-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

The Space of Stability Conditions on Abelian Threefolds, and on
some Calabi-Yau Threefolds

Citation for published version:

Bayer, A, Macri, E & Stellari, P 2016, 'The Space of Stability Conditions on Abelian Threefolds, and on
some Calabi-Yau Threefolds' Inventiones mathematicae, vol. 206, no. 3, pp. 869-933. DOI:
10.1007/s00222-016-0665-5

Digital Object Identifier (DOI):
10.1007/s00222-016-0665-5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Inventiones mathematicae

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019


https://core.ac.uk/display/77046008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s00222-016-0665-5
https://www.research.ed.ac.uk/portal/en/publications/the-space-of-stability-conditions-on-abelian-threefolds-and-on-some-calabiyau-threefolds(8b19a455-4e22-4cb6-baaa-4d46a35d9d54).html

arXiv:1410.1585v2 [math.AG] 19 Apr 2016

THE SPACE OF STABILITY CONDITIONS ON ABELIAN THREEFOLDS, AN D
ON SOME CALABI-YAU THREEFOLDS

AREND BAYER, EMANUELE MACRI, AND PAOLO STELLARI

ABSTRACT. We describe a connected component of the space of stataifityitions on abelian
threefolds, and on Calabi-Yau threefolds obtained as (#y@ant resolution of) a finite quotient
of an abelian threefold. Our proof includes the followingestial steps:

1. We simultaneously strengthen a conjecture by the firstautbors and Toda, and prove
that it follows from a more natural and seemingly weakerestent. This conjecture is a
Bogomolov-Gieseker type inequality involving the thirdeéZh character of “tilt-stable” two-
term complexes on smooth projective threefolds; we extéffidbin complexes of tilt-slope
zero to arbitrary tilt-slope.

2. We show that this stronger conjecture implies the sedalipport property of Bridge-
land stability conditions, and the existence of an expbgi&n subset of the space of stability
conditions.

3. We prove our conjecture for abelian threefolds, theredpraving and generalizing a
result by Maciocia and Piyaratne.

Important in our approach is a more systematic understgratirthe behaviour of quadratic
inequalities for semistable objects under wall-crossitggely related to the support property.
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1. INTRODUCTION

In this paper, we determine the space of Bridgeland stalibnditions on abelian three-
folds and on Calabi-Yau threefolds obtained either as afopibtient of an abelian threefold,
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or as the crepant resolution of such a quotient. More prigciae describe a connected com-
ponent of the space of stability conditions for which thetarcharge only depends on the
degreesH3~ ch;(_), i = 0,1, 2,3, of the Chern charactewith respect to a given polariza-
tion H, and that satisfy the support property.

Stability conditions on threefolds via a conjectural Bogonolov-Gieseker type inequal-
ity. The existence of stability conditions on three-dimendiaaaieties in general, and more
specifically on Calabi-Yau threefolds, is often considetexribiggest open problem in the the-
ory of Bridgeland stability conditions. Until recent worly IMaciocia and PiyaratneJP15,
MP16], they were only known to exist on threefolds whose derivatggory admits a full ex-
ceptional collection. Possible applications of stabitionditions range from modularity prop-
erties of generating functions of Donaldson-Thomas iavds [Tod13a Tod144 to Reider-
type theorems for adjoint linear seride3gMT14].

In [BMT14], the first two authors and Yukinobu Toda, also based on d&ons with
Aaron Bertram, proposed a general approach towards thérgotisn of stability conditions
on a smooth projective threefold. The construction is based on the auxiliary notion of
tilt-stability for two-term complexes, and a conjectural Bogomolov-Géesaype inequal-
ity for the third Chern character of tilt-stable objects; vesiew these notions in Sectich
and the precise inequality in Conjectuzel. It depends on the choice of two divisor classes
w, B € NS(X)gr with w ample. It was shown that this conjecture would imply the texise
of Bridgeland stability conditiorfs and, in the companion papeBBMT14], a version of an
open case of Fujita’s conjecture, on the very amplenessjoirddine bundles on threefolds.

Our first main result is the following, generalizing the resifi [ MP15 MP1§ for the case
when X has Picard rank one:

Theorem 1.1. The Bogomolov-Gieseker type inequality for tilt-stablgeots, Conjectur@.4,
holds whenX is an abelian threefold, and is a real multiple of an integral ample divisor
class.

There are Calabi-Yau threefolds that admit an abelian tyaaig a finite étale cover; we call
themCalabi-Yau threefolds of abelian typ®ur result applies similarly in these cases:

Theorem 1.2. Conjecture2.4 holds whenX is a Calabi-Yau threefold of abelian type, atad
is a real multiple of an integral ample divisor class.

Combined with the results oBMT14], these theorems imply the existence of Bridgeland
stability conditions in either case. There is one more typ€alabi-Yau threefolds whose
derived category is closely related to those of abeliarefoids: namelyKummer threefolds
that are obtained as the crepant resolution of the quotieah @belian threefold by the
action of a finite groups. Using the method of “inducing” stability conditions on tii&
equivariant derived category 6f and the BKR-equivalencdBKR01], we can also treat this
case. Overall this leads to the following result (which w# miake more precise in Theorem
1.4).

Theorem 1.3. Bridgeland stability conditions oX exist whenX is an abelian threefold, or
a Calabi-Yau threefold of abelian type, or a Kummer thregfol

1in the case of crepant resolutions, we take the Chern clearafter applying BKR-equivalencé8KR01]
between the crepant resolution and the orbifold quotient.
°Not including the so-called “support property” reviewedther below.
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Support property. The notion of support property of a Bridgeland stability dition is cru-
cial in order to apply the main result d8fi07], namely that the stability condition can be de-
formed; moreover, it ensures that the space of such stabditditions satisfies well-behaved
wall-crossing.

In order to prove the support property, we first need a quiadretquality for all tilt-stable
complexes, whereas Conjectlzet only treats complexe& with tilt-slope zero. We state
such an inequality in Conjecturel for the case where, B are proportional to a given ample
classH:

Conjecture 4.1 Let(X, H) be a smooth polarized threefold, and= V3aH, B = BH, for
a> 0,8 €R. If EcDX)is tilt-semistable with respect to, B, then

a? ((H2 chP(E))*—2H3 ch (E)H ch¥ (E)) +4 (H ch(E))*—6H2 chB(E) chB(E) > 0,

wherech? := ¢=B ch.

In Theoremy.2, we prove that this generalized conjecture is in fact edgintao the original
Conjecture2.4. Moreover, in Theorer.7we prove that it implies a similar quadratic inequal-
ity for objects that are stable with respect to the Bridgelstability conditions constructed in
Theoreml.3 thereby obtaining a version of the support property.

To be precise, we consider stability conditions whosetral chargeZ : K(X) — C factors
via

(1) vg: K(X) = Q% Ew (H?chy(E), H? chy(E), H chy(E), chy(E)) .

(In the case of Kummer threefolds, we apply the BKR-equivedebefore taking the Chern
character.) We prove the support property with respeettothis shows that a stability con-
dition deforms along a small deformation of its central gleaif that deformation still factors
viavy.

We discuss the relation between support property, quadregqualities for semistable ob-
jects and deformations of stability conditions systenadifcin AppendixA. In particular, we
obtain an explicit open subset of stability conditions winar Conjecturd.1is satisfied, see
Theorem8.2

The space of stability conditions. In each of the cases of Theorelr8, we show moreover
that this open subset is a connected component of the spatebility conditions. We now
give a description of this component.

Inside the spac&lom(Q?, C), consider the open subsBtof linear mapsZ whose kernel
does not intersect the (real) twisted cubic P3(R) parametrized byz?, 22y, $2y?, £4°); it
is the complement of a real hypersurface. Such a linear fniagluces a morphisri! (R) =
¢ — C*/R* = PY(R); we define’p be the component of for which this map is an un-
ramified cover of topological degree3 with respect to the natural orientations. Eﬁtbe its
universal cover.

We letStaby (X) be the space of stability conditions for which the centralrgk factors
via the mapuy as in equation) (and satisfying the support property).

Theorem 1.4. Let X be an abelian threefold, or a Calabi-Yau threefold of abeligpe, or a
Kummer threefold. TheBitab (X) has a connected component isomorphigdto

Approach. We will now explain some of the key steps of our approach.
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Reduction to a limit caseThe first step applies to any smooth projective threefoldsufyse
thatw, B are proportional to a given ample polarizatiéhof X. We reduce Conjecturé.1
to a statement for objects that are stable in the limit as(t) — 0 andv,, ) (£) — 0; if

B := lim B(t), the claim is that

2 / e B ch(E) < 0.
X

The reduction is based on the methods Mfafl14: as we approach this limit, eithel
remains stable, in which case the above inequality is endoiginsure that satisfies our
conjecture everywhere. Otherwisg,will be strictly semistable at some point; we then show
that all its Jordan-Holder factors have strictly smallgf-tliscriminant (which is a variant of
the discriminant appearing in the classical Bogomolovs€ker inequality). This allows us to
proceed by induction.

Abelian threefolds.In the case of an abelian threefold, we make extensive useahultipli-
cation bym mapm: X — X in order to establish inequality2). The key fact is that ift is
tilt-stable, then so isn* E.

To illustrate these arguments, assume fBas rational. Via pull-back we can then assume
that B is integral; by tensoring wittOx (B) we reduce to the case & = 0. We then
have to prove thaths;(F) < 0; in other words, we have to prove an inequality of the Euler
characteristic of. To obtain a contradiction, assume thht(F~) > 0, and consider further
pull-backs:

3) X(Ox,m*E) = chs(m*E) = m® ch3(E) > m°.

However, by stability we havBlom(Ox (H), m*E) = 0; moreover, ifD € |H| is a general
element of the linear system &f, classical arguments, based on the Grauert-Mulich timeore
and bounds for global sections of slope-semistable shegivesa bound of the form

h(m*E) < h°((m*E)|p) = O(m")
Similar bounds for? lead to a contradiction tcj.

Support property.As pointed out by Kontsevich and Soibelman K508 Section 2.1], the
support property is equivalent to the existence of a reatigu form@Q : Q* — R such that

(a) the kernel of the central charge (as a subspaf& i negative definite with respect
to @, and
(b) every semistable objeét satisfiesQ(vg (E)) > 0.
The inequality in Conjecturd.1 precisely gives such a quadratic form. We therefore need to
show that this inequality is preserved when we move fronstibility to actual Bridgeland
stability conditions.

We establish a more basic phenomenon of this principle ineAdix A, which may be of
independent interest: if a stability condition satisfies support property with respect €9,
and if we deform along a path for which the central chargesatisfy condition §), then con-
dition (b) remains preserved under this deformation, i.e., it isgmes] under wall-crossing.
The essential arguments involve elementary linear algafbgaadratic forms.

Tilt-stability can be thought of as a limiting case of a patlthie set of stability conditions we
construct. In SectioB we show that the principle described in the previous papdgsanilarly
holds in this case: we show that a small perturbation of tredratic form in Conjecturd.1
is preserved under the wall-crossings between tilt-statzihd any of our stability conditions,
thereby establishing the desired support property.
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Connected componenin Appendix A, we also provide a more effective version of Bridge-
land’s deformation result. In particular, the proof of thpgort property yields large open sets
of stability conditions, which combine to cover the mam'lfq?k described above.

In Section9, we show that this set is in fact an entire component. Thefpsdzased on the
observation that semi-homogeneous vector bundlesth ¢; (E) proportional toH are stable
everywhere of3; their Chern classes (up to rescaling) are densg in

This fact is very unique to varieties admitting étale cevey abelian threefolds. In partic-
ular, while Conjecturet.1limplies that‘ff3 is a subset of the space of stability conditions, one
should in general expect the space to be much larger thaoghis subset.

Applications. Our work has a few immediate consequences unrelated toedecategories.
Although these are fairly specific, they still serve to ithase the power of Conjecturel

Corollary 1.5. Let X be a Calabi-Yau threefold of abelian type. Givere Z~, let L be an
ample line bundle orX satisfying

o I3 > 490,

e L?D > 7a for every integral divisor clas® with L2D > 0 and LD? < o, and

e [.C' > 3« forevery curvel C X.

ThenH!(L ® I7) = 0 for every 0-dimensional subscheiec X of lengtha.
In addition, if L = A®® for an ample line bundle, thenL is very ample.

Proof. Since Conjectur.4holds for X by our Theoreni.2, we can apply Theorem 4.1 and
Remark 4.3 of BBMT14]. a

Settingar = 2 we obtain a Reider-type criterion fdrto be very ample. The statement for
A®> confirms (the very ampleness case of) Fujita’s conjecturesiich X. The best known
bounds for Calabi-Yau threefolds say th#t® is very ample ifL3 > 1 [GP9§ Corollary 1],
A®10 is very ample in general, and tha®® induces a birational maP95 Theorem I]. For
abelian varieties, much stronger statements are knowrP$8 PP04.

Corollary 1.6. Let X be one of the following threefolds: projective space, thadgic in P4,
an abelian threefold, or a Calabi-Yau threefold of abeligpd. LetH be a polarization, and
let ¢ € Z~( be the minimum positive value &f2D for integral divisor classe®. If E is a
sheaf that is slope-stable with respectdo and with ¢, (E) = ¢, then

3cchs(E) < 2(H chy(E))2.

The assumptions hold whe\S(X) is generated by, andc;(E) = H. We refer to
Example4.4and Remarlt.5for a proof and more discussion. Even for vector bundleBdn
this statement was not previously known for rank bigger thaee.

It is a special case of Conjectudel. Even whenX is a complete intersection threefold
andE = I ® L is the twist of an ideal sheaf of a cur¢g this inequality is not known, see
[Tralq.

Open questions.

