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Abstract: Classifying, describing and understanding the natural environment is an important element of studies of

human, animal and ecosystemhealth, andbaseline ecological data are commonly lacking in remote environments of the

world. Human African trypanosomiasis is an important constraint on human well-being in sub-Saharan Africa, and

spillover transmission occurs from the reservoir community of wild mammals. Here we use robust and repeat-

ablemethodology to generate baseline datasets onvegetation andmammaldensity to investigate the ecologyofwarthogs

(Phacochoerus africanus) in the remote LuambeNational Park in Zambia, in order to further our understanding of their

interactions with tsetse (Glossina spp.) vectors of trypanosomiasis. Fuzzy set theory is used to produce an accurate

landcover classification, and distance sampling techniques are applied to obtain species and habitat level density

estimates for the most abundant wild mammals. The density of warthog burrows is also estimated and their spatial

distribution mapped. The datasets generated provide an accurate baseline to further ecological and epidemiological

understanding of disease systems such as trypanosomiasis. This study provides a reliable framework for ecological

monitoring of wild mammal densities and vegetation composition in remote, relatively inaccessible environments.

Keywords: distance sampling, fuzzy classification, Luangwa Valley, Phacochoerus africanus, trypanosome,

warthog, wild mammal density, Zambia

INTRODUCTION

Understanding the structure of natural ecosystems forms

the basis for understanding the processes within those

ecosystems, including the transmission of infectious and

vector-borne diseases. Remotely sensed datasets and geo-

graphical information systems (GIS) have been widely used

to further our understanding of these systems. This tech-

nology has not only helped in the study of the global dri-

vers of ecological change, but is also invaluable for

understanding the biotic and abiotic factors influencingJoseph Mubanga—deceased.
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ecosystems at much smaller scales. GIS technology has

become an integral component of many conservation

programmes and the development of trans-disciplinary

approaches such as Conservation Medicine, One Health

and EcoHealth have highlighted its utility. However, recent

moves to adopt ecosystem-based approaches within con-

servation and development programmes have highlighted

frequent deficiencies in baseline ecological data, particularly

in developing countries (Rapport et al. 1998).

For an area with such an internationally acclaimed

biodiversity, relatively little ecological data exist for the

Luangwa Valley in eastern Zambia (latitude -10.4� to

-15.6� and longitude 30.2� to 33.1�). Although many

valuable mapping and vegetation studies have been con-

ducted, they either lack detail (Trapnell 1950; Naylor et al.

1973; Phiri 1989; Marks 2005) or have restricted geo-

graphical coverage (Astle et al. 1969; Smith 1998; Yang and

Prince 2000). Similarly, published faunal surveys for the

Luangwa Valley are rare and no peer-reviewed published

data are available for many areas. Studies have been con-

ducted in game management areas (GMAs) surrounding

some of the national parks (Ndhlovu and Balakrishnan

1991; Lewis et al. 2011), and many of the species recorded

historically in the mid-Luangwa Valley have been docu-

mented (Astle 1999). Aerial surveys have been conducted in

the core parts of the Luangwa Valley on behalf of the

Zambian Wildlife Authority (ZAWA) (Simukonda 2011)

and as part of the Community Markets for Conservation

Programme (COMACO) (Olive et al. 2012; Frederick

2013). The population of hippopotamus (Hippopotamus

amphibious) has recently been surveyed and extensively

studied (Wilbroad and Milanzi 2010; Chansa et al. 2011a;

Chansa et al. 2011b). However, there is a clear need for

more high-resolution data to enable active monitoring of

ecosystem health in the valley.

There has been much interest in the role of warthogs

(Phacochoerus africanus) as natural reservoir hosts for

African swine fever (Plowright et al. 1969; Wilkinson et al.

1988), trypanosomiasis (Dillmann and Townsend 1979;

Claxton et al. 1992) and bovine tuberculosis (Bengis et al.

2002; Michel et al. 2006). Warthog burrows not only pro-

vide a refuge for warthogs from predators and extremes of

temperature, but they also provide a refuge for many par-

asites (Cumming 1975; Somers et al. 1994). The cool shady

conditions in the entrance to warthog burrows provide an

ideal refuge for tsetse flies during the heat of the day (Pilson

and Pilson 1967), and the burrows are important sites for

larviposition by female flies (Leak 1998). Warthogs are also

a preferred host for Glossina morsitans species of tsetse flies,

and a close ecological association between tsetse and war-

thog has been proposed (Pilson and Pilson 1967; Torr 1994;

Leak 1998). A study of tsetse ecology in Luambe National

Park (LNP) revealed that Combretum-Terminalia vegeta-

tion supports the highest apparent density of G. m. mor-

sitans and thicket the highest apparent density of G.

pallidipes (Anderson 2009). Warthogs have been shown to

carry a moderate prevalence of trypanosomes and the hu-

man-infective Trypanosoma brucei rhodesiense, the cause of

human African trypanosomiasis (HAT), has been identified

in warthogs in the Luangwa Valley (Dillmann and Town-

send 1979; Anderson et al. 2011). As a wide variety of other

hosts are fed on by tsetse to varying degrees (Clausen et al.

1998) and are components of the natural reservoir com-

munity for trypanosomiasis in the Luangwa Valley (An-

derson et al. 2011), it is important to understand more

about the density and distribution of wild animal hosts

within these ecosystems.

