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Mode switching in volcanic seismicity:
El Hierro 2011–2013
Nick S. Roberts1, Andrew F. Bell1, and Ian G. Main1

1School of Geosciences, University of Edinburgh, Edinburgh, UK

Abstract The Gutenberg-Richter b value is commonly used in volcanic eruption forecasting to infer
material or mechanical properties from earthquake distributions. Such studies typically analyze discrete
time windows or phases, but the choice of such windows is subjective and can introduce significant bias.
Here we minimize this sample bias by iteratively sampling catalogs with randomly chosen windows and then
stack the resulting probability density functions for the estimated eb value to determine a net probability
density function. We examine data from the El Hierro seismic catalog during a period of unrest in 2011–2013
and demonstrate clear multimodal behavior. Individual modes are relatively stable in time, but the most
probable eb value intermittently switches between modes, one of which is similar to that of tectonic
seismicity. Multimodality is primarily associated with intermittent activation and cessation of activity in
different parts of the volcanic system rather than with respect to any systematic inferred underlying process.

1. Introduction

The b value of the Gutenberg-Richter relation, log(N) =a� bM [Gutenberg and Richter, 1954], describes the relative
proportions of large- and small-magnitude earthquakes in a catalog. Theoretical and experimental studies suggest
that b values are influenced by a variety of factors, including stress [Scholz, 1968], mechanical properties
[Schorlemmer et al., 2005], thermal gradient [Warren and Latham, 1970], pore fluid pressure [Sammonds et al.,
1992; Raleigh et al., 1976], andmaterial damage. The b value for tectonic earthquakes, using best practice and large
regional or global data sets, is commonly reported as b=1 [Frolich and Davis, 1993]. In contrast the reported b
values from published studies of earthquake populations associated with volcanic unrest are commonly reported
as being significantly higher than this [Roberts et al., 2015]. At volcanoes, the temporal evolution of the b value has
been used to infer changes in the physical processes controlling the approach to eruption, including material fail-
ure, and have been proposed as a potential forecasting tool. However, existing methods typically calculate b
within either a series of independent finite-time windows or overlapping fixed-width moving windows. In order
to achieve the necessary fine-scale resolution of b value changes, these studies often use small subcatalog sizes
and assume a single value of the completeness magnitude [Ibanez et al., 2012; López et al., 2012; Marti et al.,
2013b]. Consequently, the errors in the b values are likely to be large, correlated, and underestimated, and poten-
tially give rise to biased results [Roberts et al., 2015]. At this stage of modeling we do not consider the effect of
uncertainties in the individual magnitudes, so our error estimates are all underestimates to some extent.

Here, for the first time, we show the full probability distribution of the b value for a volcanic earthquake catalog
as it evolves with time. This result is achieved by combining two new methods. First, a stochastic windowing
technique is used to recover fine-scale resolution of b value changes, while avoiding arbitrary choices of
window edges and small subcatalog sizes. Second, a more realistic uncertainty estimate for the b value is
determined for each subcatalog by joint estimation with the completenessmagnitude. This process is repeated
many times, and the resulting b value samples and their errors combined to construct the full b value probability
distribution. A key benefit of this approach is that it is able to resolve different b values associated with contem-
poraneous processes in the case where some generate high rates of events for short durations and others low
rates for longer durations, characteristics that are typical for many volcanic processes.

2. Methods
2.1. Iterative Sampling Methodology

Figure 1 shows the inferred eb value and its error distribution obtained from finite samples of a synthetic cat-
alog with a parent Gutenberg-Richter distribution above Mc= 1.0, with b=1 for the first and last 5000 events
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and b= 2 for the middle 5000. Our newmethod clearly recovers the underlying b values within the uncertain-
ties involved. Themethod is as follows. First, the catalog is divided into subcatalogs of random size between a
predefined minimum and maximum number of events of 50 and 1000 events, respectively, as justified in the
“Choice of parameters” section in the supporting information. Three iterations are illustrated in Figure 1a. For

each subcatalog Mc is selected using the workflow in Figure 9 of Roberts et al. [2015]. The eb value with asso-
ciated error σ~b is calculated for the complete part of the subcatalog using equations S2 and S3 (supporting

information). The error multiplication factor R(eb; N) from Figure 11 of Roberts et al. [2015] is then used to
determine the total error Rσ~b , i.e., including the uncertainty introduced in estimating Mc. The average time