General proof of Conjecturd.l. While Conjectured.1 for arbitrary threefolds remains elu-
sive, our approach seems to get a bit closer: in our proof ebflédml.1 (in Sections2—7),
only Section7 is specific to abelian threefolds. One could hope to gerreraliur construction
by replacing the multiplication mag with ramified coverings. This would immediately yield
the setﬁ as an open subset of the space of stability conditions.
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Strengthening of Conjectuel In order to construct a set of stability conditions of dimens
equal to the rank of the algebraic cohomologyX6f we would need a stronger Bogomolov-
Gieseker type inequality, depending dm, andch, directly, not just onf? ch; and H chs.
We point out that the obvious guess, namely to rep(eﬂvf%chl)2 by H ch? -H3, and(H chy)?

by an appropriate quadratic form éf*(X), does not work in general: far — +o0, such an
inequality fails for torsion sheaves supported on a diviSawith HD? < 0.

Higher dimension.Our work also clarifies the expectations for higher dimemsioThe def-
inition of 5B directly generalizes to dimensionin an obvious way, by replacing the twisted
cubic with the rational normal curvie”, 2"y, 127=2¢2 .. Lym). LetP,, — B, denote
the corresponding universal covering.

Conjecture 1.7. Let(X, H) be a smooth polarized-dimensional variety. Its spacaby (X)
of stability conditions contains an open subgkt, for which skyscraper sheaves of points are
stable. In the case of abelian varieti€g,, C Staby(X) is a connected component.

Such stability conditions could be constructed by an inglagirocedure; thé-th induction
step would be an auxiliary notion of stability with respeztatweak notion of central charge
Z; depending orf{™ chg, H" ' chy,..., H" " ch;. Semistable objects would have to satisfy
a quadratic inequality); involving ch; ;. The precise form of); would depend on the pa-
rameters of the stability condition; it would always be @inéd in the defining ideal of the
rational normal curve, and the kernel fwould be semi-negative definite with respectip

One could hope to prove such inequalitiesifer n using a second induction by dimension:
for example, an inequality faths for stable objects on a fourfold would follow from a Mehta-
Ramanathan type restriction theorem, showing that suactsbjestrict to semistable objects
on threefolds. As a first test case, one should try to proveafuven tilt-stable object on a
threefold restricts to a Bridgeland-stable object on asdivbf sufficiently high degree.

Related work. As indicated above, the first breakthrough towards conigistability con-
ditions on threefolds (without using exceptional collens) is due to Maciocia and Piyaratne,
who proved Theoren.1in the case of principally polarized abelian varieties afded rank
one in MP15 MP16. Their method is based on an extensive analysis of the li@ha¥
tilt-stability with respect to Fourier-Mukai transform@) addition to constructing stability
conditions, they show their invariance under Fourier-Mukansforms.

Our approach is very different, as it only uses the exist@rfitbe étale self-maps given by
multiplication withm. Nevertheless, there are some similarities. For exampley@al step
in their arguments uses restriction to divisors and curvesitrol a certain cohomology sheaf
of the Fourier-Mukai transform aoF, see the proof ofJIP15, Proposition 4.15]; in Section
we use restriction of divisors explicitly and to curves imjly (when we use Theorem.2) to
control global sections of pull-backs éf.

As mentioned earlier, it is easy to construct stability dbads on any variety admitting
a complete exceptional collection; however, it is still dickte problem to relate them to
the construction proposed iBMT14]. This was done inBMT14, Mac144 for the case of
P3, and in Bch14 for the case of the quadric iB*; these are the only other cases in which
Conjecture2.4is known.

There is an alternative conjectural approach towardslgyabonditions on the quintic hy-
persurface inP* via graded matrix factorizations, proposed by Todadl4h Tod144. It
is more specific, but would yield a stability condition thatinvariant under certain auto-
equivalences; it would also lie outside of our évfm His approach would require a stronger
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Bogomolov-Gieseker inequality already for slope-stalgletor bundles, and likely lead to very
interesting consequences for generating functions of [dena-Thomas invariants.
Conjecture2.4 can be specialized to certain slope-stable sheaves, simi@orollary 1.6
see BMT14, Conjecture 7.2.3]. This statement was proved by Toda fdaiceCalabi-Yau
threefolds, including the quintic hypersurface, Tfi14d. Another case of that conjecture
implies a certain Castelnuovo-type inequality betweengieus and degree of curves lying
on a given threefold; se@fal4 for its relation to bounds obtained via classical methods.
Our results are at least partially consistent with the etgtimns formulated inFoll14;
in particular, semi-homogeneous bundles are exampleseoLdgrangian-invariant objects
considered by Polishchuk, are semistable for our stal@tityditions, and their phases behave
as predicted.

Plan of the paper. AppendixA may be of independent interest. We review systematicadly th
relation between support property, quadratic inequaliite semistable objects and deforma-
tions of stability conditions, and their behaviour undetlweaossing.

Sections2 and 3 and AppendixB review basic properties of tilt-stabilty, its deformation
properties (fixing a small inaccuracy iBMT14]), the conjectural inequality proposed in
[BMT14] and variants of the classical Bogomolov-Gieseker indtjuahtisfies by tilt-stable
objects.

In Sectiord we show that a more general form of ConjectRréis equivalent to the original
conjecture, whereas Sectibrshows that both conjectures follows from a special limitiage.

This limiting case is proved for abelian threefolds in Saefi; in the following SectiorB
we show that this implies the existence of the open suﬁset stabilty conditions described
above. Sectio® shows that in the case of abelian threefobﬂsi,s in fact a connected com-
ponent, and Sectiofh0 extends these results to (crepant resolutions) of qustiehabelian
threefolds.

Acknowledgments. The paper benefitted from many useful discussions with ABemtram,
Izzet Coskun, Alice Garbagnati, Bert van Geemen, Danielldfeghts, Marti Lahoz, Antony
Maciocia, Eric Miles, Rahul Pandharipande, Dulip PiyagatBenjamin Schmidt, Yukinobu
Toda, and we would like to thank all of them. The first authgpasticularly grateful to Dulip
Piyaratne for many hours explaining the details P[15 MP16, including a long session
under the disguise of a PhD defense. We are grateful to theeeefor a very careful reading of
the manuscript. We also would like to thank for their hodjtitahe Ohio State University, the
University of Bonn, and the University of Edinburgh, wheggts of this paper were written.

A.B. is supported by ERC starting grant no. 337039 “WallX®dom”. E.M. is partially
supported by the NSF grants DMS-1160466 and DMS-130273@06R3496. P.S. is par-
tially supported by the grant FIRB 2012 “Moduli Spaces aneifApplications” and by the
national research project “Geometria delle Varieta Rtige' (PRIN 2010-11).

Update (March 2016). Counterexamples due to Schmifch1g and Martinez Marl6] in-
dicate that Conjecturez 4 and4.1 need to be modified in the case of a threefold obtained as
the blowup at a point of another threefold; on the other hémely have been verified for all
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2. REVIEW: TILT-STABILITY AND THE CONJECTURAL BG INEQUALITY

In this section, we review the notion of tilt-stability fdmreefolds introduced irgMT14].
We then recall the conjectural Bogomolov-Gieseker typeyuiadity for tilt-stable complexes
proposed there; see Conjectrd below.

Slope-stability. Let X be a smooth projective complex variety andriet 1 be its dimension.
Letw € NS(X)r be a real ample divisor class.

For an arbitrary divisor clas® € NS(X)g, we will always consider the twisted Chern
charactech? (E) = e~ ch(E); more explicitly, we have

B2
chf = chy = rank chy’ = chy =B chy +=- chy

(4) . 2
ChlB = Ch1 -B Cho Ch? = Ch3 —B Ch2 _|_7 Ch1 _F Ch().

We define the slopg,, g of a coherent shedf on X by
400, if chf(E) =0,

,uw,B(E) =
wn1 ch{s(E)
wn chP (B)

When B = 0, we will often write .

otherwise.

Definition 2.1. A coherent sheak is slope-(semi)stable (qr, z-(semi)stable) if, for all non-
zero subsheaves — F, we have

fio, B(F) < (), B(E/F).

Observe that if a sheaf is slope-semistable, then it is eitision-free or torsion. Harder-
Narasimhan filtrations (HN-filtrations, for short) with pesct to slope-stability exist i@oh(X):
given a non-zero shedf € Coh(X), there is a filtration

0=EyCE,C---CE,=F
such that: ()4, := E;/E;_ is slope-semistable, and (ji, (A1) > -+ > i, B(Am). We
Setﬂ;B(E) = ,uw,B(Al) and:u;,B(E) = ;uw,B(Am)'

The tilted category. Let X be a smooth projective threefold. As above, detB be real
divisor classes withu ample. There exists @rsion pair (7., 5, F., ) in Coh(X) defined as
follows:

Tw. = {E € Coh(X) : any quotientE — G satisfiesu, p(G) > 0} = {E L, p(E) > 0}
Fu,B ={E € Coh(X) : any subsheaf’ — E satisfiesu, gp(F) < 0} = {E : uij(E) < 0}

Equivalently,7,, g andF,, g are the extension-closed subcategorie€'@i(.X ) generated by
slope-stable sheaves of positive and non-positive sl@spectively.

Definition 2.2. We letCoh“"?(X) C D®(X) be the extension-closure
Coh*?(X) = (T, B, Fu.B[1]).

By the general theory of torsion pairs and tiltingRS94, Coh*-?(X) is the heart of a
bounded t-structure oR®(X); in particular, it is an abelian category.
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Tilt-stability and the main conjecture. We now define the following slope function, called
tilt, on the abelian categoigoh* ?(X): for an objectE € Coh*?(X), its tilt v, p(F) is
defined by

+o0, if w?ch?(E) =0,

Vw,B(E) =
wchg(E)féw?’ chf (F)
w2chB(E) ’

We think of this as induced by the “reduced” central charge

otherwise.

(5) ZwB(E) = W ch? (E) +iw <ch23 (E) — éwQ chg?(E)> ;
indeed, ifZ, 5(F) # 0, then the tilty, 5(F) of E agrees with the slope of that complex
number; otherwise it is-occ.

Definition 2.3. An objectE € Coh*Z(X) is tilt-(semi)stabléf, for all non-trivial subobjects
F — FE, we have

Vo s(F) < (X)vi.p(E/F).

Tilt-stability gives a notion of stability, in the sense tharder-Narasimhan filtrations exist.
The following conjecture is the main topic dMT14]:

Conjecture 2.4([BMT14, Conjecture 1.3.1])For anyv,, p-semistable objedt ¢ Coh*B(X)
satisfyingv,, g(E£) = 0, we have the following generalized Bogomolov-Giesekejualkty

6) chy (B) < f—; chf’ ().

Properties of tilt-stability. We will often fix B and varyw along a ray in the ample cone via

w:\/gaH

for some given integral ample clags € NS(X).2

To prove that tilt-stability is a well-behaved propertyeameeds to use variants of the clas-
sical Bogomolov-Gieseker inequality for slope-semistagiieaves; in particular, this leads to
the following statements:

Remark 2.5. (a) Tilt-stability is an open property. More precisely, @ thatE €
DY(X) is v, p-stable withw = /3aH. Then the set of pairga’, B') € Rsg x
NS(X)r such thatE is v, 5,y p/-Stable is open.

(b) The boundary of the above subseffofy x NS(X )r whereE € D?(X) is tilt-stable
is given by a locally finite collection ofvalls, i.e., submanifolds of real codimension
one.

Unfortunately, a slightly stronger statement was claimrefBMT14, Corollary 3.3.3], but
(as noted first by Yukinobu Toda) the proof there only yielts above claims. We will there-
fore review these statements in more detail in Seciand AppendixB; one can also deduce
them with the same arguments as in the surface case, treatethil in [Tod13h Section 3].

3We follow the convention offlac14H by inserting a factor of/3 above. This ensures that walls of semista-
bility are semicircles, in analogy to the case of Bridgelatability on surfaces. In particular, results from
[AB13, Mac144 carry over more directly.
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Remark 2.6. It can be helpful to distinguish between two types of wallstiip-stability, see
PropositionB.5. Locally, a wall for tilt-stability of £ is described by the conditian, g (F) =
v,,5(E) for a destabilizing subobjedt. This translates into the condition that either

(@) Z, 5(F)andZ, p(E) are linearly dependent, or that
(b) v, B(E) = +o0.

In the limitw — +o00 - H, tilt-stability becomes closely related to slope-stayili

Lemma2.7. LetH, B be fixed divisor classes wifi ample, and lety = /3a.H for o € R+.
Then
(a) The categonfCoh*-?(X) is independent af.
(b) Moreover, its subcategory of objediswith v, p(E) = +oc is independent oft.
(c) If E € Con™P(X)isu, g-semistable for: > 0, then it satisfies one of the following
conditions:
() HY(E)=0and H(E) is a ,, g-semistable torsion-free sheaf.
(i) H~1(F)=0andH°(E) is atorsion sheaf.
(i) H-1(E) is a u, p-semistable sheaf anH’(E) is either 0, or supported in
dimension< 1.
Conversely, assumg € Coh(X) is ay,, g-stabletorsion-free sheaf.
(i) If H?chP(E) > 0, thenE € Coh™B(X) and it isy,, p-stable fora > 0.
(i) If H?chP(E) <0, thenE[1] € Coh™B(X); if moreoverE is a vector bundle,
then it isv,, p-stable fora > 0.

Proof. The first two statements are immediate to see. The argumentsaft €) are com-
pletely analogous to the case of Bridgeland stable objecsudaces, first treated iBfi08,
Proposition 14.2]; see als8MT14, Proposition 7.2.1] for the first part. O

3. CLASSICAL BOGOMOLOWGIESEKER TYPE INEQUALITIES

In this section, we review a result frorBIMT14] that shows that tilt-stable objects dn
satisfy variants of the classical Bogomolov-Gieseker iradity.

We continue to assume thatis a smooth projective threefold. Throughout this sectien,
H € NS(X) be a polarizationy = v/3aH for o > 0, andB € NS(X )y arbitrary.

First we recall the classical Bogomolov-Gieseker inedyali

Definition 3.1. The discriminant of with respect taH is defined by
Ap(E) == H (chi(E)? — 2¢chg(E) cha(E)) = H (ch{ (E)* — 2¢hf(E) chP(E)) .