The majority of investigations into trypanosomiasis in

wildlife have focussed on estimation of the prevalence of

infection. Historically, prevalence was largely interpreted

in terms of host susceptibility to infection and, to a lesser

extent, host preference by tsetse. However, the importance

of ecological and behavioural factors in the transmission

of wildlife disease is now recognised (Cross et al. 2009).

Factors such as habitat preference, resource use, territo-

riality, group size and group density contribute to a

complex social and spatial structure for wildlife disease.

Understanding the structure and distribution of both

plant and animal communities is therefore critical for

clarifying the nature of contact between hosts and vectors,

and its impact on disease transmission. In a detailed re-

view of the ecological factors influencing the epidemiology

of trypanosomiasis in the Luangwa and Zambezi Valley

ecosystems, Munang’andu et al. (2012) identified host

distribution and abundance as having a significant influ-

ence on the survival of tsetse and therefore on try-

panosomiasis epidemiology. Many other factors are also

important including daily activity patterns of hosts and

seasonal migration behaviour. Tsetse distribution and

abundance is largely driven by climatic factors, host

abundance and vegetation (Robinson et al. 1997). A better

understanding of the distribution and characteristics of

both mammal and plant communities is therefore likely to

improve our management of HAT.

Here we generate accurate high-resolution datasets of

vegetation and large mammal density in the remote, rela-
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tively inaccessible LNP within the Luangwa Valley, in order

to investigate the ecology of warthogs and to further our

understanding of their interactions with Glossina spp.,

vectors of trypanosomiasis.

METHODS

Study Area

The Luangwa Valley lies in Muchinga, Eastern and Central

Provinces of Zambia, forming an extension of the Great

Rift Valley. LNP is a relatively small national park in the

mid-Luangwa Valley, situated between the larger North and

South Luangwa national parks on the other side of the

Luangwa River (Fig. 1). It is poorly developed with mini-

mal infrastructure, few roads and little accessibility during

the rains (December to March). It is situated close to the

historical sleeping sickness nidus in Nabwalia (Kinghorn

et al. 1913).

Landcover Classification

Landsat 7 ETM+ Data

Landsat 7 ETM+ data with a spatial resolution of 30 m were

selected for this study. The most recent L1G Landsat satellite

image covering the study area was downloaded from the

Global Land Cover Facility maintained by the University of

Maryland (image acquisition date 04/10/2001, path 170, row

069, cloud cover 0%) (NASA Landsat Programme 2004).

Proprietary satellite image processing software Erdas Imag-

ine 8.4 (Leica Geosystems AG, Atlanta, USA) was used for all

image processing and classification procedures.

Classification Scheme

The classification scheme selected is, to a degree, dictated

by the objectives of the study in question (Congalton 1991).

In this case, an important objective was to produce a da-

taset suitable for use as a GIS base layer for the design and

spatial analysis of warthog and tsetse surveys planned for

the park. Therefore, the classification level needed to dis-

tinguish between woodland classes, for example, rather

than to simply classify to the broad physiognomic vegeta-

tion unit level (i.e. woodland).1 The classification of vege-

tation at the physiognomic level by White (1983) was first

used to understand the vegetation units represented in the

park. These physiognomic units were then further divided

into individual land cover classes (Table 1). Particular

reference was made to the previous detailed studies of the

vegetation by Astle et al. (1969) and Smith (1998) with

allowances made for local differences in vegetation type

found in LNP.

Ground-Truthing

Ground-truthing was conducted to confirm the classifica-

tion scheme and collect reference training and test data in

August and September, 2005. Evaluation of vegetation class

relied on qualitative observations of vegetation physiog-

nomy and predominant tree or shrub species present. Tree

and plant species were identified with assistance from

standard field guides covering the southern African region

(Van Wyk and Van Wyk 1997; Coates Palgrave 2003a) and

the Luangwa Valley (Smith 1995; Coates Palgrave 2003b).

Spatial area was used to create a sample frame for collection

of reference data, with polygons of homogenous vegetation

as the sample unit. Twenty or more sample units were

collected for all classes using a hand-held global positioning

system (GPS), except for acacia woodland (sixteen) and hill

scrub miombo woodland (nine) whose limited distribution

precluded the collection of more data. For practical rea-

sons, reference data for the water class was created from the

non-classified Landsat image.

Classification

As collection of truly homogeneous polygons of vegetation

was difficult due to the occurrence of natural mosaics, a

classification approach based on fuzzy set theory was used

(Wang 1990; Foody 1996). Fuzzy set theory allows for de-

grees of truth to be represented in algorithms allowing for

joint membership of sets, or fuzzy boundaries. In image

classification, it may be used to replace conventional

probability theory in the classification process to create a

fuzzy partition of the spectral space. This allows joint

membership of classes by pixels represented by member-

ship grades, the important feature being that mixed pixels

are represented in the output classified image.

Reference polygons were firstly converted into regu-

larly spaced points at 30-m intervals (each point effectively

representing the value of one pixel) as the accuracy

assessment algorithm required point data rather than
1Physiognomic refers to the overall structure or physical appearance of the com-

munity including appearance, height and spacing.
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polygon data. A subset of 25% of the points in each class

were randomly selected and withheld from the training

data, to be used as the test data. The training data were then

used to create spectral signatures for each vegetation class.

