the program
runs.

3.2.1 Hardware Features
We use Linux’s Perf tool [2] to collect 37 hardware fea-

tures. Perf uses special-purpose CPU registers to count
the number of events, such as CPU misses or mispredicted
branches. Perf runs in the user space and is part of the
kernel. It has a low overhead compared to instrumenting

profilers [51]. The hardware features collected with Perf are
as follows:
Performance features. We collected 8 features that provide
CPU performance information for the program, such as the
number of instructions executed between each performance
sampling, total CPU cycles, total bus cycles, the total time
spent by the application or it’s tasks on the CPU (CPU clock
and task clock). Additional metrics include the number of
context switches and the number of CPU migrations. Num-
ber of context switches corresponds to the number of times
the CPU restored the context (e.g., state) of a process or
thread. Context switches can invalidate some TLB3 entries,
since the virtual-to-physical address mapping is different.
This results in misses in the TLB for a memory reference.
The number of CPU migrations counts the number of times
the executing process has migrated to a new CPU or a new
CPU core.
Branch Instruction features. We collected 4 features that
count the number of executed branch instructions, mispre-
dicted branch instructions, number of branch instructions
with a load access, and the number of those loads that re-
sulted in a cache miss.
Cache Related features. Cache effects are known to have
a significant impact on performance [18]. We collected 19
features that record the number of loads and stores (in addi-
tion to load misses and store misses) for Level 1 Cache (L1),
Last Level Cache (LLC) and Translation Lookaside Buffer
(TLB). For L1 cache and TLB buffer, we collect separate
metrics for data and instruction cache.
Page Fault features. We collected 6 features including, to-
tal page faults, minor and major page faults, alignment and
emulation faults. When a page fault occurs, the thread that
experienced the page fault is put into a Wait state while the
operating system finds the specific page on disk and restores
it to physical memory. Page faults can cost millions of CPU
clock cyles because of disk access and, as a result, severely
affect performance.
In addition to the above hardware features, we also mea-
sured execution time of the program using the “time” Linux
command.

3.2.2 Dynamic Program Features
We use the Pin tool [28] (version 2.14) to collect 42 dy-

namic program features. Pin is a dynamic binary instru-
mentation framework where instrumentation is performed
at run-time on the compiled binary files. We built instru-
mentation tools in this framework to collect features in the
following categories:
Program Instructions. We used 4 features to count the num-
ber of executed instructions, the number and size of basic
blocks executed, and the number of threads.
Memory Instructions. We used 6 features counting the num-
ber of times instructions were read or written from/to mem-
ory, and the number of malloc/realloc/calloc and free calls.
Processor Registers. We used 32 features to count the num-
ber of read and write accesses to the different processor reg-
isters.

3.2.3 Static Program Features
We collect 25 static program features using Frama-C’s [5]

metrics plugin [1] (Sodium release). The Frama-C platform
helps analyse the source code for C programs. We collect
the following metrics:
Halstead Complexity measures [20]. We have 13 features
that count the total and distinct number of operators and

3A Translation Lookaside Buffer (TLB) cache stores recent
translations of virtual addresses to physical addresses, both
for instructions and data, to enable faster retrieval of infor-
mation.



operands, the program length (which describes the size of
the abstracted program by removing everything except op-
erators and operands), the program volume (which mod-
els the number of bits required to store the abstracted pro-
gram), and program level (which defines the ratio between
the program volume and the volume of its most compacted
implementation).
McCabe’s Cyclomatic complexity [29]. We use this feature
to provide an indication of the complexity of a program by
measuring the number of linearly independent paths in a
program.
Other static progam features. We have 11 features repre-
senting the number of source lines of code, number of loops,
Ifs, Gotos, functions declared, exit points (e.g., return state-
ments), the number of decision points, global variables and
the number of pointer dereferences.

3.2.4 Energy Metric
We measure the energy consumed by the computer for

each program run using a Watts Up? .Net power meter [4].
The power meter is connected to another computer that col-
lects energy observations at runtime. We also measured and
continuously monitored the idle energy of the computer. We
used the server edition of Ubuntu as our operating system
with no additional services running. Energy consumption of
a program run is the difference between the measured en-
ergy and idle energy. It is also worth noting that our energy
measurements do not include the energy consumed by the
monitor since the monitor we use has its own independent
power supply.

