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 

Abstract— This paper proposes a new cough detection 

system based on audio signals acquired from conventional 

smartphones. The system relies on local Hu moments to 

characterize cough events and a k-NN classifier to distinguish 

cough events from non-cough ones (speech, laugh, sneeze, etc.) 

and noisy sounds. To deal with the unbalance between classes, 

we employ Distinct-Borderline2 Synthetic Minority 

Oversampling Technique and a bespoke cost matrix. The 

system additionally features a post-processing module to avoid 

isolated false negatives and, this way, increases sensitivity.  

Evaluation has been carried out using a database comprising a 

variety of cough and non-cough events and different types of 

background noise. In this study, we specifically focused on 

noise likely to appear when the user is carrying the smartphone 

in daily activities. Different Signal to Noise Ratio values were 

tested ranging between -15 and 0 dB. Our experiments confirm 

that local Hu moments are suitable not only for characterizing 

cough events but also for coping with noisy environments. 

Results show a sensitivity of 94.17% and a specificity of 92.16% 

at -15 dB. Thus, our system shows potential as a reliable and 

place-ubiquitous monitoring device that helps patients self-

manage their own respiratory diseases and avoids unreported 

or fabricated symptoms. 

I. INTRODUCTION 

Cough is a mechanism of defense of the human body 
which protects airways from debris, especially mucus, and 
foreign material [1]. Cough can be considered as “a forced 
expulsive manoeuvre or manoeuvres against a closed glottis 
that are associated with a characteristic sound or sounds” [2]. 

This symptom is connected to many respiratory illnesses 
such as pneumonia, asthma or laryngitis, and some other 
generic pathologies (cold, flu, allergies, etc.). In addition, 
cough can be associated to the patients’ lifestyle (smokers, 
sedentary people, etc.). Treatment of conditions related to 
cough constitutes an important burden for national health 
systems and economies (e.g. $40 billion per annum in the 
USA from direct and indirect costs of the common cold [2]). 
Until recently, the lack of golden-methods to objectively 
assess cough has limited its study to the use of subjective 
measurement tools like cough diaries or questionnaires [3]. 
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This approach and other secondary aspects of the underlying 
diseases (e.g. physical and psychological morbidity) may 
lead to misinterpretation of cough symptoms [4].  

On the basis on the above, international institutions and 
governments have promoted the potential of telemedicine in 
the management of respiratory conditions [5]. Current cough 
monitors rely on pattern recognition engines based on 
features extracted from cough sounds and other biomedical 
signals (chest movement, electrocardiogram, etc.). Previous 
proposals have achieved fair performance figures both in 
terms of sensitivity and specificity. For instance, the Lifeshirt 
system offered a sensitivity of 78.2% in laboratory conditions 
[6] whereas the Leicester Cough Monitor reported a 
sensitivity of 85.7% in a study with 26 subjects [7]. The Hull 
Automated Count Counter achieved a sensitivity of 80% in a 
group of 33 patients [8]. Specificity results in these studies 
were generally around 90%. Despite these figures, these 
systems are expensive (ad-hoc design and manufacturing) 
and uncomfortable (non-wearable during daily activity). To 
overcome these limitations, tele-health is currently moving 
towards more generic readily available sensors. The recent 
advances in smartphone and watch technology additionally 
allow employing these daily use devices as intelligent cough 
monitoring systems since they feature a number of embedded 
sensors able to measure cough sounds and related movement. 
Moreover, the computational capability of these devices is 
growing while, at the same time, they feature real-time 
connectivity to offload complex operations to higher 
performance computing systems.  

In this paper, we propose an automatic cough detection 
system based on audio signals acquired from conventional 
smartphones. The system is able to detect cough events with 
high sensitivity and specificity in a noisy environment, i.e. 
the signals are recorded while the smartphone is inside the 
pocket of trousers, shirts or coats. To evaluate our proposal 
we have synthesized a database comprising a variety of 
cough and non-cough (speech, laugh, sneeze, etc.) events and 
different types of background noise. In this study, we 
specifically focused on noise likely to appear when the user is 
carrying the smartphone in daily activities. Signal to Noise 
Ratio (SNR) values ranging between -15 and 0 dB were 
tested. The final system relies on local Hu moments as a 
feature feeding a k-NN classifier. Hu moments were recently 
imported from the field of image processing to speech 
emotion recognition [9]. Our results confirm that local Hu 
moments allow the segmentation of cough events even in 
very noisy environments. 