As the reflectance and emittance properties vary for dif-

ferent vegetation types, a spectral response pattern referred

to as a spectral signature may be produced for each class

from the training data (Lillesand et al. 2004). The image

was classified using a maximum likelihood classifier with

the additional activation of the fuzzy classification function

(Pouncey et al. 1999). The feature space non-parametric

decision rule was applied first and pixels in areas of overlap

using this algorithm were then classified using the maxi-

mum likelihood parametric decision rule. Any unclassified

pixels using the non-parametric decision rule were also

classified using the parametric maximum likelihood rule.

The option to select eight best classes was chosen resulting

in an eight-layered fuzzy image. This was then processed

Figure 1. Map of the Luangwa

Valley, with inset map showing

the location of ground transects

within Luambe National Park.
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into one layer to produce an output land cover map using

the fuzzy convolution facility (Pouncey et al. 1999). A

3 9 3 window size was selected and the neighbour

weighting option used with a neighbourhood weight factor

of 0.5. All eight layers were used to perform the operation.

Image Evaluation

Classified images were examined by direct visualisation of

the output image and graphical evaluation of spectral re-

sponse patterns. Transformed divergence values were cal-

culated to assess signature separability. An error matrix was

generated to compare test and classified data; the overall

accuracy, overall kappa statistic and modified estimator of

kappa for stratified random sampling were calculated

(Stehman 1997). Class level producer’s and user’s accura-

cies were calculated along with the conditional kappa val-

ues. The accuracy of the classification produced by the

fuzzy algorithm was compared to a standard maximum

likelihood classification using McNemar’s test for signifi-

cance with the continuity correction (Foody 2004).

Distance Sampling Survey

Transect Design

The newly created land cover dataset was used to design a

mammal density survey using distance sampling meth-

ods. The primary objective was to estimate the abun-

dance of warthog and other mammalian hosts of

trypanosomes and the secondary objective to map war-

thog burrow distribution. A ground transect survey was

used rather than aerial survey techniques to enable more

accurate estimation of the density of smaller species

which are important hosts for trypanosomiasis. The

study was conducted during the dry season from August

to October, 2006, in the north of the park (the location

for a concurrent tsetse survey). A single random starting

point was generated to create a systematic grid of 40

parallel transects perpendicular to the Luangwa River.

The length of each transect was 4.5 km and the distance

between parallel transects was 250 m, providing a total

survey length of 180 km (inset map, Fig. 1).

Table 1. Vegetation Classes by Physiognomic Unit.

Physiognomic

vegetation unit

Vegetation class Characteristic tree/shrub species Acronym Abbreviation

Woodland Acacia woodland Acacia kirkii None AW

Combretum-Terminalia

woodland

Combretum species (C. fragrans,

C. collinum, C. imberbe)

Terminalia sericea

Combretum woodland CTW

Mopane woodland Colophospermum mopane None MW

Riverine woodland and thicket Diospyros mespiliformis, Kigelia africana,

Trichilia emetica,

Afzelia quanzensis, Combretum obovatum

Riverine woodland RWT

Scrub woodland Hill scrub miombo woodland Julbernardia globiflora Scrub miombo woodland HSMW

Mopane scrub woodland Colophospermum mopane Mopane scrub MSW

Thicket Thicket Schrebera trichoclada, Diospyros quiloensis,

Combretum species

(Combretum obovatum)

None TH

Grassland Grassland Occasional Combretum obovatum,

Kigelia africana, and

Colophospermum mopane

None G

Semi-permanent

water/aquatic-association

grassland

Combretum imberbe Aquatic grassland SPW/AAG

Ecohealth Monitoring and Research in Luambe NP



Survey Protocol

The same personnel were used throughout the survey, one

being an observer and one a measurer and recorder.

Transects were conducted on foot using a hand-held GPS

and all observations of mammal species and warthog bur-

rows were recorded. The perpendicular distance from the

transect line was measured using a laser range-finder to

ensure accuracy. All transects were started at approximately

6:30 am, the peak activity period for the majority of species

of interest, to ensure consistency across transects. One

transect line would be walked in an easterly direction and

the personnel would continue 250 m beyond the finish

before walking one kilometre either south or north to re-

turn along a different transect line in a westerly direction.

This protocol was followed in order to reduce the unde-

sirable effects caused by evasive movement of animals fol-

lowing disturbance during the preceding transect.

Data Analysis

The conventional distance sampling engine packaged

within the specialist distance sampling software program

Distance was used for analysis (Thomas et al. 2006). The

process recommended by Buckland et al (2001) was fol-

lowed with the transect lines defined as the sampling units.

A series of plausible models combined with expansion

terms were fitted to the data. A maximum of five adjust-

ment terms were fitted using AIC by the sequential method.

Histograms and qq plots were examined to assess data and

model fit. In all cases, data were grouped into distance

intervals, and truncation was carried out to remove out-

liers. The size-bias regression method was used to adjust for

detection bias for clusters of animals (Buckland et al. 2001).

Exact distance values, rather than distance intervals, were

used in size-bias regression calculations. The non-para-

metric bootstrap method was used to estimate variance

with resampling of 999 samples, seeded from the system

clock. Confidence intervals were calculated as 2.5% and

97.5% quantiles of the bootstrap estimates. Final models

were selected on the basis of the AIC, variance and chi-

squared goodness of fit.