Theorem 3.2(Bogomolov, Gieseker)Assume tha¥ is a u-semistable torsion-free sheaf
on X. ThenAg(E) > 0.

However, a sheaF' supported on a divisab C X does not necessarily satistyy (F') > 0
(even if it is the push-forward of a slope-stable sheaf)eew| we may havél D> < 0.
This leads us to modify the inequality to a form that also bdlt torsion sheaves, and in
conseguence for tilt-stable objects. We first need the iatig easy observation (see, for
example, the proof ofMT14, Corollary 7.3.3]):

Lemma 3.3. There exists a constafty > 0 such that for every effective divisér C X, we
have )
Cu (H*D)" + H.D* > 0.
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(Note that for abelian threefolds, we may takg = 0.)
Definition 3.4. We define thed-discriminant as the following quadratic form:
(7) Zg = (HQCh?)2—2H3Ch§H.ChQB.

For the second definition, choose a rational non-negatimstaatC'; satisfying the conclu-
sion of Lemma3.3. Then

(8) A 5= A+ Cpy (H? chP)”.

Theorem 3.5([BMT14, Theorem 7.3.1, Corollaries 7.3.2 and 7.3.3]t X be a smooth
projective threefold with ample polarizatioi € NS(X). Assume thak is v, gp-semistable
for w = v3aH and B € NS(X)g. Then

Ap(E)>0 and AY 4(E) > 0.

This was proved for rationdB in [BMT14]; we will give a self-contained proof of the ratio-
nal case with a slightly different presentation below, axigied it to arbitraryB in Appendix
B.

We think of A% ; as the composition

K(X) i, H°(X,R) ® NS(X)r ®R i R
where the first map is given by
vi(E) = (chg (), chf’ (E), H chj (E))
and whereyZ is the quadratic form
(r,c,d) — H® +Cq (H20)2 —2rd.

If B is rational, then the image of2 (and ofv2, defined in RemarR.8below) is a finite rank
lattice.

Notice thatZ,, 5 as defined in equatiord) factors viavZ. Its relation togZ is controlled
by the following immediate consequences of the Hodge indegrem:

Lemma 3.6. The quadratic formyZ has signaturg2, p(X)).
The kernel ofZ,, 5 is negative definite with respectd¢.

This makes our situation analogous to the one in AppeAdiin particular, Theoren3.5
implies a version of the support property for tilt-stablgeaibs.

Lemma 3.7. Letr € RU {+o0}. Then there exists a half-space
H, 5, C H'(X,R) ® NS(X)r ®R
of codimension one with the following properties:
(a) For any objectF € Coh*"?(X) with v, 5(F) = v, we have
vE(E) €Hy B,
(b) The intersection df,, g, with the set defined mﬁ(_) > (0 is a real convex cone.

Proof. We defineH., 5 ., as the preimage undef,, g of the ray in the complex plane that has
slopev, starting at the origin; this ensures the first claim. Theosdcclaim is a general fact
about quadratic forms, see Lemih&’. O
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Note that by definition, a half-space is closed; indeed, wg hm/evﬁ(E) =0iff v =
“+o0.

Remark 3.8. If we replacev? with the map
WB
K(X) -5 R3, w5(E) = (H?chf(E), H? ch{(E), H ch¥(E))

andg? with the obvious quadratic forms, onR?, thenA;; = g% o v% and the analogues of
Lemma3.6and LemméB.7 hold.

Proof of Theoren8.5, caseH?B € Q. We prove the statement fakf; ;, under the assump-

tion that H2 B is rational. The proof foﬂff follows similarly due to Remari8.8, and the
non-rational case will be treated in Appendix

We proceed by induction oF? ch? (E), which by our assumption is a non-negative func-
tion with discrete values on objects 6bh7(X).

We start increasingv. If £ remains stable as — o0, we apply Lemma.7, (c); by
Theorem3.2 (for torsion-free slope-semistable sheaves) and Le@u@¢or torsion sheaves)
one easily verifies thatl satisfies the conclusion in any of the possible cases.

Otherwise, E' will get destabilized. Note that as increases, all possible destabilizing
subobjects and quotients have strictly smalt&tch?, which satisfy the desired inequality
by our induction assumption. This is enough to ensure fhafttisfies well-behaved wall-
crossing: following the argument oB[i08, Proposition 9.3] it is enough to know a support
property type statement for all potentially destabilizoigsses.

Hence there will be a walk = avy whereE'is strictly v, z = p-semistable; let

0—-F —FEF—FEy—0

be a short exact sequence where bbtland £ have the same tilt a&. Then bothE; andE,
have strictly smallef? ch?; so they satisfy the inequalith$; 5(E;) > 0 by the induction
assumption. In other wordsZ (E;) are contained in the cone described in Lenfia (b);
by convexity, the same holds for
vi(E) = v (Ey) + vj(By).
O
We now turn to some consequences of TheoBn

Lemma 3.9. Let Q be a quadratic form of signaturgl, r). LetC™ be the closure of one of
the two components of the positive cone give®y) > 0. Assume thaty,...,z,, € CT,
andletx :=z; + ..., 2. Then

Q(z;) < Q(x) forall i,
with equality if and only if for alk, we have that; is proportional tox andQ(z;) = Q(z) =
0.

Proof. This follows immediately from the easy fact thatify € C* — {0}, then the bilinear
form associated tQ satisfiegz, y) > 0, with equality if and only ifz, y are proportional with

Q(z) = Q(y) = 0. 0

Corollary 3.10. Assume that’ is strictly v, g-semistable with,, p(E) # +oo. Let E; be
the Jordan-Hblder factors ofE'. Then

Ab(E) <Ap(E) foralli.
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Equality holds if and only if allbZ(F;) are proportional tov? (E) and satisfyA, (E;) =
Zg(E) = 0. In particular, if E is v, p-stablefor somew’, B’ with ' proportional tow,
then the inequality is strict.

The same statements hold wij; and o replaced byA§; 5 and v, respectively.

The caser = +oc is excluded as in that case we may hay&(E;) = 0 or v5(E;) =
—B
v (E).

Proof. Letz; := v5(E;) andx := v5 (E). By Lemmas3.6and3.7, they satisfy the assump-
tions of Lemma3.9, which then implies our claim. O

As another application, one obtains the tilt-stability eftain slope-stable sheaves (see also
[BMT14, Proposition 7.4.1]):

Corollary 3.11. (@) LetF' be aup,p-stablevector bundle Witmg’B(F) =0 orZﬁ(F) =

0. ThenF or F[1] is av, p-stable object ofoh’B(X).

(b) In particular, if L is a line bundle, and if in addition eithef (L) — B is proportional
to H, or we can choose the constaflf; of LemmaB.3to be zero, therd. or L[1] is
v, p-Stable.

(c) Conversely, consider an objete Coh™”(X) that isv,, 5-stable withA§; ;(E) =
0or Ap(E) = 0. Then eithet = H(E) is au;-semistable sheaf, df = H(E)
is supported in dimensiod 2, or H~1(E) # 0is auy-semistable sheaf and®(E)

has zero-dimensional support. In additiaf,is v, p-stable for allw’ proportional
to H.

Note that the choic€';; = 0 in particular applies to abelian threefolds (or more gelhera
any threefold whose group of automorphisms acts trankitive closed points), or to any
threefold of Picard rank one.

Proof. Consider an objecE that isv,, g-stable withzg(E) = 0 or AG 5(F) = 0. By
Corollary 3.10, E can never become strictly semistable with respeet, gy as long asJ’ is
proportional taw. Combined with Lemma.7, (c) this implies all our claims. a

The analogue to the casg; = 0 of part () for Bridgeland stability on surfaces is due to
Arcara and Miles, see\M16, Theorem 1.1], with a very different proof.

Proposition 3.12. Assume thaB is rational, and letZ € Coh™? (X be av,, z-stable object
with A, (E) = 0 and v, (E) = 0. ThenE satisfies Conjecturg.4.

Proof. If Fis a ., g-semistable reflexive sheaf o with Zg(F) = 0, thenF is a vector
bundle by [M16, Proposition 3.12], Further, i is v,, g-semistable with,,, p(E) < 400,
then H~1(E) is reflexive by [M16, Proposition 3.1]. Hence, the cagE ! (E) # 0 of part
(c) in Corollary 3.11can actually be made much more precise: in this cBS¢FE) = 0 and

H~'(E)is avector bundle. In the other caseyifs(E) = 0, AP(E) =0, andH 1 (E) =0,
then H°(E) is a torsion-free sheaf and its double-dual is again lo€adig wichg =0.1In

either case, a classical result of Simpson (&mP2 Theorem 2] andljanl1], Theorem 4.1])
implies thatE’ satisfies Conjecturg.4; see BMT14, Proposition 7.4.2]. a
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4. GENERALIZING THE MAIN CONJECTURE

For this and the following section, we assume thaand B are proportional to a given
ample clas¢f € NS(X):

(9) w=+V3aH, B=}H.

We will abuse notation and writér? instead ofh?*, Coh?(X) instead ofCoh-#(X), and
vkl orv, 5 to abbreviate

H chy —1a?H3 ch))
H? Chf

Vo, = \/gow\/gaH,BH =

We will also write A ;7 instead oﬁg, as it is independent of the choice @f

The goal of this section is to generalize Conject2ito arbitrary tilt-semistable objects,
not just those satisfying, 3 = 0. This generalization relies on the structure of walls ftb ti
stability inR< x R; it is completely analogous to the case of walls for Bridgdiatability
on surfaces, treated most systematicallyMag144.

Conjecture 4.1. Let X be a smooth projective threefold, aifl € NS(X) an ample class.
Assume that’ is yfﬁ-semistable. Then

(10) o?*Ap(E) + 4 (H ch§<E))2 — 6H?ch? (E) chf (E) > 0.

Theorem 4.2. Let X be a smooth projective threefold, aftle NS(X') an ample class. Then
Conjecture4.1 holds if and only if Conjectur@.4 holds for allw, B proportional toH.

We begin with the following aspect of “Bertram’s Nested WEitleorem” Mac14q Theo-
rem 3.1]:

Lemma 4.3. Assume the situation and notation of Conjectirewith v, 3(E) # +oco. Then
the objectV is v, g-semistable along the semicirdg 5(E) in the(a, 3)-planeR - x R with

center(0, 5 + v, 3(E)) and radius,/a? + v, g(E)?.

Proof. We have to show that, s(F) does not intersect any wall for tilt-stability, which are
described in RemarRk.6 or PropositiorB.5. In our situation, all reduced central chargés s
factor via the map

(11) T K(X) = Q3 w— (H3 cho(w), H? chy (w), H cha(w)) .

The first type of wall, caseg] in PropositionB.5, can thus equivalently be described as the
set of(«/, B) for whichwy (F') (for some destabilizing subobjegt— FE) is contained in the
two-dimensional subspace @f spanned by (E) and the kernel of . s

However, this two-dimensional subspace does not varyass’) move withinC, s(E):
the kernel ofZ, g is spanned by1, 3’, 2(a’? + ")), and the the vectors

(1 (), 12 e (B), Hea(B) (1650024 59) (185007 +52))

are linearly dependent if and only (&', ') is contained irC, g(E).

In addition, a simple computation shoi& chf/(E) > 0for (¢, ') € Co p(E); therefore,
the semicircle cannot intersect a wall giveniRy 5/ (E) = +oo either. O
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Proof of Theorend.2 We first note that due to Theoref5, Conjecture4.1 holds for all
objectsE with H? chf(E) = 0. We may therefore assumg s(E) # +oo throughout the
proof.

As an auxiliary step, consider the following statement:

(*) Assume that is v, g-stable withv, g(E) # +oco. Let 5’ := 8 + v, g(E). Then
/ 1 /
(12) ch (E) < G (02 + v (E)?) H b (E).

Evidently, Conjecture2.4 (for the case ofv, B proportional toH) is a special case of (*).
Conversely, consider the assumptions of (*). By Lemfifa E is v, g-semistable, wherg’
is as above, and’? = o? + v, s(E)?. Moreover, a simple computation shows g (E) = 0.
Therefore, Conjectur.4implies the statement (*).

Finally, a straightforward computation shows that the uradijies (L2) and (LO) are equiv-
alent; for this purpose, let us use the abbreviations= H3~* chf(E) for 0 < ¢ < 3. Note
that by our assumptions; > 0. With this notation, expanding inequality?) yields:

€3 = Va,p2 T 54,661 — gVapf0 S gaT€1+ 2V 501 — 2 QTVa,fE0 — V0,660
—%aQeo-i-ez

Collecting related terms, substituting 3 = and multiplying with6e; yields:

€1

1 2 1
0 < —6ejez + 3eq (—a260 + 262) -2 (—504260 + 62> + 0426% —a? (—504260 + 62) ()

This simplifies to {0). O

Example 4.4. Assume that? is a slope-stable sheaf such that= H?¢;(E) is the minimum
positive integer of the fornd 2 F for integral divisor classes’; for example, this is the case
whenNS(X) = Z - H and¢;(E) = H. ThenE is v, o-stable for alla > 0 by [BMT14,
Lemma 7.2.2]. Hence in that case, Conjectdireclaims that

(13) 3cchs(E) < 2(H chy(E))>.

This generalizesgMT14, Conjecture 7.2.3]. In particular, 16t ¢ X be a curve of genug
and degred = HC'; thenE = [ ® O(H) is supposed to satisfilg). Let K € Z such that
the canonical divisor clask xy = K H. By the Hirzebruch-Riemann-Roch Theorem, we have

1
1-9=x(0c) = ch3(Oc) - 5 Kd.
Since
1 1
Ch(IC & O(H)) = <17 13-7 §H2 - 617 EHg —d— Ch3((’)(j)> s

the inequality 13) specializes to the following Castelnuovo type inequdliggween genus and
degree of the curve (whei@ = H? is the degree of the threefold):
2
< 2d 5+ 3K

14 &
(14) I=3p T 6

Even for complete intersection threefolds, this inequalies not follow from existing results;
see [lral4 Section 3] for progress in that direction.

d+1
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Remark 4.5. The inequality 13) holds whenX is an abelian threefold, or a Calabi-Yau three-
fold of abelian type. Moreover, since Conjectutel is equivalent to Conjecturg.4, and
since the latter has been verified #®tin [BMT14, Mac141, and for the quadric threefold in
[Sch14, it also applies in these two cases.