The rest of the paper is organized as follows: Section II 
provides a description of the database used for evaluation and 
the synthesis process to obtain different SNR values. The 
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proposed method, including the algorithm used to calculate 
local Hu moments and other employed techniques are also 
presented. Results are introduced in Section III while Section 
IV is devoted to the discussion and conclusions. 

II. MATERIALS AND METHODS 

A. Cough database 

The synthesis of the signal database including daily 
activity noise, cough and non-cough events was performed as 
follows. First, we recorded different types of background 
noise in typical daily monitoring contexts. To do so, we 
introduced several smartphones inside the pockets of jeans, 
trousers, shirts, t-shirts and coats and left them recording. We 
also introduced some other common items such as keys, 
coins, candies, etc. The recordings took place during daily 
life activities, i.e. walking, sitting down, standing up several 
times, etc. Later on, cough and non-cough events were 
recorded in a quiet room in different positions and with the 
smartphone places in different parts of the body. 

A placed power analysis showed that the SNR between 
cough/non-cough events and background noise was indeed 
very low, around -6 dB (average power of cough and non-
cough events versus average power of recorded noise due to 
friction with fabric, keys, coins, etc.). Consequently, we 
focused on lower SNR values and synthesized the signals as 
follows: 

 We equalized all the raw signals to have the same 
average power. 

 Then, we synthesized signals for different SNR 
values. We used -15, -12, -9, -6, -3, and 0 dB for this 
experiment. Cough and non-cough events were 
collated one after the other in a longer signal. 
Between each event, zero samples with random 
duration between 0.25 and 1 s were inserted. The 
reason why we included these gaps is due to the fact 
that two front events of different nature are very 
unlikely to occur one immediately after the other. 
Next, we calculated a gain value, G, to be applied to 
the noisy sounds to achieve the desired SNR (1). 
Finally, both events and noisy sounds were added.  
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The negative SNR values we have used for evaluation 
align with the expected physics of the acquired noise levels. 
The farther the source, the lower the perceived intensity. In 
our case, the noise source (friction with fabric), is closer to 
the microphone than the cough emitter. 

Each SNR version of the database (all signals) lasts 650 s. 
The sampling frequency was 44.1 KHz and all the sounds 
were recorded in lossless WAV format with 16 bits per 
sample. Neither any noise-sound signal nor event (cough and 
non-cough) were used more than once in the synthesis. Fig. 1 
shows 4 SNR versions of one of the signals in our database. 

B. Local Hu moments: 

Hu moments are widely employed features for object 
recognition [10] or watermarking [11] in images, among 

other uses.  Recently Sun et al. extrapolated their use to the 
signal processing field by using the time-frequency 
dimensions as coordinates for speech emotion recognition 
[9]. We followed their approach and applied local Hu 
moments to our signals in an attempt to characterize cough 
events within noisy environments. We expected that the main 
properties of Hu moments which showed successful in object 
recognition – invariance to rotation, scaling and translation – 
could easily be  translated here as a way to cope with noise.  

To compute the local Hu moments we performed the 
following steps: 

First, all the signals were downsampled by 5 since cough 
sounds are typically located between 0 and 2 KHz, and thus, 
there is no need of a higher sampling frequency (see [12]). 
Then, each signal is windowed using a Kaiser window with 

5.3 . As in [12], we used a window-length of 50 ms. The 

shift of the window is 25 ms.  

Secondly, the Power Spectral Density (PSD) of each 
window was estimated as the Fourier transform of the 
autocorrelation function, according to the Wiener-Khinchin-
Einstein theorem [13]. After normalization, only the one-
sided PSD was selected.  

Next, we computed the logarithm of the energies of every 
window in a series of bands defined by a filterbank in the 
Mel scale: 
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where k refers to the window whereas m denotes each filter 

within the filterbank. 
min

f  and 
max

f  are the frequencies 0 

and 2000 Hz, respectively. The filterbank in the Mel scale is 
defined as: 
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C(m) with Mm 0 are the centers of each filter in the 

filterbank, uniformly spaced between 
min

f  and 
max

f  in the 

Mel scale. The equations to convert Hz scale to Mel scale and 
the opposite are (4) and (5) respectively: 
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A value of 75M  was employed. Consequently, after 

performing this step for all the windows, we had a 

  1 MK  matrix, E, with K the number of windows in 

the signal. 