The wild mammal survey was analysed with stratifi-

cation by species and habitat (vegetation class). For strat-

ification by species, the observations for all species with a

sample number of 40 or greater were examined using the

detection function specific for that species. For species with

an inadequate sample number for this approach, the global

detection function was used. For the habitat study, the

vegetation class for each observation was extracted from the

classified image and density estimates made using the

stratum specific detection function if the sample number

was adequate. Where numbers of observations were not

sufficient, data were pooled with the most similar habitat

type and estimates made using the global detection func-

tion for the pooled data. Observations of rodents were not

included in the analysis as they could not be identified

accurately to a species level from a distance. Separate

density estimates were made for warthog burrows in use at

the time of the survey, as well as for the total number of

warthog burrows detected (including inactive burrows).

RESULTS

Land Cover Classification

Ten land cover classes were identified during the ground-

truthing study (Table 1). The hill scrub miombo class was

very small and could not be accurately mapped so was

removed from the final classification (see discussion). The

overall accuracy of the classification was 71.2% (95% CI

65.3–76.7%). The image produced by the fuzzy classifier

was significantly more accurate than that produced using a

standard maximum likelihood classifier (McNemar’s chi-

squared = 4.6875, df = 1, P value = 0.030). The error

matrix is presented with the conditional kappa for the

classified data rather than the reference data (Table 2). The

area of the park as calculated from the classified image was

331 km2 (33119 hectares) and the total perimeter length

was 142 km (142102 m). The complete dataset for the final

classified image (Fig. 2) is available for download via the

ShareGeo open access repository at http://hdl.handle.net/

10672/606.

Mammal Density

Details of observations, cluster sizes and density estimates

for all species recorded during the survey are presented in

Table 3. The densities of species with 40 or more obser-

vations should be considered more reliable than the other

estimates as they were estimated using the stratum detec-

tion function. The overall density estimate of wild mam-

mals in the study area, excluding rodents, was 17.32

animals/km2 (95% CI 12.69–24.59). An additional 315

rodents were observed, including 249 mopane squirrels

(Paraxerus cepapi). Observations of warthogs were most

N.E. Anderson et al.
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frequently made in aquatic grassland and Combretum

woodland with nearly a quarter of all observations made in

each of these classes.

Large mammal density aggregate estimates by vegeta-

tion class are presented in Table 4. Observations for the

riverine woodland class and thicket class were pooled in

order to enable a class level density estimate to be made

using the global detection function of the two classes.

Combretum woodland and mopane scrub were similarly

combined to obtain a class level estimate. Few observations

were recorded for the acacia woodland and mopane scrub

classes meaning that no estimate was possible for the for-

mer, and a less reliable estimate was possible for the latter,

compared with other classes.

Warthog Burrow Density and Distribution

A total of 86 warthog burrows were detected during the

transect survey, 42 of which appeared to have been recently

used. The number of observations detected permitted an

overall estimate of density, but was not sufficient to allow

density estimates stratified by habitat (Table 5). The spatial

distribution of warthog burrows is presented in Figure 3.

The vast majority were observed in or around a slightly

elevated band of Combretum woodland and thicket sur-

rounding a large central area of mopane woodland and

mopane scrub.

DISCUSSION

Performance of the Classification

The overall accuracy of 71.2% for the final classified image

was considered to be good and the fuzzy logic algorithm

presented statistically significant improvements over the

conventional maximum likelihood algorithm. The presence

of mixed pixels in the image is likely to account for much of

the difference in performance between the two. Mixed pixels

have been identified as a major source of error in traditional

‘hard’ classifications that assign only one class to each pixel

(Wang 1990; Foody 1996; Benz et al. 2004) and as the most

important cause of misclassifications (Foody 2002). Detailed

information on joint membership by other classes, particu-

larly around boundary areas, is lost. There is no doubt the

training data will have contained some mixed pixels as

vegetation exists as a continuum in LNP (as in most natural

ecosystems) and classes overlap. Indeed, in his detailed

floristic study of North Luangwa National Park, Smith

(1998) grouped his vegetation categories into mosaics of

vegetation types that could not be mapped separately at his

Table 2. Error Matrix for the Classification.

Class name Reference data

MSW TH RWT CTW G SPW/AAG AW W MW User’s accuracy 95% CI

Classified data

MSW 17 2 0 1 5 2 1 0 0 61 41–78

TH 0 18 10 1 0 1 0 0 2 56 38–74

RWT 0 0 14 1 1 1 0 0 0 82 57–96

CTW 3 5 5 22 4 2 3 1 2 47 32–62

G 0 0 0 0 50 1 3 0 0 93 82–98

SPW/AAG 0 1 0 0 0 9 0 0 0 90 55–100

AW 0 0 0 0 0 0 7 0 0 100 59–100

W 0 0 0 0 0 0 0 18 0 100 81–100

MW 7 0 3 0 2 2 2 0 28 64 48–78

Producer’s accuracy 63 69 44 88 81 50 44 95 88

95% CI 42–81 48–86 26–62 69–97 69–90 26–74 20–70 74–100 71–96

Conditional kappa 0.56 0.5 0.81 0.35 0.91 0.9 1 1 0.56

Values in bold are correctly classified pixels. The sum of these values divided by the total number of samples in the matrix provides the overall accuracy

Overall accuracy = 71.2% (95% CI 65.3–76.7%).

Overall kappa statistic (j) = 0.67.

Estimator of kappa (KS) for stratified random sampling (Stehman 1997) = 0.74.
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chosen resolution. Although attempts were made to collect

homogenous reference data in this study, it will have con-

tained some heterogeneity and represented, in effect, ‘fuzzy’

ground-truth data. An important feature of fuzzy classifiers

is that homogenous reference data are not needed.