The inequality is new even in the caselst for sheaves of rank three, it is slightly weaker
than classically known results, sdeHV82, Theorem 4.3] and\IR87, Theorem 1.2], but no
such results are known for higher rank.

5. REDUCTION TO SMALL «

The goal of this section is to reduce Conjectdr&to a more natural inequality, that can be
interpreted as an Euler characteristic in the case of ab#lr@efolds, and which considers the
limitasa — 0 andv,, g — 0.

We continue to assume that is a smooth projective threefold with an ample polarization
H € NS(X). To give a slightly better control over the limit — 0, we will modify the
definition of the reduced central charge Bf fo the following form (which is equivalent for

a # 0):
— 1
(15) Zop = H? ch +i <H ch) — 0’ H’ ch§>

It factors via the map of_(ll). Also, as observed in Remagk8, the H-discriminant can be
written as the composition ; = g o T whereg is the quadratic form of? given by
(r,¢,d) — ¢ — 2rd.

Given anyE € Coh”(X), we define3(E) as follows:

(16) B(E) := e @) if cho(E) =0,
R _
ISt i cho(E) # 0.

The motivation behind this definition is that E) is the limit of a curve(a(t), 8(t)) € RsgxR
for which botha(t) — 0 andv, ) g (E) — 0; in other words, for which the right-hand-side
of the inequality 12) goes to zero: this follows from

(17) Hehd P () = o.

We also point out thakl? ch?(E) (E) > 0 unlessAy(E) = 0.
The other motivation for the definition g¢f lies in the following observations, extending
Lemma3.6:

Lemma 5.1. The kernel OfZ),B(E) (as a subspace dk?) is contained in the quadrig =

0, and the mapa, 8) — Ker?a’ﬂ extends to a continuous map fromRf, x R to the
projectivizationC~ /R* of the coneC~ C R? given byg < 0.

Moreover, ifAy (E) > 0, then the quadratic forr is positive semi-definite on the 2-plane
spanned by (E) and the kernel ofoﬁ( B)

In other words, the vectary (E) is contained in the tangent plane to the quagrie 0 at
the kernel onO 3(E) See Figurel.
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vy (E)

FIGURE 1. A section of the negative coge< 0 and the tangent plane pass-
ing throughty (E) andker 7, 3(p)- The other planes throughy (E) inter-

sectingg < 0 correspond to walls of stability fafy (E).

Remark 5.2. The map(a, 3) — Ker Z,, s gives a homeomorphism fro>o x R onto its
image in the closed unit dig€~ /R*. This can be a helpful visualization, as a central charge
is, up to the action oGL2(IR), determined by its kernel.

Proof of Lemm&.1 The kernel ofZ,, 4 is spanned by the vectdt, 3, 3 (a? + 52)), which

hasH-discriminantg; (1, 3, 5(a® + 32)) = —a?. This proves the first claim.
For the second claim, we just observe that3(E), 38(E)?) andvy(E) are orthogonal
with respect to the bilinear form di® associated tq. O

The following is a limit case of Conjecturk L

Conjecture 5.3. Let F € Db(X)_be an object with the following property: there exists an
open neighborhood C R? of (0, 3(E)) such that for all(«, 3) € U with o > 0, either E or
E[1] is av, s-stable object ofoh?(X). Then

(18) P (B < 0.

UnlessAy(E) = 0, we can always make& small enough such thaf2 ch? (E) > 0 for
(o, B) € U; thenE itself is an object of2oh” (X).
A strengthening of the methods dflac14H leads to the main result of this section:

Theorem 5.4. Conjecturesh.3and4.1are equivalent.

Lemma 5.5. Let E € D(X) be an object withAy(E) > 0 that is v, s-stable for some
(o, B) € Rsg x R. The point(0, 3(E)) cannot be an endpoint of a wall of tilt-stability f@f.
Moreover, each of the semicircles of Lemn&(along whichE has to remain stable) contains

(0, 8(E)) inits interior.

Proof. Recall the description of walls in Remazlé. As Ay (E) > 0implies H> ch?(E)(E) >
0, we can exclude the possibility of a wall given by 5(E) = +oco. The other type of walls
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can equivalently be defined by the property that the kern@(gfg(E) is contained in the
2-planell c R? spanned by (F) andty (E), for some destabilizing subobjeét — E.
The signature of restricted td1 has to bg1, 1) (as it containg; (E) and the kernel o ,, 5

for somea > 0). If (0, 5(F)) was an endpoint of this wall, then by Lemrsd. the kernel of
Zy 5y Would also be contained iii; this is a contradiction to the second assertion of Lemma

For the second claim, recall that the semicircles of LemBalo not intersect. (For exam-
ple, in Figurel, they are given by the condition thkter Z,, 5 is contained in a given plane
throughv g (E).) As we shrink the radius of the circles, their center hasaioverge to the
point witha = 0 andv, g(E) = 0. O

Lemma 5.6. Objects withA ;; (E) = 0 satisfy both Conjecturd.1and Conjectures.3.

Proof. Proposition3.12combined with Theorem.2ensures that such an object satisfies Con-
jecture4.l If E in addition satisfies the assumptions of ConjectuBwe consider inequality

(10) nearby(0, 5(E)). The first term vanishes identically, the second vanishest¢ond order

at (0, 3(E)). Therefore, we must ha\t&lg(E)(E) = 0; otherwise the third term would only
have a simple zero, in contradiction to Conjectdire O

Proof of Theoren®.4. By the previous lemma, we can restrict to the cAsg(E) > 0 through-
out. First assume that Conjectudel holds. LetFE be an object as in the assumptions of

Conjecture5.3 and consider the limit of10) as(«, 5) — (0,3). Evidently the first term
— 2
o?A g (E) goes to zero; by equatiod7), the same holds for the second te(tﬂ chg(E)) .

Since 2 ch?®) > 0, the limit yields exactly 18).
For the converse, we start with three observations on idigg(40).

(a) Consider a semicircle given by Lemma. By the proof of Theoremd.2, inequality
(20) either holds for all points on the semicircle, or it is vid for all such points;
indeed, it is equivalent to inequalityL?), which is just the original Conjectur2.4
applied at the point where this semicircle intersects threecgiven byv, g(E) = 0.

(b) Once we fix3, it is clear from Theoren®.5that if (10) holds for a givenyy, then it
holds for allae > ay.

(c) Finally, if we consider the semicircles of Lemm& at all points(c«, 3) with o >
0, 8 = B(E), then by Lemma.5they fill up all points ofR~( x R with H2 ch’ (E) >
0.

Now assume that ConjectuBe3 holds. We proceed by induction ahy (E) (recall that
Ap only obtains non-negative integers for tilt-stable olgdc).

For contradiction, lefy be an object that is,, g-stable, wichH(E) > 0, and that violates
conjecture 10) at this point. By Lemmab.5 and observationdj above, we may assume
B=pBE).  _

Now fix = B(F) and start decreasing. Since we assumé.() to be violated, we must
havechg(E)(E) > 0. If E were to remain stable as — 0, then by Lemm&b.5 it would
be stable in a neighborhood @6, 3(E)) as in the conditions of Conjectuf3, this is a
contradiction.

Therefore there must be a poing whereF is strictly Vo B( E)—semistable; leE; be the list

of its Jordan-Holder factors. By observatids),(E still violates conjecturel(0) at («g, 5(E)).
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On the other hand, by CorollaB/10 Ay (E;) < Ay (E) for eachi; by the induction assump-
tion, E; satisfies Conjecturé.l

Now the conclusion follows just as in Lemmn#a6: consider the left-hand-side of@) as
a quadratic form ofR* with coordinates H3 chy), H2 ch//, H ¢h5, ¢hf). The kernel ofZ,, 4,
considered as a subspaceRSf, is negative semi-definite with respect to the quadratimfor
Therefore, the claim follows from Lemn#a7. O

6. TILT STABILITY AND ETALE GALOIS COVERS

Consider an étale Galois covér Y — X with covering groupG; in other words,G
acts freely ony” with quotientX = Y/G. In this section, we will show that tilt-stability is
preserved under pull-back by

For this section, we again let, B € NS(X)gr be arbitrary classes with a positive real
multiple of an ample.

Proposition 6.1. If £ € D°(X), then

(@) E € Coh*B(X)ifand only if f*E € Coh/ /" B(Y), and
(b) Eis v, p-semistable if and only if*E is vy, - p-semistable.

Proof. The pull-back formula for Chern characters immediatelyegiv
pipew,f B (f*F) = po,p(F)  and vpy pp(f*E) = vo,(E).

By [HL10, Lemma 3.2.2], a torsion-free sheAfis p,, g-semistable if and only iff*F is
[+, p+ p-S€MIstable, which directly implies)

Now considerE € Coh*?(X). Part @) and the above computation shows thaFifis
tilt-unstable, then so ig*E. Conversely, assume th#t E is tilt-unstable. LetF — f*FE
be the first step in its Harder-Narasimhan filtration withpest tov s+, s«5. Since f*E is
G-equivariant, and since the HN filtration is unique and foniel, the objectt” must also be
G-equivariant. Hence it is the pull-back of an objé¢tin D*(X). Using part ) again, we
see thatF’ must be an object of oh*"?(X). Applying the same arguments to the quotient
f*E/F, we see thaF” is a destabilizing subobject @ in Coh*-?(X). O

Example 6.2. Letn € Z~(. Let X = Y be an abelian threefold and let X — X be the
multiplication byn map. Them has degree®, andn*H = n?H for any classH € NS(X);
see e.g.BLO4, Corollary 2.3.6 and Chapter 16].

We also obtain directly the following consequence:

Proposition 6.3. If Conjecture2.4 holds for tilt-stability with respect to;-,, s onY’, then
it also holds for tilt-stability with respect to,, g on X.

7. ABELIAN THREEFOLDS

Let (X, H) be a polarized abelian threefold. In this section we provecféml.1

Most of this section will be concerned with proving Conjeett.3, the case where and
B are proportional td7. For (o, ) € R+ x R, we letw = v/3aH andB = SH. We can
also assume thd is the class of &ery ampledivisor, which, by abuse of notation, will also
be denoted byH.
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We let E € Db(X) be an object satisfying the assumptions of Conjecfuge By Lemma

5.6, we can also assum&y (E) > 0, and soH? ch?(E)(E) > 0. We proceed by contradic-
tion, and assume that

b’ B(E) > 0.

Idea of the proof.Consider the Euler characteristic of the pull-backs
n* (B(-B(E)H))

via the multiplication byn map. If we pretend thak(—/5(E)H) exists, this Euler charac-
teristic grows proportional ta’; we will show a contradiction via restriction of sections to
divisors.

The proof naturally divides into two cases: A{E) is rational, then* (E(—3(E)H))
exists whem: is sufficiently divisible, and the above approach works gérb; otherwise, we
need to use Diophantine approximation3gf-).

Proof of Conjecture 5.3, rational case. We assume that(E) is arational number.

Reduction ta3(E) = 0. Let ¢ € Z- such thay3(E) € Z, and consider the multiplication
mapgq : X — X. By Proposition6.1, ¢* I still violates Conjecturé.3. By definition, we
have

B(¢"E) = ¢°B(E) € L.

Replacing E' with ¢*E/, we may assume that(F) is an integer. Replacing again with

E ® Ox(—p(F)H), we may assume thdi satisfies the assumptions of Conject6r8, as
well as

e 3(FE) =0, and soH. chy(E) = 0, and
e ch3(E) > 0, and sachs(F) > 1.

Asymptotic Euler characteristicWe look atx(Ox,n*FE), for n — oo. By the Hirzebruch-
Riemann-Roch Theorem, we have

(19) X(Ox,n*E) = 8 chy(E) > n.

The goal is to boung (Ox, n* E) from above with a lower order in.

First bound. We claim that
(20) x(Ox,n*E) < hom(Ox,n*E) + ext?*(Ox,n*E).
Indeed, bot* E andOx [1] are objects ofoh”="(X). Hence, for all: € Z-, we have

hom™*~1(Ox,n*E) = hom™*(Ox[1],n"E) = 0,
hom*t%(Ox,n*E) = hom*™(Ox[1],n*E) = hom *(n*E, Ox|[1]) = 0.



STABILITY CONDITIONS ON ABELIAN THREEFOLDS AND SOME CALABIFYAU THREEFOLDS 21

Hom-vanishing from stabilityTo bound the above cohomology groups, we use Hom-vanishing
between line bundles and*E. By Corollary 3.11, all objects OfCohB(X) of the form
Ox(uH) andOx(—uH)[1] arev, g-stable, for allu > 0 and 3 close to 0. For3,a) —
(0,0), we have

a5 (Ox (uH)) = 5 > 0

(21) Ve s(Ox (—uH)[1]) — —% <0
Va,g(n*E) =0,

and therefore

Va,3(Ox (H)) > va,s(n"E) > va,(Ox (—H)[1]).
Applying the standard Hom-vanishing between stable object Serre duality, we conclude
(22) Hom(Ox (H),n*E) =0 and  Ext’(Ox(—H),n*E) =0.
Restriction to divisors We will use this Hom-vanishing to restrict sections to divss we will
repeatedly apply the following immediate observation:

Lemma 7.1. Let F1, ..., F,, be a finite collection of sheaves. Then any globally gendrate
linear system contains an open subset of divigonwith

Tor'(Op, F;) =0
foralli>0andj=1,...,m.