In summary, we observed a total of 106 features, both
hardware and program specific, that we believed will be rel-
evant to the energy consumed by the program. In the next
sections, we describe the regression models and feature se-
lection technique we use in our experiments.

Phase 2 - Prediction Models
3.3 Linear Regression

One of the most widely used regression models is linear
regression. This asserts that the response we wish to predict,
y (“dependent variable”) is a linear function of the input
vector x (“independent variables”or features). In this paper,
x is a vector of hardware and software features measured
over the program that is used to compute y, the energy
consumed by the program. Linear regression is expressed
by Murphy et al. [31] as

y(x) = wTx + ε =

D∑
j=1

wjxj + ε (1)

where wTx represents the scalar product between the input
vector x and model’s weight vector w, also referred to as
vector of coefficients for x. D is the length of input vector
x. ε is the residual error between our linear predictions and
the true response. Now given this regression model and a
training data with N number of observations, we need to
find an optimal setting of the coefficients vector, w, for best
predicting y from x. This optimisation is typically done
by minimizing the residual sum of squares (RSS) or sum of
squared errors (SSE) as defined by,

RSS(w)
.
=

N∑
i=1

(yi − wTxi)
2 (2)

This method is referred to as least squares. The values of
wi computed for minimal RSS represent the regression co-
efficients to be used in the model. We used the WEKA
(Waikato Environment for Knowledge Analysis) tool [19] to
build the Linear regression models.

3.4 Feature Selection using Lasso
We use a machine learning technique, called feature se-

lection, to select a subset of statistically relevant features
to improve the overall performance of the learning model by
preventing overfitting. In the context of this paper, we apply
feature selection to (1) understand the relationship between
the features and energy consumed, and (2) to select the set
of relevant features (among all hardware and program fea-
tures) that can provide insight on where to target energy
optimisation efforts. Note that we are interested in the ef-
fect of features taken together, rather than individually, on
the energy consumed. Feature selection also eliminates the
need for measuring features that are not relevant, or are
redundant to the energy consumed. We use an L1 regular-
ization method called LASSO to apply feature selection in
the linear regression model [31], [48]. Lasso is an embedded
algorithm performing feature selection as part of the model
construction process. Regularization methods introduce a
penalty term for the size of the weights that is tuned em-
pirically for minimizing the RSS. Lasso regression is often
preferred because it produces sparse models effectively, i.e.,
the regression coefficients for most irrelevant or redundant
features are shrunk to zero, thereby achieving feature selec-
tion [27]. Interactions among features are also taken into
account by Lasso. We achieve Lasso feature selection in
our experiments using the ‘glmnet’ package [17] in R [40], a
software environment for statistical computing.

3.5 Validation
We use cross validation, in particular, Leave-One Out

Cross Validation (LOOCV) to evaluate the performance
of the different prediction models. Cross validation tech-
nique works as follows; suppose the original dataset has N
observations, then, for each i ∈ {1, ...., N}, we train the re-
gression model on all except the ith observation, test the
model on the ith observation and compute the error. This
process is repeated in a round-robin fashion and the error
averaged over all i, i.e, N validation runs. In our case, every
test case run from every program results in an observation of
vector x of features and response y of the energy consumed.
For each regression model, we compute, using LOOCV, the
Root Mean Squared Error,

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3)

which is the square root of the mean of the squared errors
over n different predictions. We then normalize the RMSE
to the range of the observed response using the minimum
and maximum actual response, i.e., Normalised RMSE

NRMSE =
RMSE

ymax − ymin
(4)

NRMSE is a popular error metric to compare numerical pre-
diction errors between models. Compared to mean absolute
error, RMSE amplifies and severely punishes large errors,
such as those from outliers.