Most of the classes within the classification

scheme performed well, with the exception of the hill scrub

miombo class. A small area of this class was identified

during the ground survey on the hills in the south eastern

section of the park, but only at an altitude of 660 m or

greater. The highest point in LNP, based on the 1:250,000

topographical maps (Surveyor-General 1972), is 680 m

meaning this class was only present over a very restricted

area. As it was exerting a deleterious effect on the accuracy

of the rest of the classification, it was removed. Most of this

area is mapped by the classification as Combretum wood-

land with some scrub mopane woodland. In reality, it is

likely to represent more of a transition zone from Com-

bretum woodland to scrub miombo woodland rather than

just the latter.

Figure 2. Land cover classification

of Luambe National Park.

N.E. Anderson et al.
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Vegetation Composition of the Park

As discussed earlier, much of the vegetation of LNP exists

in a natural mosaic of vegetation types. However, at a larger

scale, several classes occur in fairly discreet zones, notably

mopane woodland, mopane scrub and grassland. The two

forms of Colophospermum mopane vegetation together are

dominant over large areas of the park covering 37% of the

total area. The large grassland habitats formed by the

floodplains of the Luangwa River tributaries are a signifi-

cant component of the park covering 14%. Thicket vege-

tation also forms fairly clear zones in places, but

interdigitates with Combretum woodland in others. Aquatic

grasslands, in the form of permanent or semi-permanent

lagoons, account for a much smaller proportion of the total

park area, but are a very characteristic feature of LNP.

Riverine woodland mainly flanks the Luangwa River, but is

also found in patches by the larger tributaries and lagoons.

Detailed descriptions of the vegetation classes in this study

may be found elsewhere (Anderson 2009).

Species Densities

Despite its small size, LNP has some distinctive wildlife

habitats and supports populations of several globally

threatened or endemic mammal species. The wildlife den-

sity estimates presented here represent the most detailed

published information to date and can act as a baseline for

on-going research and monitoring. Overall mammal den-

sities were relatively low with some notable exceptions such

as puku (Kobus vardonii).

Of the most abundant species, only warthog are known

to be preferred hosts for tsetse (Clausen et al. 1998).

Warthogs are generally a successful species and density

estimates vary from 15 km-2 (Cumming 1975) to 30 km-2

(Estes 1993) in the best habitat (fertile alluvial soils), and

less than 1 km-2 (Cumming 1975) in less favourable areas.

Densities are highest in short grassland or wooded grass-

land areas (Rodgers 1984) and mosaics of suitable wet and

dry season habitat are important (Cumming 1975). The

density of warthog estimated in this study (3.14 km-2, 95%

Table 4. Summary of the Estimated Densities for Large Mammalsa by Vegetation Class in the Study Area.

Habitat Truncation

distance

(m)/intervals

Observations

(post-truncation)

Detection

function

AIC ESW (m) Estimated

cluster size

(95% CI)

Density (95% CI)

Aquatic grassland 430/9 73 Stratum 284.96 201.71 4.19 (2.66–5.84) 7.14 (4.09–12.41)

Combretum woodland 165/8 43 Global 230.9 62.48 2.60 (2.00–3.80) 6.45 (3.49–10.01)

Grassland 400/15 178 Stratum 947.36 190.79 7.23 (4.93–10.25) 41.04 (23.12–68.20)

Mopane scrub 165/8 21 Global 230.9 62.48 3.18 (1.41–6.60) 3.84 (1.22–8.42)

Mopane woodland 210/9 93 Stratum 344.27 86.04 5.64 (3.86–7.48) 25.62 (11.58–58.17)

Riverine woodland 380/10 38 Global 248.42 85.341 8.12 (4.17–15.36) 12.13 (5.51–25.57)

Thicket 380/10 39 Global 248.42 85.341 3.00 (1.77–4.43) 5.33 (2.96–8.82)

Total 380/10 489 Global 1864.63 109.8 5.09 (4.10–6.24) 17.32 (12.69–24.59)

Models with a half-normal key function and cosine series expansion term provided the best fit to the data when stratified by vegetation type and hazard rate key

function with simple polynomial expansion term when not stratified.
aBaboon, Bushbuck, Elephant, Sharpe’s Grysbok, Impala, Greater Kudu, Puku, Southern Reedbuck, Serval, Spotted Hyaena, Vervet Monkey, Warthog,

Common Waterbuck, Cookson’s Wildebeest and Burchell’s Zebra

Table 5. Density Estimates for Warthog Burrows in the Study Area.

Status Truncation

distance (m)/intervals

Observations

(post-truncation)

Detection

function

AIC ESW

(m)

Density (95% CI)

All burrows 29/7 83 Stratum 242 10.6 21.80 (15.75–37.89)

Used burrows 29/8 40 Stratum 133.26 11.36 9.81 (5.92–14.71)

A model using a half-normal key with a cosine expansion term provided the best fit for both models.
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CI 1.93–5.98) was comparable with the density recorded in

nearby Upper Lupande GMA (2.2 km-2) and the Zambezi

Valley, Zimbabwe, but towards the lower end of reported

densities (Cumming 1975; Rodgers 1984; Ndhlovu and

Balakrishnan 1991). The relatively high proportion of

warthog clusters observed in aquatic grassland is notable as

it covered only 4% of the transect area. Aquatic grassland

presents a reliable dry season source of forage for warthogs

which were frequently observed digging for rhizomes of

grasses and sedges in this habitat. Observations were

comparatively frequent in the Combretum woodland

habitat, which has a well-developed grass layer. Also

notable were high densities of warthog in areas with new

grass appearing after a bush fire. Marked local increases in

warthog density after dry season fires have been noted

before (Cumming 1975). Uncontrolled burning is a regular

Figure 3. Geographical distribu-

tion of warthog burrows in the

study area.