Figure 1. The synthetic catalog has a parent Gutenberg-Richter distribution above Mc = 1.0, with b = 1 for the first and
last 5000 events and b = 2 for the middle 5000. (a) Each event is shown as a black dot. The red, blue, and green lines
show the boundaries of each catalog in three succesive iterations. (b) Cloud of data points produced by 100 iterations.
(c) The eb value probability density by event number. The dashed grey line shows the underlying known b value.
The dotted black line marks ebP .
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and event number for the subcatalog is

then calculated, allowing the eb value to
be plotted as a function of either.
Figure 1b shows the cloud of data points
produced by 100 iterations. The advan-
tage of plotting by event number is it
normalizes the event rate making it
easier to see variations when the event
rate is high. This process is then iterated
a desired number of times, each time
using different random subcatalog sizes.
Following enough iterations, a cloud of
data points spanning the whole catalog
is created.

For this method to be used as a real-time
analysis tool, it is important that we are

able to identify eb value variations in the
most recent events. To make sure that
the most recent events are always
sampled, the catalog is divided into sub-
catalogs by starting with the youngest
event then working back in time. This
means that the oldest events may be
undersampled if the number of remain-
ing events if less than the minimum sam-
ple size.

2.2. Converting to a Probability
Density Function

Each data point for a given randomly gen-

erated window has a eb value, an error, σ~b ,
and a multiplication factor R. For consis-
tency with equation (S3—supporting
information), we use the parametrized
version of the normal distribution to calcu-
late the relative probability for any given b
value, bi.

P bi;eb; σ~b; R
� �

¼ 1

Rσ~b
ffiffiffiffiffiffi
2π

p e
�1

2
bi�~b
Rσ~b

� �2

(1)

P(bi) is calculated over a b value range
from 0 to 4, at a resolution of 0.01 units.

2.3. Monte Carlo Simulation of Error
Structure Using Moving Windows

In principle, stacking enough individual
probability density functions (PDFs) at
randomly sampled times should reveal
the true structure of the overall PDF.

However, from equation (1)eb values with
smaller error contribute more to a
stacked curve. As the size of the error is

Figure 2. Sensitivity testing of the size of the window used to create theeb value probability density function. (a) uses 10 data points, (b) 20, (c) 50,
(d) 100, and (e) 200. Fifty data points was chosen as a compromise
between eliminating noise and oversmoothing the data. However, every
window size shows the major steps in the modal eb value.
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proportional to the eb value (equation S3), higher eb values will also have higher errors (Figure 1). Therefore,

care must be taken not to stack too many data points so that brief periods of highebwill not be hidden due
to over smoothing.

To stack the PDFs, we take a fixed number of data points and sum the individual PDFs for all bi and then

normalize the summed curve so that ∑
i¼4

i¼0
P bið Þ ¼ 1. This allows us to compare the peak probability for all

the stacked PDFs. We take the time stamp for a given window to be, respectively, the average event num-
ber and average time and do this for all times and event numbers. Figure 2 shows sensitivity testing for 10,
20, 50, 100, and 200 data points in each window. We chose 50 data points as the ideal trade-off for resolu-
tion and smoothness. The results are visualized as a contour plot in probability-time space rather than as
error bars at discrete points (both shown in Figure 3).

3. El Hierro Catalog

After testing and benchmarking on synthetic catalogs (Figures 1 and 2 are further discussed in the “Synthetic
catalog testing” section in the supporting information), we applied the new method to real seismicity data
from El Hierro volcano, Canary Islands [Ibanez et al., 2012; Marti et al., 2013b; Becerril et al., 2013; López

et al., 2012; García et al., 2014] to generate a temporally evolving eb value probability density function

(PDF), denoted Pʹ(eb). We analyze the Instituto Geográfico Nacional (IGN) earthquake catalog for El Hierro
between July 2011 and December 2013—a period containing over 20,000 earthquakes associated with
magma emplacement and a submarine eruption that began on 10 October 2011 [Ibanez et al., 2012; López

Figure 3. The eb value probability density plotted by (a) event number and (b) time, using the iterative sampling method.
The dotted black line traces ebP . The vertical dash-dotted black, red, and blue lines mark the times of the events: (i) Event
2020 on 9 August 2010, (ii) Event 10800 on 2 November 2010, and (iii) Event 16300 on 9 December 2011. Overlain is a
comparison of results by Roberts et al. [2015, Figure 14] using fixed, subjectively chosen windows. The error bars show the
total eb value at one standard deviation, accounting for the error in Mc. The dashed line shows that the straight line fits
between the two standard deviations error (approximately 95% confidence limits). The bars with numbers 1–8 shows the
phases in Table 1. The red line in phase 2 indicates the time of the eruption on 10 October 2011.