4. EXPERIMENTAL RESULTS AND
ANALYSIS

We collected observations of energy and features for pro-
grams with their respective workloads in the three bench-
mark families as described in Section 3. The results are
organised and analysed as follows,

1. Per SIR program. We conducted analysis separately
for each of the 9 SIR programs.



Features selected by LASSO

Gzip Printtokens Printtokens2

execution time execution time execution time
cpu.clock cache.misses cache.misses
task.clock cpu.clock task.clock

context.switches task.clock page.faults
cpu.migrations page.faults context.switches

LLC.load.misses context.switches cpu.migrations
LLC.store.misses minor.faults minor.faults

free LLC.load.misses LLC.load.misses
- LLC.store.misses LLC.store.misses
- malloc free
- free -

Replace Schedule Schedule2

execution time execution time execution time
cache.misses cpu.clock cpu.clock

cpu.clock page.faults context.switches
task.clock context.switches cpu.migrations

context.switches cpu.migrations LLC.load.misses
cpu.migrations LLC.load.misses LLC.store.misses

LLC.load.misses LLC.store.misses iTLB.load.misses
LLC.store.misses malloc malloc

- free free

Sed Tcas Totinfo

execution time execution time execution time
cpu.clock cache.misses cpu.clock
task.clock cpu.clock context.switches
page.faults task.clock cpu.migrations

context.switches page.faults major.faults
cpu.migrations context.switches LLC.load.misses

major.faults cpu.migrations malloc
LLC.load.misses minor.faults free
LLC.store.misses LLC.load.misses -

malloc LLC.store.misses -
realloc read.access.memory -

free write.access.memory -

Table 1: Features selected by LASSO for individual
SIR programs (when applying Lasso using all fea-
tures)

2. Per benchmark family. Within each benchmark
family, we analysed the results from runs of all pro-
grams.

Each analysis was carried out as follows: We used the Lasso
learning technique to select a subset of features from all the
hardware and program specific features observed. We as-
sessed the usefulness of the selected features by comparing
the NRMSE for energy prediction using Lasso against that of
Linear regression with all features. We list the relevant fea-
tures selected by Lasso and their coefficients. The coefficient
values of the different features cannot be compared directly
since the magnitudes and units of the measurements are not
comparable. For instance, execution time is measured in
milliseconds, while a Halstead metric gives the number of
distinct operators and operands.

We did not conduct per program analysis for EEMBC
and Parboil benchmarks since the number of test runs avail-
able per program was significantly smaller than the num-
ber of features measured. Predictions for such programs in
our high-dimensional feature space will be highly inaccurate
due to the curse of dimensionality [6]. As a result, we only
conducted per program analysis for SIR programs that had
greater number of test runs than features measured.

4.1 Individual SIR Programs
For each of the SIR programs, we ran 300 randomly se-

lected test cases. The NRMSE results for the individual SIR

programs are presented in Figure 1. Lasso regression per-
forms well with a lower NRMSE across all SIR programs.
Linear regression has a slightly higher NRMSE (less than
0.2%).

Table 1 lists for each of the 9 SIR programs, the features
selected by LASSO for energy estimation. It is important to
note that the Lasso feature selection technique will suppress
features that are relevant to energy but redundant with re-
spect to another feature selected.

Execution time is a feature selected in all SIR programs.
This was to be expected since execution time has a high
impact on energy consumption, and aligns with observations
in previous investigations [12, 36, 24].

For all the SIR programs, CPU migrations and context
switches are among the features selected. Both these fea-
tures are known to cause overheads in terms of running
time [25, 14]. CPU clock and/or task clock are also selected
since the time spent in the CPU by the program (CPU clock)
and its threads4 (task clock) is high.

Features related to LLC cache and memory instructions in
the source code (malloc/calloc/realloc and free) also appear
in Table 1. This is because the programs frequently read and
write data resulting in frequent accesses to the cache. Some
of these cache accesses result in cache misses that cost extra
clock cycles. Static software features are not selected for
any of the SIR programs since for runs within each program,
these features remain constant. Lasso shrinks the weight of
these features to zero since they do not exhibit any deviation
between observations.