Ecohealth Monitoring and Research in Luambe NP



occurrence in LNP and is also likely to exert a significant

selection pressure on the vegetation, especially given the

resistant nature of Combretum species in particular to fire

(Smith 1998). In turn it is likely to have significant effects

on the diversity and abundance of fauna.

Warthog Burrow Distribution

Mapping of the warthog burrows over the classified

dataset allowed the spatial pattern and habitat preference for

burrow location to be examined. The clear pattern revealed

in Figure 3 may be explained by the drainage of the soils, the

ease of excavation and the provision of cover frompredation.

Combretum woodland and thicket are generally found on

more sandy soils with better drainage in the rains and easier

excavation. In contrast, mopane woodland and mopane

scrub generally occur on clay soils, prone to seasonal flooding

(Smith 1998) and difficult to excavate in the dry season.

Warthog have been reported to thrive in areas of wooded

grassland bounding suitable floodplain grassland (Rodgers

1984), a situation which occurs especially towards the south

of the transect study area in LNP. The close proximity of

patches of aquatic grassland to burrows makes suitable dry

season grazing readily available. The close ecological associ-

ation between warthog and tsetse was outlined earlier in the

Introduction including the observation that apparent den-

sities of G. m. morsitans tsetse are greatest in Combretum

woodland and G. pallidipes in thicket (Anderson 2009). It is

very notable, therefore, that themajority of warthog burrows

are located within these two habitats.

Habitat Densities

The use of the classified dataset also allowed the aggregate

density of wild mammals to be examined by vegetation

class. Not surprisingly, the highest densities were recorded

in grassland with nutritious herbage providing for large

densities of puku in particular. Although lower densities of

large mammals were recorded in the riverine woodland and

aquatic grassland classes, these habitats are likely to be very

important ecologically, especially in the dry season as a

source of forage and water. They may support a wide

diversity of other species not included in the survey such as

birds, amphibians and invertebrates. Acacia woodland

forms only a very small component of the vegetation in

LNP and animals were rarely observed in the dense stands

of Acacia kirkii, but were more commonly seen in more

open acacia woodland near the Luangwa River.

It would have been desirable to estimate individual

species density by habitat type, but the data were not robust

enough to allow this. The large survey effort required

(approximately 60 observations per habitat type for each

species) makes this difficult to achieve across all habitat

types, especially in environments with low mammal den-

sities. Similarly, four land cover classes (riverine woodland,

thicket, mopane scrub and Combretum woodland) did not

have sufficient observations to enable the use of the stratum

detection function in the analysis. Although preferable to

using the global detection function, an accurate estimate

was made possible by pooling the class in question with the

class with the most similar visibility characteristics and

using the global detection function for the two classes

combined to estimate density. Riverine woodland was

pooled with thicket for this purpose, and mopane scrub

was pooled with Combretum woodland. Although species

and cluster size may have confounded the detection

probabilities to some degree, the estimated densities pro-

vide a useful indication of the general distribution of

mammals.

Size of the Park

Calculation of the area of LNP using the classified image

(331 km2) produces a considerably different value to the

official figure for the park area (254 km2). Unfortunately, it

is not clear where the official figure used by the ZAWA

originates from. Changes in the course of the Luangwa

River forming the western boundary of the park are

occurring continuously, but will not account for such a

large discrepancy. Although the exact boundary of the park

is disputed by the local community, the shapefile used in

this study was created through digitisation of high resolu-

tion topographical maps (Surveyor-General 1972) based on

the original gazetting of the park, which suggests the na-

tional park area figures used by ZAWA may be incorrect.

CONCLUSION

This study provides a reliable framework for ecological

monitoring of vegetation composition and wild mammal

densities in remote, relatively inaccessible environments.

Information generated can be used as a baseline for further

study into wildlife disease systems. The use of classification

algorithms based on fuzzy set theory enables accurate

classification of vegetation classes despite the presence of

N.E. Anderson et al.



natural mosaics and mixed pixels. The datasets created are

ideal for use as a GIS base layer for the design, imple-

mentation and analysis of ecological and epidemiological

studies. The distance sampling technique utilising a ground

survey allows for reliable estimation of densities of smaller

mammal species and important hosts of trypanosomes

such as warthogs. The large survey effort required to esti-

mate species density accurately in areas with relatively low

wild mammal densities may limit the usefulness of this

technique for health research in some environments.

Despite decades of research into trypanosomiasis our

understanding of disease transmission in wildlife hosts is

limited by the complexity and large size of the reservoir

host community, and the many factors that influence it.

Accurate description of the structure and distribution of

communities is necessary to further our understanding and

will enable better management of health relationships in

remote environments such as those described in this study.

Data such as these will help to enable improved modelling

of disease systems with a consequential improvement in

our understanding of the effects of interventions in biodi-

verse ecosystems.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the Zambian

Wildlife Authority and the Department of Veterinary

Services, Government of Zambia. Funding was provided

by the Department for International Development Animal

Health Programme (DFID-AHP) and the Royal Zoological

Society of Scotland. NEA and SCW are funded with

support from the Ecosystem Services for Poverty Allevia-

tion Programme (ESPA), NERC Project No. NE-J001570-1.