  

To compute the local Hu moments of the energy matrix, 

we split E into    1 wMK  blocks 
ij

B , where w is the 

size block. We used 5w , as in [9]: 
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The latest  1w  blocks, which correspond to 

KwKi ,,2  , are padded with zeros up to the size 

 ww   when no more data from the energy matrix E is 

available. 

The first invariant moment  of each 
ij

B is obtained as: 
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In (9), u and v  are    0,00,1 u  and 

   0,01,0 v , with: 
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All   are used to construct a real    1 wMK  

matrix, Q. To conclude, we computed the discrete cosine 
transform of each row of Q and only kept the 2nd to 14th  

coefficients. The result is a matrix TQ with size  13K , 

being the rows of this matrix the Hu moments of each 
window of the signal. 

C.  Importance sampling, classification and post-processing 

In our system, windows are our basic classification unit – 

i.e. each row of TQ will be considered as an observation by 

the k-NN classifier. Besides, there are only two classes: 

windows which belong to cough events (positive class) and 

windows which belong to non-cough events or noisy sounds 

which may or may not include a non-cough event (negative 

class).  

The k-NN classifier was configured with 1k , 

standardized Euclidean distance as a distance metric, the 
inverse of the distance as weighting function and the 
distances were exhaustively computed, in other words, from 

each observation to the rest. The classification was based in a 
5-fold cross validation partition of the feature space.  

As in other real world problems, our feature space was 
unbalanced between classes: around 16% of the windows 
were cough events whereas the rest were negative class 
windows. Thus, our k-NN classifier would be biased towards 
the negative class. In order to avoid this problem we used two 
techniques: oversampling of the positive class and 
undersampling of the negative class  using the recently 
proposed Distinct-Borderline2 Synthetic Minority 
Oversampling Technique (DB2SMOTE)  [14] as well as a 
cost matrix to train the k-NN classifier.  

Among data-level techniques to deal with unbalanced 
distributions of classes, DB2SMOTE is an improved version 
of the basic SMOTE. DB2SMOTE is a hybrid technique 
(include both oversampling and undersampling) specifically 
designed for high density data. It considers that boundary 
observations have more influence on the classification. With 
this in mind, DB2SMOTE generates synthetic observations 
in both majority and minority class boundaries. Likewise, to 
make the border lines more clear, the algorithm removes 
specific majority class observations [14]. 

Regarding the cost matrix, we relied on it as a cost-
sensitive technique to complement DB2SMOTE. We defined 
the matrix values following a data-driven approach: 
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The matrix in (11) means that a false negative is the worst 
misclassification for us (6.25), since we would be losing a 
window with cough events. By means of DB2SMOTE we 
compensated the ratio between classes from 16% to 40%. 
The remaining 10% is assumed to be treated with the cost 
matrix. 

Finally, our system includes a post-processing module to 
additionally improve performance. With the aim of 
improving sensitivity, the post-processing task avoids 
isolated false negatives by setting every non-cough window 
surrounded by cough ones to actual coughs. The pipeline of 
the proposed system is depicted in Fig. 2.  

III. RESULTS 

The smartphone-based cough detector described in 

previous sections was trained and tested using a 5-fold cross 

validation scheme and a database of signals. Sensitivity 

(SEN), specificity (SPE), accuracy (ACC) and area under 

the ROC curve (AUC) were used as performance metrics. 

Evaluation was performed in three different scenarios: 1) 

no importance sampling with the costs matrix nor post-

processing, 2) only importance sampling and the costs 

matrix, and 3) using both of them.  
Table I (a) shows the overall results for the first case. 

Even for the worst SNR level (-15 dB), the sensitivity is 
relatively high, with levels in line with previous proposals 
(78.65%). Besides, it achieves an improvement of 4.4% when 
increasing SNR. All specificity values are above 95%. 

 



  

 

Figure 1.  Representation of four SNR version of a synthetised signal: (a) -15 dB; (b) -6 dB; (c) 0 dB; (d) 15 dB. The version in (d) was synthetised to easily 

appreciate the position of events within the background sounds. 
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Figure 2.  Pipeline of the proposed cough detection system. 