4.2 Benchmark Families
We now discuss results from runs of all programs within each
benchmark family.

4.2.1 SIR Benchmarks
Similar to our observation in individual SIR programs,

NRMSE numbers are low across both prediction models (see
Table 2), 0.00097 for linear, and Lasso is lower with 0.00082.
The features selected with Lasso are marginally more effec-
tive in predicting energy than all the features in the linear
model. Table 3 shows the features selected by Lasso.

Linear LASSO

SIR 0.000971891 0.000827693
EEMBC 0.004287477 0.005514576
Parboil 0.051841246 0.074844556

Table 2: Normalized Root mean square error
(NRMSE) for all benchmarks

Features selected Absolute Weight

execution.time 66.70251726
cache.misses 0.000154405
cpu.migrations 0.234642543
realloc 0.001386825
calloc 0.001374207
Program.level 0.138383951
Function 0.000190104

Table 3: Features selected by LASSO for all SIR
benchmarks

Most of the features present in Table 3, are also present
in the selection for individual SIR programs (see Table 1)
and the reasons for the selection are similar. Table 3 also

4This refers to threads created by the OS for multitasking,
rather than user created threads in the program.
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Figure 1: Normalized Root mean square error (NRMSE) for SIR programs

shows the coefficient values for the selected features. The
coefficient value for execution time is 102 to 105 times larger
than coefficient values for other features. Although, coeffi-
cient values in such models cannot be directly compared due
to the different units of measurements, it provides a hint on
the importance of execution time for energy prediction in
the SIR benchmarks. To assess the importance of execution
time for energy prediction, we compared LASSO prediction
errors with and without execution time in the feature set.
Table 4 lists the NRMSE for LASSO with “All” features,“All
- Time”, “Only Software”, and “Only Hardware”. As can be
seen, NRMSE increases by 3 times when execution time is
removed from the observations. execution.time is, thus, a
key consideration, and cannot be approximated by any set
of hardware or software features for SIR benchmarks.

Table 4 also shows that prediction accuracy is approxi-
mately the same for“All - Time”, “Only Software”and“Only
Hardware” with “Only Hardware” being marginally better.
For SIR programs, measuring either only the program char-
acteristics or only the hardware features, along with execu-
tion time would suffice to predict energy.

A feature that is different from what we saw for individual
SIR programs is the size of the program indicated by the Hal-
stead metric, Program.level. This implies that the number
of distinct operators and operands in the source code for the
SIR programs has an effect on energy. As mentioned earlier,
we did not see this static program metric for individual pro-
grams since it does not change across runs of the same pro-
gram. cpu.clock and/or task.clock are selected for all indi-
vidual SIR programs, but is not seen in the LASSO selection
across all programs. The software metrics, Program.level,
Function, and calloc have effectively replaced cpu.clock and
task.clock. This is confirmed again in Table 4 when we per-
form Lasso selection with Only Software metrics which has
the same prediction accuracy as Lasso using All − T ime.

4.2.2 EEMBC Benchmarks
For the 38 programs in the EEMBC benchmark,the Linear

regression model performs better with an NRMSE of 0.0042
compared to the Lasso model with an NRMSE of 0.0055
(see Table 2). The prediction errors are, however, compara-
ble and as a result, the features selected can be considered
further for optimisations.

Table 5 shows the features selected by Lasso. As with the
SIR benchmarks, execution time is selected and the coeffi-
cient value (without normalising) is larger than the other
features. However, execution time is not as significant for
energy prediction as in the case of SIR benchmarks. This
is evident from Table 6 where the prediction error of Lasso
using All features is comparable to Lasso using All− T ime
features. Only Software and Only Hardware features also
have comparable accuracy in energy prediction. This implies

Features selected Absolute Weight

execution.time 4.834222931
cpu.clock 0.004460450
task.clock 0.004313552
context.switches 0.040315249
cpu.migrations 1.755253195
branch.misses 6.10E-08
bus.cycles 1.38E-08

Table 5: Features selected by LASSO for all EEMBC
benchmarks

that targeting optimisations at one of these sets of features
will be effective in achieving energy efficiency.
cpu.clock and task.clock are among the other features se-

lected. Contrary to the execution time - which includes wait
time, these two clock features monitor time spent using the
CPU. The CPU intensive nature of some of the EEMBC
benchmarks drives these observations. Examples of such
CPU intensive benchmarks are the image processing, and
automotive applications. Branch misses is selected and this
may be due to the extensive use of loops in all the EEMBC
programs. We believe the feature, bus.cycles, was selected
due to frequent communications between the CPU and the
main memory. Programs in the telecommunications domain,
Encoder, Decoder, and Bit allocation, make heavy use of
such communications.