EMF is funded by the Wellcome Trust (085308). Prof. S.

Buckland provided advice regarding the design of the

transect survey and Kepson Chansa assisted with the field

survey. James Milansi, Wilbroad Chansa, Victor Siamu-

daala and Adrian Carr provided support and advice during

the fieldwork.

OPEN ACCESS

This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits un-

restricted use, distribution, and reproduction in any med-

ium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

REFERENCES

Anderson NE (2009) An Investigation into the ecology of try-
panosomiasis in wildlife of the Luangwa Valley, Zambia Thesis.
University of Edinburgh.

Anderson NE, Mubanga J, Fevre EM, Picozzi K, Eisler MC,
Thomas R, et al. (2011) Characterisation of the wildlife reservoir
community for human and animal trypanosomiasis in the
Luangwa Valley, Zambia. PLoS Neglected Tropical Diseases
5:e1211

Astle WL (1999) A History of Wildlife Conservation and Manage-
ment in the Mid-Luangwa Valley, British Empire and Com-
monwealth Museum: Zambia

Astle WL, Webster R, Lawrence CJ (1969) Land classification for
management planning in the Luangwa Valley of Zambia. Jour-
nal of Applied Ecology 6:143–169

Bengis RG, Kock RA, Fischer J (2002) Infectious animal diseases:
the wildlife/livestock interface. Revue Scientifique Et Technique
De L Office International Des Epizooties 21:53–65

Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M
(2004) Multi-resolution, object-oriented fuzzy analysis of re-
mote sensing data for GIS-ready information. ISPRS Journal of
Photogrammetry and Remote Sensing 58:239–258

Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL,
Thomas L (2001) Introduction to Distance Sampling: Estimating
Abundance of Biological Populations, Oxford: Oxford University
Press

Chansa W, Milanzi J, Sichone P (2011) Influence of river geo-
morphologic features on hippopotamus density distribution
along the Luangwa River, Zambia. African Journal of Ecology
49:221–226

Chansa W, Senzota R, Chabwela H, Nyirenda V (2011) The
influence of grass biomass production on hippopotamus pop-
ulation density distribution along the Luangwa River in Zambia.
Journal of Ecology and the Natural Environment 3:186–194

Clausen PH, Adeyemi I, Bauer B, Breloeer M, Salchow F, Staak C
(1998) Host preferences of tsetse (Diptera: Glossinidae) based on
bloodmeal identifications. Medical and Veterinary Entomology
12:169–180

Claxton JR, Faye JA, Rawlings P (1992) Trypanosome infections
in warthogs (Phacochoerus aethiopicus) in the Gambia. Veteri-
nary Parasitology 41(179–187):1992

Coates Palgrave K (2003) Trees of Southern Africa, Cape Town:
Struik Publishers

Coates Palgrave M (2003b). Key to Some Trees of the South
Luangwa Valley, Harare.

Congalton RG (1991) A Review of Assessing the Accuracy of
Classifications of Remotely Sensed Data. Remote Sensing of
Environment 37:35–46

Cross P, Drewe J, Patrek V, Pearce G, Samuel M, and Delahay R
(2009). Wildlife population structure and parasite transmission:
implications for disease management. In: Management of Dis-
ease in Wild Mammals, Delahay R, Smith G, Hutchings M
(editors), Japan: Springer, pp 9–29

Ecohealth Monitoring and Research in Luambe NP

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Cumming DHM (1975) A Field Study of the Ecology and Behaviour
of Warthog, Harare: National Museum

Dillmann JSS, Townsend AJ (1979) Trypanosomiasis survey of
wild animals in the Luangwa Valley, Zambia. Acta Tropica
36:349–356

Estes RD (1993) The Safari Companion: A Guide to Watching
African Mammals, Harare: Tutorial Press

Foody GM (1996) Approaches for the production and evaluation
of fuzzy land cover classifications from remotely-sensed data.
International Journal of Remote Sensing 17:1317–1340

Foody GM (2002) Status of land cover classification accuracy
assessment. Remote Sensing of Environment 80:185–201

Foody GM (2004) Thematic map comparison: evaluating the
statistical significance of differences in classification accuracy.
Photogrammetric Engineering and Remote Sensing 70:627–633

Frederick H (2013). Aerial Survey Report: Luangwa Valley, 2012.
Lusaka.

Kinghorn A, Yorke W, Lloyd L (1913) Final report of the Luangwa
Sleeping Sickness Commission of the BSA Co 1911-1912. Annals
of Tropical Medicine and Parasitology 7:183–283

Leak SGA (1998). Tsetse biology and ecology: their role in the
epidemiology and control of trypanosomosis. In: Tsetse Biology
and Ecology: Their Role in the Epidemiology and Control of
Trypanosomosis. CAB International, in association with the
International Livestock Research Institute, Nairobi, Kenya,
Wallingford.

Lewis D, Bell SD, Fay J, Bothi KL, Gatere L, Kabila M, et al. (2011)
Community Markets for Conservation (COMACO) links bio-
diversity conservation with sustainable improvements in liveli-
hoods and food production. Proceedings of the National
Academy of Sciences 108:13957–13962

Lillesand TM, Kiefer RW, and Chipman JW (2004). Digital Image
Processing. Pages 491-637 in Remote sensing and image inter-
pretation. John Wiley & Sons, New York.