Geophysical Research Letters 10.1002/2016GL068809
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et al., 2012]. An epicentral and hypocentral map of these events is shown in supporting information Figure S5,
and the magnitudes and daily events rates are plotted in supporting information Figure S6. Some 4100

individual eb values were generated over 100 iterations; these were then converted first to Gaussian PDFs

for individual windows and then stacked to determine the net Pʹ(eb) using a 50-point moving window.

4. Results

The results are shown as a function of both event number (Figure 3a) and time (Figure 3b). We use both plots
because it is possible to see the fine structure better on the event number plot during times of high event rate.

The periods with red colors in Figure 3 have the highest probability density Pʹ(eb). The eb value with peak prob-

ability,ebP, is marked with a black dotted line to show how the maximum likelihoodeb value varies through time.

The results show ebP typically being between 1.0 and 1.5 and that it is best constrained when ebP≈1. Prior to
the eruptionebP can be as high as 3.25 with several periods ofebP> 2.0. However, the most striking aspect of

Figure 3 is the rapid switching between alternately higher and lower ebP. The ebP value does not increase or
decrease smoothly through the catalog; it jumps between values and then remains relatively constant

until it changes again. This behavior is contrary to experimental observations, where eb values evolve
more gradually with time [Henderson et al., 1994;Main, 1996] and more reminiscent of a “mode-switching”

process [Ben-Zion et al., 1999] observed in some models for tectonic earthquakes. Post-eruption, the eb
values stabilizes at eb= 1 for several months until a period from July 2012 to April 2013 where the eb value

is very poorly constrained, with P′ eb� �
< 0.020. The net P′ eb� �

is clearly multimodal, e.g., with persistent

multiple local peaks in the range 0.6–2.5, in the time period October 2012 to December 2012.

Figure 3b also compares ebP with inferred eb values obtained by conventional finite-time windows, using
phase boundaries based on previously reported changes in hypocenter location [Roberts et al., 2015].
The uncertainty structure is much richer and more informative for the new method. While the previously

inferred eb values and uncertainties are not unreasonable using the conventional windowing method, they

do not capture the multimodal behavior and mode switching inebP. There are also significant periods when
ebP does not agree with eb within its uncertainty, shown as two standard deviations, or approximately 95%

confidence. In September 2012 and March 2013ebP is systematically above this two standard deviation win-
dow, and through October–December 2012 and in May 2013, it is systematically below it.

Our method allows for the analysis of the full PDF, rather than assuming a Gaussian distribution [Aki, 1965], giv-
ing a much greater insight into the error structure and its potential multimodal character. The time or event
number associated with each stacked window is taken to be the average event number or time, so it is possible
to examine snapshots of the net PDF for any given event or time. Figure 4 shows three examples at different

times corresponding to three significant events: (i) where ebP is very high (>3), (ii) where ebP≈1, and (iii) where
ebP is multimodal. These examples are indicated in Figures 3 and 5. Event (i) has the highestebP in the whole cat-

alog whereebP =3.25, with a broad, low-amplitude peak valueP ebP
� �

of only ~0.006. There is a subsidiary peak at

eb=1.3 corresponding to the baseline b value both before and after the period of very highebP. Thewindowwhen
ebP=3.25 is only a few hundred events wide. This would be very hard to identify by eye in a time series because it
occurs during a period with very high event rates.

In the post-eruption phase (Figure 4ii) eb is very well constrained to ebP = 1.0, similar to that of tectonic seis-
micity. There is a single peak with a narrow symmetric base, indicating simple unimodal behavior. Figure 4iii
shows the net PDF associated with event (iii) in December 2012. The PDF is clearly multimodal, with five nota-

ble peaks at eb =0.5, 0.7, 1.1, 1.7, and 2.6, although the peak at 0.5 has a very small cumulative probability
(<1%) associated with it and hencemay not be significant. The question arises, what might be the underlying
cause of the four peaks that do make a significant contribution to the cumulative probability?

Closer inspection of the seismic catalog reveals that there are four clusters (A–D) of events that can be sepa-
rated spatially (Figure 5) as well as temporally, with A starting first, B and C second at the same time but at

Geophysical Research Letters 10.1002/2016GL068809
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different depths, and then finally D (sup-
porting information Figure S4). All clus-
ters then ended at approximately the
same time. Accordingly, we determined
eb and its error bar for the four clusters
separately. Clusters A–C contain >500
events in the incomplete catalog,
comparable with an average sampled
catalog size of 525. Accordingly, there
is sufficient data to identify statistically

distinct eb values if the underlying values
are different. Cluster D contains 113

events, so although it will be much harder to sample, the minimum catalog size of 50 events should allow
for it to be suitably represented in the PDF, given enough sampling iterations.