4.2.3 Parboil Benchmarks
For the Parboil benchmarks, Linear regression model does

better with an NRMSE of 0.0518, as seen in Table 2. Lasso
has a slightly higher error of 0.07484. Among the 3 bench-
mark families seen thus far, NRMSE is highest for Par-
boil across prediction models. We believe there are two
reasons for the high NRMSE values for Parboil, (1) The
number of observations available for Parboil is fewer than
the other two benchmarks (51 for Parboil versus 304 for
EEMBC and 270 for SIR), resulting in the dimensional fea-
ture space being much bigger. As a result, the effect of the
curse of dimensionality is more significant in Parboil. (2)
Parboil benchmarks have both the serial and parallel ver-
sions. Number of threads is the only feature in our mea-
surements that reflects the parallel nature of benchmarks.
It may be the case that this single feature is inadequate in
capturing the effects of parallelism on energy. Table 7 shows
the features selected by Lasso and the absolute weights of
the coefficients.

The coefficient value of execution time is significantly
larger than that of the other selected features. As can
be seen in Table 8, prediction error almost doubles when
execution time is not included (All − T ime) in the ob-
servations, reflecting its importance for energy estimation



All All - Time Only Software Only Hardware

NRMSE 0.000827685 0.003193454 0.003193454 0.003183806

Selected features execution.time,
cache.misses,
cpu.migrations, realloc,
calloc, Program.level,
Function

cpu.migrations, Pro-
gram.level, cpu.clock,
context.switches,
task.clock, calloc,
LLC.load.misses,
Exit.point

Program.level, calloc,
Exit.point, Free

cpu.migrations,
context.switches,
cpu.clock, task.clock,
LLC.load.misses, mi-
nor.faults

Table 4: NMRSE and feature selected by LASSO for SIR benchmarks

All All - Time Only Software Only Hardware

NRMSE 0.005921402 0.005999306 0.006079861 0.006016273

Selected features execution.time,
cpu.clock, task.clock,
context.switches,
cpu.migrations,
branch.misses,
bus.cycles

cpu.migrations, con-
text.switches, cpu.clock,
task.clock

Sloc, basic.blocks cpu.migrations,
context.switches,
cpu.clock, task.clock,
LLC.load.misses

Table 6: NMRSE and feature selected by LASSO for EEMBC benchmarks

Features selected Absolute Weight

execution.time 58.93799739
cpu.clock 0.001014987
task.clock 0.001215820
L1.dcache.prefetches 6.34E-07
dTLB.load.misses 8.24E-07

Table 7: Features selected by LASSO for all Parboil
benchmarks

over Parboil programs. It is also worth noting that mea-
suring Only Hardware features outperforms measuring
Only Software features. We can safely say that energy con-
sumed by Parboil programs are characterised better by hard-
ware features than software. Many of the Parboil programs
are CPU intensive, resulting in cpu.clock and task.clock be-
ing selected. The programs use large input data sets. Fre-
quent accesses to these large data sets without temporal and
spatial locality result in data cache misses being an impor-
tant feature for energy estimation.

5. DISCUSSION
From our experiments, we find that the overall accuracy of

the Lasso feature selection technique is comparable to the
Linear regression model with all the features. The Lasso
technique did not always outperform the Linear model and
there was no consistent best model across all experiments.
Given the high dimensional feature space, we believe com-
parable prediction accuracy using the Lasso model is a good
start and the selected features can be used as a basis for
discussion on potential optimisations for energy. It is worth
noting that feature selection using Lasso takes correlation
between measured features into account and eliminates re-
dundancy. For instance, features like basic blocks and global
variables have high coefficient values in the linear regression
model but are not selected by Lasso since they are redundant
with respect to execution time. When correlated features
are selected, it implies that the features together better pre-
dict energy than any one of them (they are not redundant
with respect to each other or a combination of other selected
features).