Marks SA (2005) Large Mammals and a Brave People, 2nd ed., New
Brunswick: Transaction Publishers

Michel AL, Bengis RG, Keet DF, Hofmeyr M, de Klerk LM, Cross
PC, et al. (2006) Wildlife tuberculosis in South African con-
servation areas: implications and challenges. Veterinary Micro-
biology 112:91–100

Munang’andu HM, Siamudaala V, Munyeme M, Nalubamba KS
(2012) A review of ecological factors associated with the epi-
demiology of wildlife trypanosomiasis in the Luangwa and
Zambezi Valley ecosystems of Zambia. Interdiscip Perspect Infect
Dis 2012:372523

NASA Landsat Programme (2004). Landsat ETM+ Scene
p170r069. in.

Naylor JN, Caughley GJ, Abel NO, Liberg O (1973) Luangwa
Valley Conservation and Development Project, Zambia: FAO

Ndhlovu DE, Balakrishnan M (1991) Large herbivores in Upper
Lupande Game Management Area, Luangwa Valley, Zambia.
African Journal of Ecology 29:93–104

Olive MM, Goodman SM, Reynes JM (2012) The role of wild
mammals in the maintenance of Rift Valley fever virus. Journal
of Wildlife Diseases 48:241–266

Phiri PSM (1989) The flora of the Luangwa Valley and an analysis
of its phytogeographical affinities. PhD Thesis. Reading.

Pilson RD, Pilson BM (1967) Behaviour studies of Glossina
morsitans Westwood in field. Bulletin of Entomological Research
57:227

Plowright W, Parker J, Pierce MA (1969) Epizootiology of African
Swine Fever in Africa. Veterinary Record 85:668–674

Pouncey R, Swanson K, and Hart K (1999). Erdas Field Guide.

Rapport DJ, Costanza R, McMichael AJ (1998) Assessing ecosys-
tem health. Trends in Ecology & Evolution 13:397–402

Robinson T, Rogers D, Williams B (1997) Univariate analysis of
tsetse habitat in the common fly belt of Southern Africa using
climate and remotely sensed vegetation data. Medical and
Veterinary Entomology 11:223–234

Rodgers WA (1984) Warthog Ecology in South East Tanzania.
Mammalia 48:327–350

Simukonda C (2011). Wet season survey of the African elephant
and other large herbivores in selected areas of the Luangwa
Valley.

Smith PP (1995) Common Trees, Shrubs and Grasses of the
Luangwa Valley, St. Ives: Trendrine Press

Smith PP (1998) A reconnaissance survey of the vegetation of the
North Luangwa National Park, Zambia. Bothalia 28:197–211

Somers MJ, Penzhorn BL, Rasa OAE (1994) Home range size,
range use and dispersal of warthogs in the eastern Cape, South
Africa. Journal of African Zoology 108:361–373

Stehman SV (1997) Selecting and interpreting measures of the-
matic classification accuracy. Remote Sensing of Environment
62:77–89

Surveyor-General (1972) In: 1232 C1, 1232 C2, 1232 A3, 1232 A4,
Lusaka.

Thomas L, Laake JL, Strindberg S, Marques FFC, Buckland ST,
Borchers DL, et al. (2006). Distance 5.0. Release 2. In: U. o. S. A.
Research Unit for Wildlife Population Assessment. http://www.
ruwpa.st-and.ac.uk/distance/, editor.

Torr SJ (1994) Responses of tsetse flies (Diptera: Glossinidae) to
warthog (Phacochoerus aethiopicus Pallas). Bulletin of Entomo-
logical Research 84:411–419

Trapnell CG, Martin JD, Allan W (1950) A Vegetation Soil Map of
Northern Rhodesia, Lusaka: Government Printer

Van Wyk B, Van Wyk P (1997) Field Guide to Trees of Southern
Africa, 1st ed., Cape Town: Struik Publishers

Wang F (1990) Fuzzy supervised classification of remote-sensing
images. Transactions on Geoscience and Remote Sensing 28:194–
201

White F (1983). The vegetation of Africa. In: Natural Resources
Research No 20, p 50 Unesco.

Wilbroad C, Milanzi J (2010) Population status of the hip-
popotamus in Zambia. African Journal of Ecology 49:130–132

Wilkinson PJ, Pegram RG, Perry BD, Lemche J, Schels HF (1988)
The distribution of african swine fever virus isolated from Or-
nithodorus-moubata In Zambia. Epidemiology and Infection
101:547–564

Yang J, Prince SD (2000) Remote sensing of savanna vegetation
changes in Eastern Zambia 1972–1989. International Journal of
Remote Sensing 21:301–322

N.E. Anderson et al.

http://www.ruwpa.st-and.ac.uk/distance/
http://www.ruwpa.st-and.ac.uk/distance/

	Ecological Monitoring and Health Research in Luambe National Park, Zambia: Generation of Baseline Data Layers
	Abstract
	Introduction
	Methods
	Study Area
	Landcover Classification
	Landsat 7 ETM+ Data
	Classification Scheme
	Ground-Truthing
	Classification
	Image Evaluation

	Distance Sampling Survey
	Transect Design
	Survey Protocol
	Data Analysis


	Results
	Land Cover Classification
	Mammal Density
	Warthog Burrow Density and Distribution

	Discussion
	Performance of the Classification
	Vegetation Composition of the Park
	Species Densities
	Warthog Burrow Distribution
	Habitat Densities
	Size of the Park

	Conclusion
	Acknowledgments