Proof. We chooseD such that it does not contain any of the associated poink$,afe., such
that the natural map};(—D) — Fj is injective. O

In particular, for generaD, a finite number of short exact sequences restrict to exact se
guences oD, and taking cohomology sheaves of a complerommutes with restriction to
D.

Bound onhom(Ox,n*E). We want to show
(23) hom(Ox,n*E) = O(n%).
We consider the exact triangle Bf (X))
n*E®Ox(—H) - n*'E — (n*E) @ Op,
whereD is a general smooth linear sectionidf By (22), we have
hom(Ox,n*FE) < hom(Ox, (n"E) ® Op).
We consider the cohomology sheavediénd the exact triangle iB?(X)
H YE)[1] - E — HE).
SinceD is general, Lemmd.1gives
hom(Ox, (n'E) ® Op) < h*(D, (w*H*(E))|p) + b (D, (0" H"(E))|p)-

The bound 23) will then follow from Lemma7.3below. We first recall a general bound on
global sections of sheaves restricted to hyperplane segtighich is due to Simpson and Le
Potier, and can be deduced as a consequence of the GraulohMFheorem:
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Theorem 7.2([HL10, Corollary 3.3.3]) Let Y be a smooth projective complex variety of
dimension: > 1 and letH be a very ample divisor ok . Let F' € Coh(Y') be a torsion-free
sheaf. Then, for a general sequence of hyperplane seélon.., D, € |H| and for all
d=1,...,n,we have

if uj;(F) <0

d
cho(F)H™ + cho(F)—1 .
hO(Y;j F| ) < % <IU'H(} ) —0(2) +d> if MH(F) >0
; Yy) =
0

)

whereY,, =Y andY;: =Dy N---ND,_g4.

Notice that in the actual statement &fl{10, Corollary 3.3.3] there is a factdi™; this is
already included in our definition of slope.

Lemma 7.3. Let Q be a sheaf orX and letL be a line bundle. For ali = 0, 1,2 and for D
a smooth very general surface in the linear systém we have

(D, (n*Q® L)|p) = O(n?).

Proof. We assume first thap is torsion-free. Notice that the multiplication mapreserves
slope-stability and the rank. Therefore, by Theoré®) we have

2
Cho Q H3 2
= Dol (@) + O,
The h2-estimate follows similarly, by using Serre Duality d. Finally, the Hirzebruch-
Riemann-Roch Theorem adn gives
hY(D, (n*Q® L)|p) = —x(D, (2*Q ® L)|p) + h’(D, (n*Q & L)|p) + h*(D, (n*Q @ L)|p)
=0(nY).
This finishes the proof in the torsion-free case.
For a general shed}, we take a resolution

0->M-—>N—@Q—0,

2
(D, (1*Q ® L)|p) < (@ (uE(n*Q@L) . % +2>

with N locally-free andM torsion-free. Since is very general, Lemma.1applies, giving
WD, (n*Q® L)|p) < (D, (n*N @ L)|p) + k"™ (D, (n*M @ L)|p).

Hence the result follows from the previous case. O

Bound orext?(Ox,n*E). This is similar to the previous case. We consider the exictgte
n*E—-n"E®Ox(H) = (n"E® Ox(H)) ® Op.
Again, we apply 22), Lemma7.1land Lemma/.3and reach
(24)
ext?(Ox,n*E) < ext!(Ox, (n*F ® Ox(H)) ® Op)
< WD, (n"H*(E) ® Ox(H))|p) + h*(D, (0" H™(E) ® Ox(H))|p)
= O(n?).
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Conclusion. By (19), (20), (23), and @4), we have
n® < x(Ox,n*E) = O(n?),
which gives a contradiction for sufficiently large.
Proof of Conjecture 5.3 irrational case. Now assume thab(E) € R\ Q is an irrational

number. As a consequencky(E) # 0 and, for allg € Q, Hchg(E) # 0.
By assumption, there exists> 0 such that¥ is v, g-stable for all(«, 3)
)

Ver={(a,8) ERsoxR: 0<a<e B(E)—e<B<BE

+e€}.

€
} of rational
n

i
By the Dirichlet approximation theorem, there exists a seqe{ Bn =12 N
n €

q
numbers such that
(25) ‘B(E) -

for all n, and withg,, — +o00 asn — +oo0.

1
<—2<€

The Euler characteristicThe functionf(3) = chg(E) has derivativey’(3) = —H chg(E)
andf”(8) = H? ch! (E); sinceH ch’ (E) = 0 andH? ch’ (E) > 0, the point3 = B(E) is a
local minimum. Thus, for large, we have

e (B) > bl (B) > 0.
Consider the multiplication mag,: X — X. We let
Fp:=q¢."F @ Ox(—pngnH).
By Lemma6.1, F,, is v, o-stable, for alle > 0 sufficiently small. We have
(26) X(Ox, Fy) = chy(F,) = g5 chl" (B) > g ™ (E).
By (20), it is again enough to bound boblom(Ox, F},) andext?(Ox, F,) from above.
Hom-vanishing.As a — 0, we have

Hchl" (B
Va,0(Fpn) — qi%
H?ch|"(E)

We can bound this term as follows:

, Hchi" (E) H ch}(E) — (8, — B)H? b (E) + (8, — B)*H cho(E)
" H? /" (E) H2ch?(E) — (B, — B)H? cho(E)

2167 'H2 ch?_(E) — L(B, — B)H? chy(E)

H2 b (E) — (8, — B)H3 chy(E)

o1 (1 . 3B, — B)H? cho(E) ) L

H2 b (E) — (8, — B)H3 chy(E)
Here we used?? chE(E)(E) = 0 in the second equality, anf® ch?(E) (E) > 0in the limit.
By comparison withZ1), it follows that
Va3, (Ox (3H)) > va,g,(Fn) > va,s(Ox (=3H)[1])

_ 2

n
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for « — 0 andn sufficiently large; therefore
27) Hom(Ox (3H),F,) =0 and  Ext*(Ox(-3H),F,) =0.

Bound onhom(Ox,m*F},) and conclusion.Proceeding as in the rational case, we consider
the exact triangle
whereD is a general smooth surface in the linear systgfi|. By (27), we have
hom(Ox, F,,) < hom(Ox, F,, ® Op)
< (D, H°(Fy)|p) + 1" (D, H™'(F,)|p)-
The following is the analogue of Lemma3:
Lemma 7.4. LetQ be a sheaf or and letL be a line bundle. Then

(D, (40" Q(=pnanH) ® L)|p) = O(dy),
for all ¢, and for D a general smooth surface |BH |.

Proof. By the same argument as in the proof of Lemni& we may assume th&} is torsion-
free. Applying TheorenY.2in our case we obtain, for general,

h? (D, (g0 Q(—pnanH) @ L)|p)

C ’ - - 2
< SO (" Qpaant) w1) + PUD =2 )

3
= w (uEﬁn(Q))Q dn +0(g;)

3cho(Q)H?

2
= ST (M (@) @+ O,

Theh! andh? bounds follow from Serre duality and the Riemann-Roch Téeor O

Applying Lemma7.4to the cohomology sheaves Bfin combination with Lemm&.1, we
get
hOIIl(OX, Fn) = O(Q;lz)
The same argument gives a similar bounceet? (Ox, F,,) and a contradiction ta2g). This
completes the proof of Conjectube3, and therefore Conjecturel, for abelian threefolds.

Proof of Theorem 1.1 Let now B € NS(X)r be an arbitrary divisor class anda positive
multiple of H. In the abelian threefold case, we can use Conje&wB& deduce Conjecture
2.4in this more general case.

We let E € Coh*?(X) be as in Conjectur@.4. We first assume tha € NS(X)g is
rational. Then, by Propositio.1, we can assumg integral. By taking the tensor product
with Ox (—B), we can then assunigis v, p-semistable. Conjectuz4then follows directly
from Conjecturet.1and Theorenb.4.

Finally, we takeB irrational. Since §) is additive, by considering its Jordan-Holder factors
we can assumé is v, g-stable. By using Theorer.5 and Remark2.5, we can deform
(w, B) to («', B") with B’ rational (and.’ still proportional toH), such that®' is still v, -
stable withv,, g/(E) = 0. But, if (6) does not hold for{w, B), then it does not hold for
(w', B") sufficiently close, giving a contradiction to what we jusbyed.
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8. CONSTRUCTION OFBRIDGELAND STABILITY CONDITIONS

It was already established iBIMT14] that Conjecture2.4implies the existence of Bridge-
land stability conditions ok, except that the notion of support property was ignoreds Thi
property ensures that stability conditions deform freahg exhibit well-behaved wall-crossing.

In this section, we show that the equivalent Conjectlteis in fact strong enough to de-
duce the support property, and to construct an explicit cpdrset of the space of stability
conditions. In the following section, we will show that iretisase of abelian threefolds, this
open set is in fact an entire component of the space of dtabdinditions.

Statement of results. Fix a threefold X with polarization H; we assume throughout this
section that Conjecturé.1is satisfied for the paifX, H). We consider the lattica ;; = 7Z*
generated by vectors of the form

(H? chy(E), H? chi (E), H chs(E), ch3(E)) € Q*

together with the obvious map;: K(X) — Ap.

We refer to Appendia for the definition of stability conditions oB®(X) with respect to
(Am,vm);itis given by a paio = (Z, P), whereP is aslicing, and thecentral charge” is a
linear mapZ: Ay — C. The main result ofri07] shows that the spacsab (X) of such
stability conditions is a four-dimensional complex matdfeuch that

Z: Staby(X) — Hom(Ay,C), (Z,P)— Z

is a local isomorphism. In Propositioh.5 we make this deformation result more effective.
This result will be essential in the following, where we witinstruct an explicit open subset
of this manifold. We let ¢ Ay @ R = R* be the cone over the twisted cubic

1 1
Q = {<$37x2y7 595927 6y3> CTLY € R} )

which containa g (Ox (uH)) for all u € Z.

Definition 8.1. Consider the open subs®t C Hom(A, C) of central charges whose kernel
intersects® only at the origin. We lef3 C U be the connected component containiigsic
defined by

(28)  ZP(E) = {— ch3(E) + %HQ chl(E)} +i {H chy(E) — éH?’ cho(E)} :

Let 3 be its universal covering.
The goal of this section is the following precise version bedreml.3:

Theorem 8.2. Let (X, H) bga polarized threefold for which Conjectutel is satisfied. Then
there is an open embeddifiy C Staby (X) for which the following diagram commutes:

P Staby(X)
L
P—— Hom(Ay, C)

We will prove this theorem by constructing an explicit fayrolf stability conditions follow-
ing the construction offMT14], and then applying the deformation arguments of Propmsiti
A.5.
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Alternative description of 3. We will need a more explicit description of the $gtbefore
proceeding to prove our main result.

The groupGL3 (R) of 2 x 2-matrices with positive determinant acts ginon the left by
post-composing a central charge with the induBetinear map ofR? = C. There is also
an action ofR on‘p on the right: for3 € R, the multiplication bye %% in K(D’(X))
corresponds to a linear selfmap df; ® R which leavest invariant; therefore we can act on
B8 by pre-composing with this linear map.

Lemma 8.3. There is a slice ot with respect to th&L; (R)-action given by central charges
of the form

1
Zg:% = [— ch§2 +bH Chg +aH? ch?] + 1 [H chg —§a2H3 chg
forall «, 8, a,b € R satisfyinga > 0 and
1 1
(29) a> 6042—1-5\13\ a.

This slice is simply-connected.

It follows that it is simultaneously a slice of ti@L, (R)-action orfg.

Proof. Consider a central chargé € 3. SinceZ(0,0,0, 1) # 0 by definition of3, we may
use the action of rotations and dilations to normalize toabgumptionZ(0,0,0,1) = —1.
Now consider the functions

r(z):=RZ <1,£U 1302 1563> = —1$3—|—O($2) andi(z) := 372 (1,3@, 1562 1303) = O(2?)

2776 6 2776
for Z € P normalized as above; their coefficients vary continuousty . They can never
vanish simultaneously, by definition @. In the case o}, the functionr(z) = — £ +

sz has zeros as = —v/3,z = 0, z = /3, whereas(z) = 12° — ¢ has zeros at = i\/g.
This configuration of zeros on the real line will remain unuted asZ varies: r(z) will
always have three zeros, af(d) will have two zeros lying between the first and second, and
the second and third zero ofz), respectively.

We now use the action @& ong from the right to ensure that = 0 is always the midpoint
of the two zeros of(x). The sign of the leading coefficient 6fx) must remain constant as
Z varies; therefore, we can use vertical rescalindRdfto normalize it to be+%. Since the
sign ofi(0) = IZ(Ox) is constant within this slice, it has to be negative; heneegtlexists a
uniquea € R such that(0) = —1a2.

On the slice we have constructed thus far, we still have thieraof R given by sheerings
of R? = C that leave the real line fixed. Sin€&Z(Ox) = i(0) < 0, there is a unique such
sheering that force& (Ox ) to be real. Summarizing, we have constructed a slice in wélich
central charges are of the form

1
ZZ’,?S:o := [ chg +bH chy +aH? chy] +i | H chy —50421—[3 cho| .

In this form, the zeros of(x) = %xQ — %oﬂ arex = 4«; thus the kernel of intersects the

twisted cubics if and only if

1 1
a=-a®4+ -ba.
6 2
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In the case ofZbic, we havea = \/g b = 0 anda = 3, which is bigger than the right-

hand-side. It follows that the inequalit9) holds in the whole connected component of our
slice.

Conversely, given a central char@g as described in the lemma, we can first use the
action ofR to reduce to the case = 0. The coefficients of the linear functiofsZ, RZ are
in one-to-one correspondence with the coefficients(ef) andi(z), respectively; these are,
up to scaling, uniquely determined by the configurationsenbg ofr(x) andi(z) on the real
line. But our conditions ensure that we can continuoushouefthe configuration of zeros
into the one corresponding m';[aSiC. a

Remark 8.4. From the proof of the lemma one can also deduce the followingerntrinsic
description of the sel3. Consider the twisted cubi€ in projective spac@®3(R). There is an
open subset of central charggswith the following properties: the hyperplangsZ = 0 and
RZ = 0 both intersect in three distinct points; moreover, their configuration ®r&z S*
are such that the zeros of the two functions alternate. T et has two components:
one of them SR, the other is obtained froMg by composing central charges with complex
conjugation.