We found that some hardware and program features were
repeatedly selected across all our experiments. We list these
features (or sets of features) and discuss their potential as
energy optimisation targets. We also go on to discuss if the

selected features and optimisations are any different from
those already known for software performance.

Execution Time: Execution time has often been
used as a representative for energy [12, 36, 24]. Lasso
feature selection over all benchmarks resulted in coefficient
values for execution time being 10 to 100 times larger than
coefficient values for other features. Although, coefficient
values in such models cannot be directly compared due to
the different units of measurements, it provides a hint on
the importance of execution time for energy. It is clearly
valuable to target execution time for energy optimisation.
However, it is important to bear in mind that energy is
dependent on both execution time and power, and reducing
one while increasing the other will offset the gains achieved.

Cache and Memory instructions: Our experiments
consistently selected cache (L1, LLC, and TLB) features,
and dynamic memory instruction features. Missed cache
hits, on both the internal and external cache, as well as
page faults slow the performance of a program [49, 50]
by significantly increasing memory latency and, therefore,
execution time. Note, however, that the cache features
being selected by Lasso implies they are not redundant
with respect to execution time. The selection implies that
it is potentially beneficial to optimise cache features in
addition to optimising execution time. For instance, if
we have a memory intensive process whose performance
is limited by the available memory bandwidth(cache and
memory access speeds are slower than processor speeds),
we will gain limited execution time gains from increasing
processor clock frequency.The increased clock frequency will
result in increased power consumption that may offset the
limited execution time gains. Thus, it may be beneficial to
move memory intensive processes to lower frequency cores,
while executing less memory intensive processes on higher
frequency cores.

To reduce cache misses and memory latency, one can place
related data close in memory and use algorithms and data
structures that exploit the principle of locality. For instance,
elements of std::vector in C++ are stored in contiguous
memory and accessing them is more cache-friendly since it
exploits spatial locality, than accessing elements in std::list
that does not have this feature.

Compiler researchers have also proposed the use of reuse
distance as a metric to approximate cache misses [8, 39].



All All - Time Only Software Only Hardware

NRMSE 0.074839977 0.11318387 0.277245127 0.11318387

Features execution.time,
task.clock, cpu.clock,
dTLB.load.misses,
L1.dcache.pref

cpu.migrations,
task.clock, cpu.clock,
dTLB.store.misses,
dTLB.load.misses,
L1.dcache.pref,
LLC.load.misses,
branch.misses

Global.variables, Goto,
Function.call, rdx.written,
Pointer.dereferencing,
rcx.written, rdx.read, as-
signment

cpu.migrations, task.clock,
cpu.clock

Table 8: NMRSE and feature selected by LASSO for Parboil benchmarks

Beyls et al. [8] state reuse distance of a memory access as
“the number of accesses to unique addresses made since the
last reference to the requested data”. In a fully associative
cache with n lines, a reference with reuse distance d <
n will hit, and with d ≥ n will miss. To improve data
locality based on reuse distance within loop structures, loop
transformations, namely loop tiling and fusion, have been
proposed and implemented in compilers [7, 10, 3].

We use the Polly data locality loop optimiser [3] in LLVM
over SIR and the automotive EEMBC benchmarks. The
motivation was to assess the energy gains from optimising
data locality within loops in these benchmarks. Table 9 lists
the energy gains observed over SIR benchmarks along with
execution time and power gains.