Clusters B and D both have complete catalog sizes significantly below the advised threshold [Roberts et al.,
2015] of Nc ≥ 200 (89 and 38, respectively), so the results should be treated with caution. However, the calcu-

lated eb values for all four clusters fit well within error to the four most significant peaks in the PDF (Figure 4).
Themode-switching behavior can then be attributed to different parts of the volcanic system being activated

Figure 4. Cross sections of theebvalue probability density functionmarked
in Figure 3, using a 50 data point window. Colored error bars in (iii)
represent the eb values calculated for the clusters in Figure 5.

Figure 5. Epicentral and hypocentral locations of earthquakes above 0.0M in Phase 6 (Table 1). Each colormarks a separate clus-
ter of events, A–D. All clusters ceased activity by 18 March 2013. Cluster A started on 13 March 2012. Clusters B and C started on
14 September 2012. Cluster D began on 31 December 2012. Events colored grey were judged not to be part of any of the
clusters of events. The colored polylines show where the majority of events in phases 1–5, 7, and 8 are clustered. The black and
grey ovals and lines in the cross section indicate the relative positions of the magma chambers described in Marti et al. [2013a,
2013b]. The direction of migration in Phase 2 is marked with an arrow. In map view, the solid black line shows the shoreline.
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at different times, each with an otherwise relatively stationary or slowly evolving eb value and location, rather
than a systematic change in say the global stress state for the whole area of unrest that may have been the
preferred interpretation using the current standard practice.

Comparison of the hypocenters and characteristics of the clusters with previously published volcanological
models of the activity preceding and during the eruption [Ibanez et al., 2012; Marti et al., 2013b, 2013a;
López et al., 2012, 2014] shows that Clusters C and D are likely to be associated with eastward lateral magma
emplacement, originating from a magma chamber in the upper mantle at ~20 km depth. Clusters A and B at
~12 km depth occur just above the inferred location of the upper magma chamber at the Moho discontinuity,

~14 km depth. Table 1 shows themodalebP values for all eight phases between July 2011 and December 2013.

The two most common modes are ebP ¼ 1:0 and 1.5. Spatiotemporal clustering is associated with inferred
changes in the magma volume-inducing events above the upper and lower chambers and lateral magma
emplacement (laterally propagating clusters). There is no apparent systematic correlation between these

inferred processes andebP. Instead,ebP changes systematically as different parts of the volcano system are acti-

vated or deactivated, each having its own characteristiceb value. Changes ineb are purely spatial, and apparent
changes with time are only observed because of systematically changing locations.

This ability to resolve multiple clusters of varyingeb values occurring at overlapping time windows is the most
important advance compared to current methodology. Conventional windowing effectively masks anymulti-
modality and mode-switching behavior, in cases where the full net uncertainty structure is not actually
Gaussian, for example, due to different parts of the volcanic system being activated at different times, as
demonstrated here.

5. Conclusions

We have developed and applied a new iterative sampling method to the 2011–2013 El Hierro catalog. The
method minimizes bias associated with finite sampling of time windows and reveals a complex net probability

density function in the real volcanic data. We report highebvalues of up to 3.25 before themain submarine erup-

tion on 10 October 2011, followed by a relatively stable period wheneb=1, i.e., similar to that of natural tectonic
seismicity. From August 2012 to March 2013 we observe strongly multimodal behavior with four significant
local peaks. Through further investigation into the catalog, we discover that these can be associated with spa-

tially separate concurrent clusters of seismic activity (Figure 5) and that high eb values are not inherently linked
with a specific volcanic process. Our results confirm that conventional windowing with a linear (Gaussian) error

structure often provides a good first-order estimate of theeb value at a given time but lacks resolution and detail

of our iterative sampling method and misses key intervals where the ebP value is outside the estimated error.

Critically, we observe mode switching of ebP as it jumps between otherwise stationary values. In one time
period multimodality is associated with different component parts of the system being active at different
times. This introduces a new possibility in interpreting b values and may motivate an effort in physical
modeling of volcanic processes to explain the mechanical bases for mode-switching behavior, as well as
a reappraisal of the how b values and their full uncertainty structure may be used in eruption forecasting.
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