Moreover, one can also deduce the description given in thedaction.

Recall theH -discriminant
— 2
Ag = <H2(:hf) - 2H36thChg.
defined in {), Let us also introduce a notation of the remainder termioy: (
— 2
Vo =4 (H ch? (E)) — 6H2 ch (E) chl(B).

Lemma 8.5. There is an open interval®’ c R~ such that the kernel QZZ’% is negative
definite with respect to the quadratic formA ;7 + V@ for all K € Ig’b. In caseb = 0, the
interval is given byIZ’b = (a?,6a). In caseb # 0, it is a subinterval of 2, 6a) satisfying
3 (@ +6a) € 1%° for all b, and
1% reb
whenevert'| > |b|.
Proof. Let us use the coordinates:= H3~% ch on Ay @ R. In these coordinates, the kernel
of Z“b is generated by the vectofs, 0, 2a2 1ba ) and(0, 1,0, a). The intersection matrix
for the symmetric pairing associated Ao\ ;7 + W s
—Ka?+ao*  —3ba?
—3ba? K —6a)"

The diagonal entries are negative férc (a2, 6a) (which is non-empty by the assumptions
ona). In caseb £ 0, we additionally need to ensure that the determinant

a? (—K2 +6aK + Ko? — 6aa® — 9b2a2)

is positive. Solving the quadratic equation, one obtainskanserval of(a?, 6a) symmetric
around the midpoink’ = (a + 6a) with the properties as claimed. O
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Review: construction of stability conditions. We will use Bri07, Proposition 5.3] to con-
struct stability conditions. It says that a stability cdiath is equivalently determined by a
pairc = (Z, A), whereZ: Ay — C is a group homomorphism (callegntral chargg and
A C DP(X) is theheart of a bounded t-structurevhich have to satisfy the following three
properties:

(a) Foranyy # E € A the central charge (vg (E)) lies in the following semi-closed
upper half-plane:
(30) Z(vp(E)) € Ryg - 017
We can usét”Z andSZ to define a notion of slope-stability on the abelian categémnjia the
slope function\, (E) = —%ﬁggg
(b) With this notion of slope-stability, every object iii € A has a Harder-Narasimhan
filtration0 = £y — Ey — ... — E, = Esuchthateacl;/E;_, is \,-semistable,
with )\J(El/Eo) > )\U(EQ/El) > > )\J(En/En_l).
(c) (support property There is a constar@@ > 0 such that, for all\,-semistable object
E € A, we have
lor (B)|| < C|Z(vu (E))],

where||_|| is a fixed norm oMy ® R = R*,

For brevity, we will write Z(FE) instead ofZ(vy(E)). Shifts of \,-(semi)stable objects are
calledo-(semi)stable.

Explicit construction of stability conditions. We start by reviewing (a slightly generalized
version of) the construction of stability conditions BNIT14].
We define a heatd®#(X) c D?(X) as a tilt of Coh” (X): we let

wp = {E € Coh”(X) : any quotient? — G satisfies/, 4(G) > 0}
<0

wp = {E € Coh?(X) : any subobjecF — F satisfies, 5(F)

)

and define
AYP(X) = (T4 5, Fapl1])-

Theorem 8.6([BMT14]). Let(X, H) be a polarized threefold for which Conjectutel holds.
Assume thaty, 8 € Q, and thata, 3, a, b satisfy(29). Then the paiv = <Z;:%,Aaﬁ(X))
satisfy conditionga) and (b) above.
Proof. The caseh = 0 is [BMT14, Corollary 5.2.4], and the same arguments apply here; let
us review them briefly.

The construction of the heart directly ensures thaBifc A*#(X), then %Z;:% > 0.

Moreover, if E € A%#(X) is such thatsZ, s s(E) = 0, thenE fits into an exact triangle
F[1] = E — T where

e T'is a zero-dimensional torsion sheaf, and

e F € Coh’(X) is v, s-semistable with,, 5(E) = 0 (in particular,H2 ch? (F) > 0).
We haveZZ’%(T) = —length(T) < 0 if T is non-trivial. To treatF'[1], observer that
Va,3(F) = 0 implies

1
§a2H3 chl(F) = H ch(F).
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Therefore we can use Conjectutd and Theoren8.5to estimate

Z2%(F[1]) = chfj (F) — bH ch} (F) — aH? chy (F)

1 1
< 6a2H2 chi(F) + |b| §a2H2 Chf(F) —aH?chy(F) <0.

By [BMT14, Proposition 5.2.2], the category®#(X) is noetherian. Sinc&Z, 5 is a
discrete subset @&, we can applyBM11, Proposition B.2] to deduce the existence of Harder-
Narasimhan filtrations. O

Support property. The next step towards proving Theoréh? is to establish the support
property for the stability conditions constructed in Ttexai8.6. Our overall goal is the fol-
lowing analogue of Theore®.5.

Leto = (Z,A) € P C Staby(X) be a stability condition in the open subset given in
Theorem8.6. We may assume thaéf = Z;L:% is of the form given in Lemm®&.3. We also

choose a constadt ¢ [g’b in accordance with Lemm@&.5.
Theorem 8.7. Under the assumptions above, evergemistable objeck satisfies
(31) Q% (E) = KAy (E) + Vi (E) > 0.
Moreover, up to shift the hear is of the formA = A*#(X).

We will treat only the casé = 0; then %’ = (a?,6a). We will also shorten notation and
write Za s instead ofZ* % and/¢ instead off?. The casé = 0 will then follow directly by
ProposmonA 5.

The analogy between Theorév and Theoren3.5is reflected also in their proof. We first
treat the rational case:

Lemma 8.8. Let (X, H) be a polarized threefold an(h B) € Qso x Q. Assume that Con-
jecture4.1holds for this pair(a, 8). Then for anys > ga?, the pairo? ; = (22 5, A% (X))
satisfies the support property; more precisely, the ineguédl) holds for allaa B—semlstable
objectsk and all K € IZ.

We first need an analogue of Lemiaa.
Let us denote by{é thei-th cohomology object with respect to the t-structGreh” (X )

Lemma 8.9. Let E ¢ A% (X) be ac® o.5-Semistable object, for ati > 1 sufficiently big.
Then it satisfies one of the following condltlons

(@) Hy YE)=0 andHB( ) IS vo g-Semistable;
(b) Hﬁ‘l(E) IS V4, g-s€emistable and{g(E) is either O or supported in dimension 0.

Proof. Consider the exact sequence
0— Hy'(E)1] = E — HJ(E) = 0.
in A%%(X). Fora — 400, we have
RZE 5 <H§1(E)[1]) = —aH® ch{ (H; ' (E)) + const = —o0
unlessH; ' (E) = 0, and

RZS 5 (HY(E)) = aH? chy (HY(E)) — chi (HY(E)) > — chj (HY(E)).
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Their imaginary parts are constant, Wity ; (Hg(E)) #£0 unIesng(E) is supported in
dimension zero. This means thiais ¢¢ 6-unstable fom > 0 unIesngl(E) =0, ong(E)

is a zero-dimensional torsion sheaf Iﬁﬁg =0.
In the limita — +o00, we haveZ“B — Za .3 up to rescaling of the real part; this implies
the v, g-semistability of the cohomology objects in both cases. O

We have already proved the analogue of LenBr@ as part of Lemma.5 This also
enables us to use the result from Appendix

Proof of LemmaB.8. Throughout the proof, we fix and 5.

If Eis strictly o B—semlstable and ifX1) holds for all of the Jordan-Hdolder factofs of
E, then by LemmaA.6, it also holds forE'. We may therefore assume thats stable

We also notice that i’ € Coh?(X) is v, s-semistable, then Conjectudel and Theorem
3.5show that in particular, it satisfie@f((F) > 0 for every K > o?.

We proceed by induction ofi(E) := H ch§ (E) — 2/ chy (E) = 322 4(E), which is a
non-negative function o®#(X) with discrete values.

We fixag > ga? andK € (a?,6ap). Let E be aoy’;-stable object ind™#(X).

If £ remainngﬁ-semistable, for alb > ag, then by LemmaB.9 either & = Hg(E) is
Va,g-SEMistable, orHﬁ*l(E) is v, g-semistable and?®(E) is either O or supported in di-
mension 0. In the first case, we already pointed out above Ehaatisfies 81). In the
second caseH ch/(E) = H2ch{(H;'(E)[1]) < 0 andchf(H}(E)) > 0. Therefore
Au(E) = Au(H;'(E)) and

Vi(E) = Vi(H; (B)) — 6H? b} (H; \(B)[1]) ch (HY(E)) > Vi (H;\(E)).

Since 1) holds forH/;l(E), it holds also forE.

Otherwise,E will be unstable for sufficiently big. Every possibly destabilizing subobject
or quotientF hasf(F) < f(FE) (sincef is non-negative, and since the subcategory of objects
F € A%8(X) with f(F) = 0 has maximum possible slope with respectp, for all a).

Therefore they obey the induction assumption; sice (a?,6aq) C (a?,6a), this means
that all these possible subobject or quotients sati8fy (ith respect to our choice oK.
Sincezgﬁ has negative definite kernel with respecmé for all @ > ag, this is equivalent
to a support property type statement, see AppeAdilt follows that F satisfies well-behaved
wall-crossing along our path. Hence, there will exist> ao such thatE is strictly o ;-
semistable. But all the Jordan-Holder factdrs of £ have strictly smallerf. Using the
induction assumption again, we see that they saﬂﬁy(Ez ) > 0; therefore, we can again
apply LemmaA.6 to deduce the same claim fér. O

The combination of Lemma&.3 Theorem8.6 and Lemma3.8 together with Proposition
A.5 leads to the following result: for each tupte 8,a,b as in Theoren8.6 (in particular
a,f € Q), we obtain an open subsEt(«a, 5,a,b) C Stabg(X) of stability conditions by
deforming the paifZ’ %, A%8(X)). The associated open subsg&td/(«, 3, a, b)) of central
charges combine to cover the §&t To conclude the proof of TheorerBs2 and8.7, we need
to show that the seS («, 3, a, b) glue to form a continuous family coveri@.

This is done by the following analogue of Propositigre:
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Proposition 8.10. There is a continuous family of Bridgeland stability coratis inStab 7 (X),
parameterized by the set

1
a,B,a) ERsg xRx R, a>=a?
( - :
via
(0, 8.0) > 085 1= (28,5, A°P(X))

Indeed, deformations of the central cha@ for b £ 0 (while keepinga, 8, a fixed) do
not change the heart, as modifyih@nly affects the real part of the central charge. Acting on
these stability conditions b L3 (R) produces the entire s&l.

To prove PropositiorB.10 we need a few preliminary results. We will use the notion
of a pre-stability conditionwhich is a stability condition that does not necessaritisgathe
support property; see Appendix The first result already appears implicitly BBrj08, Section
10].

Lemma 8.11. Assume that; = (Z,.A;) andoy = (Z, Ag) are two pre-stability conditions
with the following properties:

(&) Their central charges agree.
(b) There exists a heaf of a bounded t-structure such that eadh can be obtained as
a tilt of B:

Ai, Ay C (B, B[1]).
Theno; = 0.
Proof. By [Pol07, Lemma 1.1.2], foi = 1,2, A, is a tilt of B with respect to the torsion pair
Ti:=BNA;, and F, :=BnA-1].

We need to show thaf; = 75 and F; = F»; in fact, sincefF; = 7}, it is enough to show
T1 = T2. Observe that, since the central charges agree, wehaver; = {0} = 71 N Fo.
We letT € 7,. Consider the exact sequencein

0—-Ty —-T— F — 0,

with Ty € T; andF; € Fi. Since the torsion part of any torsion pair is closed undetignts,
Iy € 73, contradicting the observation above. Herifes 77, and so7, C 7;. The reverse
inclusion follows similarly. O

Lemma 8.12. There exists a continuous positive functidr, 5,a) > 0 with the following
property: if E € Coh”(X) is v, s-stable with

|V0475(E)| < E(av Bv a)’
thenRZ;, 5(E) > 0.
Proof. We first apply Conjecturd.1, rewriting (L0) as
(32) 6chy(E) < o’ H? ch? (E) + 4H chl) (E)vg 5(E).

Now we apply TheorerB.5. First of all, we can rewrite\ ; (E) > 0 as

a2 2 2 2
1
(12 ch?) +— <H chy —-H* ch§> - <H chy +-H* ch§> > 0.
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By assumption,
2
‘H chg —%H?’ chg' < eH? Ch?
and therefore )
‘Hchg +%H3 chg' < Va2 +eH2ch?.
Summing up the last two equations we obtain

€+ Va2 + €2
2

\Hchg\ < H2ch? .

Plugging this into 82), we obtain the desired claim. O

Lemma 8.13. We keep the notation as in the previous lemm& # Cohﬁ(X) IS v, g-Stable
with |1, 3(E)| < €, thenE € P2 5((—3, 3)).