SIR prog. Energy gain Exec.time gain Power gain
(%) (%) (%)

gzip 3.38 3.71 -0.37
printtokens 5.06 4.99 0.28
printtokens2 6.36 6.10 0.16
replace -0.16 0 -0.17
schedule 0.24 0 0.25
schedule2 0.22 0.10 0.03
sed 4.59 4.95 -0.31
tcas 0.03 0 0.04
totinfo -0.04 -0.2 0.12

Table 9: Energy gains in SIR benchmarks from Polly
loop optimiser

It is evident from Table 9 that the energy gains achieved
over SIR benchmarks using Polly for loop optimisations is
relatively low, maximum being 6.36% (over printtokens2)
This is primarily because in SIR programs, loops are used
sparringly with relatively few data and array references
within them. As a result, there is not enough opportunity
for Polly to improve data locality. For instance, in the case
of the tcas program where almost no energy gain was ob-
served, loop structures are not present in the program and
as a result Polly has no effect. printtokens, on the other
hand, is a program which accepts a file containing a stream
of characters and for each character (outer loop) it performs
an expensive search to find the corresponding token (inner
loop). This loop structure provides relatively more opportu-
nities for Polly to optimise than in the case of tcas, resulting
in the higher energy gain of 5.06%.

As seen in Table 9, energy gains follow execution time
gains for most SIR programs. This is because, improved
data locality and thus, reduced cache misses helps reduce
execution time and not power. For schedule and tcas pro-
grams, we observe no gain in execution time, however neg-
ligible gains in energy because of power is observed. It is
difficult to pinpoint the exact reason for the slight gain in
power and can often be simply attributed to small fluctua-
tions in the processor environment.

For the EEMBC benchmarks, we ran the Polly optimiser
over the automotive domain comprising of 16 programs and
associated workloads. Table 10 lists the energy gains with

EEMBC prog. Energy gain Exec.time gain Power gain
(%) (%) (%)

idctrn01 83.94 83.53 2.48
a2time01 45.74 44.96 1.41
aifftr01 63.73 63.79 -0.18
aifirf01 66.18 65.91 0.77
aiifft01 60.65 60.45 0.49
basefp01 66.50 64.96 4.37
bitmnp01 51.82 50.36 2.94
cacheb01 61.02 60.70 0.82
canrdr01 78.27 78.10 0.76
iirflt01 72.10 71.65 1.58
matrix01 71.79 72.72 -3.41
pntrch01 61.95 62.98 -2.79
puwmod01 67.54 67.45 0.25
rspeed01 63.92 63.82 0.28
tblook01 49.48 48.54 1.83
ttsprk01 64.79 64.06 2.03

Table 10: Energy gains in EEMBC benchmarks from
Polly loop optimiser

Polly. In complete contrast to the SIR benchmarks, we ob-
served massive energy gains with Polly, ranging from 45.74%
to 83.94%. The large gains can be explained by the program
structure of the EEMBC benchmarks, predominantly com-
prising of statements in for loops and array accesses. Polly’s
loop tiling and loop fusion optimisations perform extremely
well over such program structures. Polly’s data locality op-
timisations resulted in execution time gains that were sim-
ilar to the energy gains observed, ranging from 44.96% to
83.53%. Power gains over the EEMBC programs were rel-
atively low, and even negative for 3 of the 16 programs.
The observations in Table 10 supports our earlier inference
from Table 9 that energy gains are driven by execution time,
rather than power, gains when using the Polly optimiser.
Context switches and CPU migrations. Both these
features are relevant to energy consumption and are known
to cause overheads in terms of running time [25, 14] and
power [13]. Switching a process context or migrating it to
a different CPU core is a costly task and tends to generate
many cache misses (since the process may not find valid
data on the new migrated core’s cache). CPU scheduling
algorithms have been proposed to help tackle this problem
to reduce the power and energy consumed [13]. Some
multi-core programming models (like OpenMP and MPI)
allow developers to use environment variables that pin
processes to CPU to prevent migration to a different core.

Program Level This halstead metric was selected
for the SIR benchmark family. It is worth noting that for
EEMBC, the linear regression model assigned the highest
coefficient value to this feature. Lasso did not select
this metric since it was, likely, redundant with respect
to execution time. We hypothesize that reducing the
number of operators, operands and function calls (that
are used to compute this metric) in a program will help



in reducing energy consumption. In a previous study, we
found that optimising design patterns by reducing function
calls improved energy consumption [33].