TABLE I.  CLASSIFICATION RESULTS (%): (A) RAW CLASSIFICATION; (B) WITH IMPORTANCE SAMPLING AND THE COSTS MATRIX; (C) WITH IMPORTANCE 

SAMPLING, THE COSTS MATRIX AND POST-PROCESSING 

 (a)  (b)  (c)  

SNR (dB) SEN SPE ACC  AUC  SEN SPE ACC AUC SEN SPE ACC AUC 

-15 78.65 96.93 93.83 87.79 86.20 90.58 89.84 88.39 92.97 89.63 90.20 98.75 

-12 79.67 97.23 94.26 88.45 86.99 90.94 90.27 88.96 93.76 89.99 90.63 98.75 

-9 80.91 97.44 94.63 89.17 87.62 91.60 90.93 89.61 93.97 90.79 91.33 98.88 

-6 81.86 97.46 94.81 89.66 88.12 92.16 91.47 90.14 94.15 91.39 91.86 98.94 

-3 82.17 97.88 95.22 90.03 88.59 92.41 91.77 90.50 94.17 91.78 92.18 99.06 

0 83.03 97.89 95.37 90.46 88.66 92.76 92.06 90.71 94.17 92.16 92.50 99.10 

 
 

Table I (b) shows the same results when importance 
sampling and the costs matrix were applied in the training 
stage. Now, the worst sensitivity is again at -15 dB of SNR 
but a higher value was achieved (86.20%). Similarly, it 
improves with SNR increasing up to a value of 88.66%. 
However, this approach brings along a loss of specificity. 
Now, these values are between 90.58% and 92.76%. 

The overall classification results of our final system are 
shown in Table I (c). After the inclusion of the post-
processing module, the sensitivity is further improved. In 
addition, this improvement takes place for all SNR values. 
On the contrary, the specificity undergoes a slight reduction.  

IV. DISCUSSION AND CONCLUSION 

We have proposed a new cough detection system based on 

smartphones. The system is composed of feature extraction 

and classification modules, based on local Hu moments and 

a k-NN classifier respectively, further improved by a costs 

matrix and an importance sampling of the cough database (to 

compensate the unbalance between classes) and a post-

processing module (to enhance the sensitivity of our 

system).  



  

The first point to discuss is the robustness of Hu moments 

against noise. The explanation of this behavior lies in the 

main properties of Hu moments as a feature set. Hu 

moments are widely used in image processing because of 

their invariance against scaling, rotation and translation [15]. 

Then, if we understand the variation introduced by the noise 

as the equivalent in signals to scaling, rotation and 

translation in images, our results would confirm that these 

properties of Hu moments are translated as noise robustness 

in our signal processing problem. 

 As for importance sampling, we decided to use a hybrid 

technique to keep under control the main drawbacks: 

overtraining due to oversampling in the minority class and a 

loss of the induction capacity because of undersampling of 

the majority class. Furthermore, we used the data-level 

technique only to compensate the class unbalance up to 

40%. Some studies have proved that, for some classifiers 

such as k-NN, a total compensation of class unbalance via a 

single technique is not always the best choice [16]. Thus, to 

mitigate the effect of the remaining unbalance, we 

introduced a cost matrix in our k-NN classifier. The benefit 

of DB2SMOTE plus the cost matrix is the achieved 

improvement in sensitivity. On the other hand, the drawback 

is the specificity reduction, probably derived from the 

undersampling step of DB2SMOTE. 

As for the post-processing module, results in Table I (c) 

confirm its suitability. We introduced this module to take 

advantage of the within-class distributions. That is to say, 

when a person suffers a cough episode, several windows 

with cough events will be recorded, in other words, cough 

windows appear in bursts. Consequently, if the output labels 

of our classifier show a negative-class label surrounded by 

positive-class labels, it is highly probable that the negative-

class label is a false negative. We directly convert this false 

negative into positive-class labels and, by doing so, we 

enhance the cough detection capabilities of our system 

without almost no loss in specificity.  

To sum up, our cough detection system based on 

smartphones outperforms previous cough monitors in terms 

of sensitivity as well as noise robustness. Its high noise 

robustness (up to -15 dB) makes the system place-

ubiquitous, which could be helpful to track the daily 

evolution of patients with respiratory disease, avoiding 

unreported or fabricated symptoms and reporting the true 

impact of cough symptoms in their quality of life. Moreover, 

a smartphone implementation enlarges the number of 

possible users while reducing the costs of manufacturing. On 

this basis, our system would be a good candidate for a 

reliable monitoring device that can help patients self-manage 

their own respiratory diseases [17].  
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