Proof. We consider just the case< v, g(E); the opposite case follows from dual arguments.
By construction we knowt ¢ A*F = P 5((0,1]). Let A be the HN-filtration fac-
tor of E with respect toog, and with the largest phase, and consider the associatetl shor
exact sequencel — E — B in A%®. The associated long exact cohomology with re-
spect toCoh? (X) shows thatd € Coh”(X) N AP = 7. 5 moreover, there is a sequence
H~'(B) — A — E exacton the left wittH ~'(B) € F, ,.
Now consider the slopes appearing in the Harder-Narasirilt@tion of A for tilt-stability
with respect to/, 5. By standard arguments using the observations in the preyiaragraph,
all these slopes lie in the interve), ¢). Lemmas8.12then impliesRZg ;(A) > 0, and there-

fore E € P 5((0, 3)) as we claimed. O

Proof of Propositior8.1Q0 Consider a stability conditiony = (Zy, Py) = agg - Let
e := €(ag, Po,ap) be as in Lemmas.12and8.13 Consider(«, 3, a) sufficiently close to
(a0, Bo, a) (which we will make precise shortly). Let := oy, 5, and letoy = (Z; 5,P2) be

the stability condition with central charggf, ; obtained by deformingy. We want to apply

Lemma8.11with B = 730( -1 %} )
By the support property far,, and the analogous property for tilt-stability, we can tiegju
“sufficiently close” to mean that:
e if F is o9-stable of phase, thenE € Py((¢p — €, ¢ + ¢)), and
¢ the analogous statement for tilt-stability with respeattg andv,, g,, respectively.
This means that i € Coh”(X) is v, s-semistable, and ifiy, ..., A,, are the
Harder-Narasimhan filtration factors affor tilt-stability with respect ta/,, 3,, then
the phases of ,, 5, (4;) differs by at most from the phase of, 5 (F),
The first assumption implies that
P2((0,1]) € Po((—€,1 + ¢€]) < (B, B[1]).

The second assumption implies thatfifis tilt-stable with respect to,, 3 andv, g > 0,
then all HN filtration factorsd; of E with respect tav,, g, satisfyv,, 3,(4;) > —e. In case
Vao.fo(Ai) > 0 this impliesA; € AP = Py((0,1]). Otherwise, if—e < v, g,(A;) < 0,
then LemmaB.13showsA4; € Py (( — 3, 3]); overall we obtain

1

Ec 7>0<< - 5,1}) < (B, B[1]).
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A similar argument implies that i is tilt-stable withv, g3 < 0, thenE[1] € (B, B[1]).
Combined, these two facts show thét® (B, B[1]).
We have verified all the assumptions of Lem&l, which implieso; = os. O

Let us also mention the following property:
Proposition 8.14([MP15, Proposition 2.1]) Skyscraper sheaves are stable forak ‘173

Proof (sketch).Using the long exact cohomology sequence with respect tbebeCoh(X),
one sees that(x) is a minimal object ofCoh” (X): otherwise, there would be a short exact
sequence? — k(x) — F[1] in Coh”(X) coming from a short exact sequente— E —»
k(x) of sheaves; this is a contradiction fg; g(F') < 0 andug g(£) > 0. Similarly, taking
the long exact cohomology sequence with respedtiéb” (X) of short exact sequences in
AP (X), we see thak(z) is a minimal object 0f4*#(X). O

9. THE SPACE OF STABILITY CONDITIONS ON ABELIAN THREEFOLDS

In this section we prove the following:

Theorem 9.1. Let (X, H) be a polarized abelian threefold. Th&h < Staby(X) is a
connected component of the space of stability conditions.

The fundamental reason behind Theor@ris the abundance of projectively flat vector
bundles on abelian threefolds; their Chern classes areedanthe projectivization of the
twisted cubice.

Consider a slopg = g € Q with p, ¢ coprime and; > 0. Then there exists a family of
simple vector bundleg;, ,, that are semi-homogeneous in the sense of Mukai, have %Iope
and Chern character
)=,

Ch(Ep/q

see Muk78, Theorem 7.11]. They can be constructed as the push-forefdirte bundles via
an isogenyy” — X [Muk78, Theorem 5.8], and are slope-staliéuk78, Proposition 6.16].
The above theorem is essentially based on the followindtresu

Proposition 9.2. The semi-homogeneous vector buntllg, is o-stable for every € ‘ﬁ

Proof. As mentioned abovey, , is slope-stable. By Corollary.11, eitherE,, , or E, ,[1] is

av, s-stable object offoh?(X) for all a > 0,3 € R.
Also observe that for all(, 8 € R, we have

AH( p/q) VH( p/q)_OjQK( p/q) 0.

The open subsets g8 where the central charges are negative definite with re$pe£¢f( =
KAy + V?{ for somekK, g form a c0\~/ering of3; by PropositionA.8, it is therefore enough
to find a single stability condition € ‘B for which E,, , is o-stable.
One can prove in general that s-stable vector bundles até” b —stable fora > 0; butin
our situation one can argue more easily as follows. Chm&wnh B <k (and therefore
E,, € Coh’(X)) andv, 3(E) = 0. ThenE[1] € A“%(X) with 3227 = 0 for all a, b, i.e.

it has maximal possible slope; therefore itr(f;s%—semistable. By LemmaA.7, it must actually
be strictly stable. a
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Proof of Theoren®.1 Assume for a contradiction that there is a stability conditt = (Z, P) €
& in the boundary off3 inside Stab (X). Since3 — B is a covering map, the central
chargeZ must be in the boundar§}’ of 8 € Hom(A g, C); by definition, this means that
there is a poin{z?, z%y, zxy?, +y*) on the twisted cubie that is contained in the kernel of
Z.

Ifp:=12% = g is rational, then we observe that every semi-homogeneondldi,
is o-semistable, because beingsemistable is a closed condition S8paby(X). This is an
immediate contradiction, aZ( p/q) = 0. Similarly, if z = 0, we getZ(0,) = 0; yet
skyscraper sheaves of points arsemistable by.14

Otherwise, ifu € R\ Q, consider a sequen¢g,,, ¢,,) with

Pn

o P
let £, := E,, /4, and letr,, = rk E,. Then
.1 B 1,1 4
i o) = (1 ')
and thus
1
ZeaE) G ED)| g e )|
n=oo oy (E)|| neo H%”H(E) (L, 1, 502, % 3|
This is a contradiction to the condition thasatisfies the support property. a

10. THE SPACE OF STABILITY CONDITIONS ON SOMECALABI -YAU THREEFOLDS

Let X be a projective threefold with an action of a finite grasipin this section, we recall
the main result of IMS09], which induces stability conditions on tlig-equivariant derived
category fromG-invariant stability conditions oiX'; similar results are due to Polishchuk, see
[Pol07, Section 2.2]. We use it to construct stability conditioms@alabi-Yau threefolds that
are (crepant resolutions of) quotients of abelian threlsfahus proving Theorenis2, 1.3and
1.4

The equivariant derived category. We letCoh([X /G]) be the abelian category 6f-equivariant
coherent sheaves oXi, andD’([X/G]) := D?(Coh([X/G])). As explained inElal4, the
categoryD®([X/G]) is equivalent to the category of tid&-equivariant objects il?(X).

The étale morphisnf: X — [X/G| of Deligne-Mumford stacks induces a faithful pull-
back functor

f*: D*([X/G]) = D*(X).
Let H € NS(X) be an ample-invariant divisor class. We consider the sp&ceb (X)

of stability conditions orD®(X) with respect to the lattica ;; as in Sectior8; for D*([X/G])
we use the same lattice, and the map

o KOY(X/G)) = Am, vii(B) = vn(f*(E)).

By mild abuse of notation, we will writ€tab ([X/G]) for the space of stability conditions
on Db([X/G)) satisfying the support property with respect(toy, v%). We will construct
components oftaby ([X/G]) from G-invariant components &ftab g (X).
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Inducing stability conditions. Following [MMSO09], we consider
Stab%(X) := {0 € Staby(X) : ¢g*c = o, foranyg € G}.
Here the action of on Staby (X) is given by
9 (2. A) = (Zo(9") 9" (A) -
For anyo = (Z, A) € Stab%(X), we define
(f) 7o) = (2", A)

where

7= Z ok,

A= {E € D"(|X/G)): f*(E) € A}.

Theorem 10.1([MMSO09]). Let (X, H) be a polarized threefold with an action by a finite
group G fixing the polarization. TheStab%(X) c Staby(X) is a union of connected
components.

Moreover, the pull-back™ induces an embedding

(f)~t: Stab%(X) — Staby([X/G])
whose image is again a union of connected components.

Proof. The theorem is essentially a reformulation of Theorem 1[MikS09] but some subtle
issues have to be clarified. First of all, Theorem 1. MiMSO09] deals with stability conditions
whose central charge is defined on the Grothendieck gfo(f) rather than on the lattice
Ag. On the other hand, the same argument a®/iME09, Remark 2.18] shows that all the
results in MMS09, Section 2.2], with the obvious changes in the statememtsrathe proofs,
hold true if we consider pre-stability conditions as in Diiim A.1 with respect to the lattice
Ag. Thus we will freely quote the results there.

We now observe that if is aG-invariant pre-stability condition ob®(X), theno satisfies
the support property with respectig if and only if (f*)~1 (o) satisfies the support property
with respect tow$;. This is rather obvious, given the definition @f*) (o) above, the fact
that Ay is invariant under the action &f and that the semistable objects(jft)~! (o) are the
image underf* of the semistable objects in(see MMS09, Theorem 1.1]). HenceMMSO09,
Proposition 2.17] applies ar(g*)~! yields a well-defined and closed embedding.

It remains to point out thaltab% (X) is a union of connected componentsSehb ; (X).
This is clear in view of the arguments iIMMSO09, Lemma 2.15] and, again, of the fact that
Ay is invariant under the action af. Thus the image off*)~! is a union of connected
components as well. O

An immediate consequence of the results of Seddiamd Theoreni0.1is the following,
which completes the proof of TheorelrB3 (see also Examplek).4and10.5below):

Proposition 10.2. Let (X, H) be a smooth polarized threefold with an action of a finite grou
G fixing the polarization. Assume that Conjectdré holds for(X, H). Then, givery, 5 € R
and «, 3, a, b satisfying(29), the stability condition(Zgzg, Aaﬁ(x)) is in Stab%(X), and

(f*)~'(Stab% (X)) is a non-empty union of connected componengt.ab ([X/G]).
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Proof. Given Theorent0.1], the result will follow once we prove the(tZ;’%, Aaﬁ(X)) isin

Stab% (X). Since slope-stability with respect f is preserved by the group action, we have
g* Coh®(X) = Coh®(X) for all g € G. The same argument holds for tilt-stability, as

Voz,ﬁ(g*E) = Va,B(E)

forall g € G andE € Coh”(X); thereforeA*# (X) is G-invariant as well. Since the central
chargeZZ’% is similarly preserved by, this shows the claim. (]

As an immediate consequence we get the following.

Corollary 10.3. Let (X, H) be a polarized abelian threefold with an action of a finite gyo

G fixing the polarization. Thefif*)~!(B) is a connected component®faby ([X/G]).

Proof. By Theorem9.1, the open subsefs‘ is a connected component Sfaby (X). By
Proposition10.2 we have thafg N Stab% (X) is not empty. Sinc&tab% (X) is a union of
connected components 8faby (X) (see Theorem0.1), we get tha§3 is a connected com-
ponent ofStab% (X). Again by Theoreml0.1, we conclude thatf*)*l(q?) is a connected
component oBtaby ([X/G]). O

Applications. When the action of the finite grou@ is free, the quotient” = X /G is smooth
andD®(Y) = D®([X/G]). In this case, an ample clags on X induces an ample claggy
onY. If we take B on X to be G-invariant as well, and writé3y- for the induced class on
NS(Y)r, we then have, by Propositidh3, that Conjecture.4 holds foru\/gaH%By-stability
onY if it holds for u\/gaH’B—stabiIity onx.

Here is a list of examples wher€ is an abelian threefold and this discussion can be imple-
mented, concluding the proof of Theoreth& and1.4.

Example 10.4.(i) A Calabi-Yau threefold of abelian typean étale quotierit” = X /G of an
abelian threefoldX by a finite group acting freely onX such that the canonical line bundle
of Y is trivial andHl(Y, C) = 0. In [OS01 Theorem 0.1], those Calabi-Yau manifolds are
classified; the groug: can be chosen to b /2)®? or Dg, and the Picard rank df is 3 or

2, respectively. The following concrete example is usuadferred to as Igusa’s example (see
Example 2.17 inQS01). Take three elliptic curve&’;, s andFE5 and setX = F; X Ey X Es.
Pick three non-trivial elements, = and 73 in the 2-torsion subgroups of;, E> and E3,
respectively. Then we define two automorphisiendb of X by setting

a(z1,%2,23) = (21 + 71, —22,—23) and  b(z1,22,23) = (—21,22 + T2, —23 + 73).

By taking G := (a, b), the quotienf” = X /G is a Calabi-Yau threefold of abelian type.

(i) Let A be an abelian surface and |IEtbe an elliptic curve. We writeX := A x E.
Consider a finite groug acting onA and E, where the action ot is given by translations.
Then the diagonal action ol is free, but it may have non-trivial (torsion) canonical tle
The easiest example is by takidgas the producE; x Es of two elliptic curve, and the action
of G only on the second factor so th&s /G = P'. ThenY = E; x S, whereS is a bielliptic
surface.

Let us now assume tha&f is an abelian threefold, th&t acts faithfully, and that the dual-
izing sheaf is locally trivial as &-equivariant sheaf. ByHKRO01], the quotientX /G admits
a crepant resolutiol with an equivalenc@gkr: D*(Y) — D°([X/G]). By a slightly more
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serious abuse of notation, we will continue to wBtewb (Y) for the space of stability condi-
tions with respect to the latticky; and the map$; o (®pkr)«: K(Y) — Ay. By Corollary

10.3 we obtain a connected component@gkr)* (f*)~! (‘53) C Staby (Y).

Example 10.5. We say that a Calabi-Yau threefold is Kbmmer typdf it is obtained as a
crepant resolution of a quotiedd/G of an abelian threefoldl. Skyscraper sheaves will be
semistable but not stable with respect to the stability &mr induced fromX. We mention
a few examples.

(i) Let E be an elliptic curve, and leX = F x E x E. We consider a finite subgroup
G C SL(3,Z) and let it act onX via the identificationX = Z3 ®; E. These examples were
studied in AW10] and classified in[pon11]; there are 16 examples, addhas size at most
24. The singularities of the quotiet/G are not isolated.