Optimising for Energy versus Performance.
The features picked by our empirical study that affect soft-
ware energy, namely execution time, cache misses, context
switches, CPU migrations, program length (in terms of num-
ber of operators, operands and function calls) are no differ-
ent from those known to affect software performance with
respect to running time, memory latency, and power con-
sumed. Datta and Patel propose CPU scheduling algorithms
to mitigate performance loss, in terms of power, incurred
from context switches, and CPU migrations [13]. David et
al. and Li et at. have also studied the performance over-
head introduced by context switches [14, 25]. Cache misses
are widely known to impact performance in terms of exe-
cution time [53] and existing optimisations for data re-use
like Polly achieve significant energy gains by reducing cache
misses. Compiler optimisations built into existing compil-
ers, like the GCC optimisation flags, attempt to reduce the
code size and execution time of the program [23, 35].

All of the existing optimisation techniques proposed for
performance, either focus on power or on execution time, but
not both. Existing performance optimisations are effective
in reducing energy and this has been observed in several
studies [35, 47, 13, 52, 30, 7, 33]. It is, however, important
to bear in mind that execution time gains do not always
translate to energy gains. An example of this, is frequency
scaling in processors that reduces execution time by running
at full clock speed. This technique, however, proportionally
increases power consumed as seen from the equation,

P =
1

2
CV 2f (5)

where C is capacitance, V voltage and f is the frequency.
Miyoshi et al. observed that scaling CPU frequency, al-
though reducing execution time, can cost more energy than
running at a slower clock speed [30]. Typical techniques
for reducing power are power management software and dy-
namic voltage frequency scaling in processors. Our study
does not consider these techniques since they focus on pro-
cessors rather than a specific application.

The features affecting energy selected in our study lead
us to believe that existing performance optimisations will
suffice if one looks to reduce energy by reducing either only
power consumed or only execution time. To achieve energy
gains that goes beyond existing optimisations, we need to ex-
plore techniques that target both power and execution time.
We plan to explore this problem in our future research.

6. THREATS TO VALIDITY
Our experiments suffer from the following internal threats
to validity,
• We did not enable and examine the effect of standard

compiler optimizations on energy consumption. We
did, however, use Polly for data locality optimisations
in loops. Enabling compiler optimisations has been
shown to reduce energy consumption by reducing pro-
gram execution time [23, 35].
• In our experimental setup, we do not completely con-

trol the services, unrelated to the benchmark being
measured, run by the operating system. We used the
server version of the Ubuntu distribution in order to
limit the number of applications and background ser-
vices running concurrently. However, some operating
system services might still be running (such as check-
ing for - but not performing, new updates). We did
not specifically disable these services.

The external threat to validity in our experiment is using

only a single hardware platform for running benchmarks and
collecting observations. Our results cannot be generalized
to other hardware architectures since the hardware and pro-
gram specific features observed and measured will be very
different. A similar experiment will have to be conducted to
learn the features relevant to energy consumption for each
hardware platform and each application domain. This is a
consequence of the no free lunch theorem [31] that states
that “there is no single best model that works optimally for
all kinds of problems”. The reason for this is that a set of
assumptions that works well in one domain or achitecture
may work poorly in another.

7. CONCLUSIONS
We have studied energy consumption of programs and

workloads from three different benchmark families measur-
ing over 100 different software and hardware features. The
feature selection technique, Lasso, effectively picks five to
seven features for each of the benchmark families that are
relevant to energy consumption. The accuracy of energy
predictions with the selected features was comparable to
energy predictions using a linear regression model with all
the features. The features commonly selected in our ex-
periments were execution time, cache accesses, memory in-
structions, context switches, CPU migrations, and program
length (Halstead metric). All of these features are known
to affect software performance, in terms of running time,
power consumed and latency. As a result, we can use exist-
ing performance optimisation techniques that reduce power
or execution time to also achieve energy gains. We confirmed
with the use of Polly, a compiler optimisation for data local-
ity, that significant energy gains were possible by reducing
latency and execution time. We believe the future in energy
optimisation lies in techniques that can reduce both power
and execution time.
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