(i) Let E be the elliptic curve with an automorphism of ordeand letX = E x E x E.
We can take7 = Z/3Z acting onX via the diagonal action. Then the crepant resolulion
of X/G is a simply connected rigid Calabi-Yau threefold contagn2? planes, seeHea83
Section 2].

One can also tak&' C (Z/37)3 to be the subgroup of order 9 preserving the volume
form. These examples were influential at the beginning ofansymmetry, seegB97] and
references therein.

(i) Let X be the Jacobian of the Klein quartic curve. The gréip= Z/7Z acts onX,
and again the crepant resolutidhof X /G is a simply connected rigid Calabi-Yau threefold.
(iv) We can also provide easy examples involving three somrorphic elliptic curved,

E; andFE3. Indeed, take the involutions: E; — E; such that;(e) = —e, fori = 1,2, 3, and
setG = (11 X 12 X idg,, 11 X idg, Xt3). The quotienf{ £} x Ey x E3)/G admits a crepant
resolutionY” which is a Calabi-Yau threefold. This is a very simple ins&of the so called
Borcea-Voisin constructiofsee Bor97, Voi93]). This yields smooth projective Calabi-Yau
threefolds as crepant resolutions of the quotight £)/G, whereS is a K3 surface E is
an elliptic curve and~ is the group generated by the automorphigm . of S x E, with f
an antisymplectic involution o8 and. the natural involution oz above. Example 2.32 in
[OSO01] is yet another instance of this circle of ideas.

APPENDIXA. SUPPORT PROPERTY VIA QUADRATIC FORMS

In this appendix, we clarify the relation between suppodperty, quadratic inequalities
for Chern classes of semistable objects, and effectiveraefiions of Bridgeland stability
conditions.

Equivalent definitions of the support property. LetD be a triangulated category, for which
we fix a finite rank lattice\ with a surjective map: K (D) — A. We recall the main definition

of [Bri07] with a slight change of terminology: a stability conditiant necessarily satisfying

the support property will be calledme-stability condition

Definition A.1. A pre-stability condition orD is a pair(Z, P) where
e the central charg€ is a linear mapZ: A — C, and
e P is a collection of full subcategorieB(¢) C D forall ¢ € R,
such that

(@) P(o+1) =P(&)[1];
(b) for @1 > ¢o, we haveHom (P(¢1), P(¢p2)) = 0;
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(c) for0 # E € P(¢), we the complex numbeX (v(E)) is contained in the raR~ -
e'™: and
(d) everyE admits an HN-filtration

0 =Ey FEy—...—FE, 1 E,=F

Ey
' / ' / ' /
AN AN AN
AN AN N
AN AN N
Ay As

Am

with 4; € P(¢;) andey > ¢ > -+ > dpm.

We write ¢ (E) := ¢1 andg, (E) := ¢y, for the maximal and minimum phase appearing
in the HN filtration. The mass is defined by, (E) := >, | Z(A;)|.
Recall the definition of the “support property” introducegontsevich and Soibelman:

Definition A.2 ([KS08 Section 1.2]) Pick a norm||__|| on A ® R. The pre-stability condition
o = (Z,P) satisfies the support property if there exists a constant 0 such that for all
o-semistable objects # E € D?(X), we have

(33) [o(B)|l < C'1Z(v(E))|

This notion is equivalent te being “full” in the sense ofBri08], see BM11, Proposition
B.4]. The definition is quite natural: it implies thatli¥’ is in ane-neighborhood ofZ with
respect to the operator norm &fom(Ag, C) induced by|_|| and the standard norm db,
then W (E) is in a disc of radiusC'|Z(E)| aroundZ(FE) for all semistable object®’; in
particular, we can bound the difference of the argumenti@tbmplex number&(E) and
W(E).

Moreover, it is equivalent to the following notion; we folloKontsevich-Soibelman and
also call it “support property”:

Definition A.3. The pre-stability conditiom = (Z, P) satisfies the support property if there
exists a quadratic forr® on the vector spacég such that

e the kernel of7 is negative definite with respect €9, and
o for anyo-semistable objecE € D’(X), we have

Qu(E)) > 0.

Lemma A.4 ([KS08, Section 2.1]) DefinitionsA.2andA.3are equivalent.

Proof. If o = (Z,P) satisfies DefinitiorA.2, then the quadratic form
Qw) := C*|Z(w)]* — [|w|®

evidently satisfies both properties of Definitiér3. Conversely, assume we are given a qua-
dratic form@ as in DefinitionA.3. The non-negative quadratic forid (w)|? is strictly positive

on the set where-Q(w) < 0; by compactness of the unit ball, there exists a constastich
that

C*Z(w)* - Q(w)

is a positive definite quadratic form. Thehclearly satisfies33) with respect to the induced
norm onAg. O
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Statement of deformation properties. By Stab (D) we denote the space of stability condi-
tions satisfying the support property with respectAov). By the main result of ri07], the
forgetful map

Z: Staby (D) — Hom(A,C), (Z,P)— Z
is a local homeomorphism. The following result is the maimppsge of this appendix:

Proposition A.5. Assume that = (Z,P) € Staby (D) satisfies the support property with
respect to a quadratic forr on Ag. Consider the open subsetldbm(A, C) consisting of
central charges whose kernel is negative definite with reisjpe), and letU be the connected
component containing’. Letl{ C Stabs (D) be the connected component of the preimage
Z~YU) containingo.

(a) The restrictionZ|,,: U — U is a covering map.

(b) Any stability conditions’ € U/ satisfies the support property with respect to the same

quadratic form@).

In other words, this proposition gives an effective vergibBridgeland’s deformation result
[Bri07, Theorem 1.2], and shows that Chern classes of semistajelet®or varieties continue
to satisfy the same inequalities within this class of defations.

The quadratic form and wall-crossing. We start with the observation that the quadratic form
is preserved by wall-crossing:

Lemma A.6. Let Q be a quadratic form om\g. Assume that = (Z,P) is a pre-stability
condition such that the kernel ¢&f is negative semi-definite with respect@o If £ is strictly
o-semistable with Jordan-dlder factorsEy, ..., E,,, and ifQ(E;) > 0foralli =1,...,m,
thenQ(E) > 0.

Proof. Let Hr C Agr be the half-space of codimension one given as the preimate ohy
R>¢ - Z(E), and letC*t C Hp be the subset defined I8y > 0. By the following Lemma¢ ™
is a convex cone, implying the claim. O

Lemma A.7. Let Q be a quadratic form an a real vector spatg and letZ: V — C be a
linear map such that the kernel gfis semi-negative definite with respectoLetp be a ray
in the complex plane starting at the origin. Then the intetisa

ct=2"(p)n{Q() >0}
is a convex cone.
Moreover, if we assume th& has signaturg2,dim V' — 2), and that the kernel of is
negative definite, then any vectore C* with Q(w) = 0 generates an extremal ray 6f .

Proof. To prove convexity we just need to show thatif, wy € C*, thenQ(w; + ws) > 0.
According to the taste of the reader, this can either be sgeinawing a picture of 2-planH
spanned byw;, we—the only interesting case being whepé; has signaturél, 1)—, or by
the following algebraic argument. Assume tii3tw; + wy) < 0. Sincew,wy € Z71(p),
there exists\ > 0 such thatw; — A\ws is in the kernel ofZ. We therefore have

Q(w1 — )\wg) < 0, Q(wl) > 0, Q(w1 + UJQ) < 0, and Q(wz) > 0.

This configuration is impossible, since the quadratic fiomcf (z) := Q(w; + zws) would
have too many sign changes.

To prove the second statement, observe that under thesgetrassumptions and for
wy, w2, A as above, we hav@(w; — Aws) < 0. This implies@(w; + wy) > 0, from which
the claim follows. O
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Before returning to the proof of Propositiénb, let us add one additional consequence:

Proposition A.8. Assume that the quadratic for@ has signaturg2,rk Ay — 2). LetU C
Stabp (D) be a path-connected set of stability conditions that satfsé support property with
respect toQ. Let E € D*(X) be an object withQ(F) = 0 that iso-stable for some € U.
ThenE is o’-stable for allo’ € U.

Proof. Otherwise there would be a wall at whidhbecomes strictly semi-stable. However,
by the previous Lemmayy (E) is an extremal ray of the cor&". Therefore, all the Jordan-
Holder factorsE; must havevy (E;) proportional tovg(E), in contradiction toE being
strictly stable for some nearby central charges. O

Proof of the deformation property. In a sense, LemmaA.6 is the key observation in the

proof of PropositionA.5; the remainder boils down to a careful application of locaikéness

of wall-crossing, and of the precise version of the deforomatesult proved by Bridgeland.
To this end, we need to recall the definition of the metriSeb s (D).

Definition A.9 ([Bri07, Proposition 8.1]) The following is a generalized metric tab (D):
d(o1,02) = Oigpp{\tb;Q(E) — 05, (B)|, |65, (E) — 65, (E)|, [log mo, (E) — logm,, (E)|}
€

Bridgeland'’s proof of the deformation result in fact protes following stronger statement:

Theorem A.10([Bri07, Sections 6 and 7])Assume that = (Z, P) is a stability condition
on D, and letC' > 0 be a constant with respect to whiehsatisfies the support property
condition(33). Lete < % and consider the neighborhooﬂ%(Z) of Z taken with respect to
the operator norm oiom (A, C). Then there exists an open neighborhddd- Staby (D)
containingo, such thatZ restricts to a homeomorphism

Therefore,Staby (D) is a complex manifold; moreover, the generalized metric efirition
A.9is finite on every connected componen$ofb, (D).

Proof of PropositionA.5. Consider the subset C U/ of stability conditions that daot satisfy
the second claim; we want to prove thats empty, thereby establishing the second claim.

Giveno’ € V, there exists @’-semistable objecE with with Q(v(E)) < 0; by Lemma
A.6, we may assume thd is stable. By openness of stability &f, there exists a neighbor-
hood ofo’ contained inV; therefore,V C U is open.

We claim thaty C U/ is also a closed subset; sinkeis a manifold andy C U/ is open,
it is enough to show that i&: [0,1] — U is a piece-wise linear path with(¢) € V for
0 <t < 1,theno(1) € V. By the definition ofy and LemmaA.6 there exists an object
Ey that iso(0)-stablewith Q(v(Ep)) < 0. Sinceo(1) ¢ V, there must b® < ¢t; < 1 such
that £ is strictly semistable; applying Lemm#a6 again, it must have a Jordan-Holder factor
o(t1)-stable factorE; with Q(v(E71)) < 0. Proceeding by induction, we obtain an infinite
sequencd) = ty < t1 < to < t3 < --- < 1 of real numbers and objecfs; such thatE;
is o(t)-stable fort; < t < t;41, strictly semistable with respect to(¢; 1) (having E;;, as
a Jordan-Holder factor), and satisfi@év(£;)) < 0. This is a contradiction by Lemma 11
below.

Therefore, sinc® C U is both open and closed, and does not contaih must be empty.

It remains to prove the first claim. By Theoreil0, it is enough to show that there is a
continuous functiorC': U — R~ such that every € U satisfies the support property with
respect ta”(Z(o)). This is evident from the second claim and the proof of Leminda [
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Lemma A.11. Leto: [0,1] — Staba(D) be a piece-wise linear path in the space of sta-
bility condition satisfying the support property. Assurherg is a sequence = ty < t1 <

to < --- < 1 of real numbers and a sequence of objekts F1, F», ... with the following
properties:

e FE;iso(t;)-stable
e F;iso(t;+1)-semistable, and; . is one of its Jordan-Elder factors.

Such a sequence always terminates.

Proof. Assume we are given an infinite such sequence. diet= d(o(t;),o(t;y1)); the
assumptions imply that is a path of bounded length, and hence that

D = Zdi<+oo.

)

On the other hand, if we writ&; for the central charge af(t;), then
| Zivt (Bip1)| < | Zisr (B)| = mge, ) (Bi) < € (B) = €% | Z; (E;)| 5
using induction we deduce that the mass of all objég;ts bounded:
M0y (Ei) < €Pmy(Ei) = € | Z; (E;)| < € | Zo (Eo)|.

By [Bri08, Section 9], this implies that there is a locally finite cotien of walls of semista-
bility for all E;. Since our path is compact, it intersects only finitely marallsy since it is
piece-wise linear, it intersects every wall only finitely myaimes. O

APPENDIX B. DEFORMING TILT-STABILITY

The purpose of this appendix is to establish rigorously #femination and wall-crossing
properties of tilt-stability, in particular correctin®dMT14, Corollary 3.3.3]. This will lead
to variants of the results of AppendiX in this context. We assume that the reader of this
appendix is familiar with the notion of tilt-stability asviewed in Section® and3, as well as
with the proof of Bridgeland’s deformation result for stépiconditions in [Bri07, Sections 6
and 7].

Let X be a smooth projective threefold with polarizatiéfy the role of A andv in the
previous appendix will be played by

A=H%X,Z) ®NS(X)z @ %Z
VH K(X) %A, T)H(E) = (Cho(E),Chl(E),HChQ(E)).
We will use a variant of the notion of “weak stability” of$d1q, adapted to our situation:

Definition B.1. A very weak stability condition oiX is a pairc = (Z,.A), where A is the
heart of a bounded t-structure ®%(X), andZ: A — C is a group homomorphism such that

e 7 satisfies the following weak positivity criterion for evekyc A:
RZ(vg(E)) >0 and RZ(vg(E)) =0= SZ(vg(E)) >0

o Ifweletvy 4: A — RU+o0 be the induced slope function, then HN filtrations exist
in A with respect ta/z 4-stability.
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By induced slope function we mean that 4(E) is the usual sIop% of the complex num-
berZ(vy (E)) ifits real part is positive, and; 4(E) = +oo if Z(vy(E)) is purely imaginary
or zero. The crucial difference to a Bridgeland stabilitydivion is thatZ (vy(E)) = 0 is
allowed for non-zero objects € A.

Given a very weak stability condition, one can define a sfigh= {P(¢) C D*(X)}ser
just as in the case of a proper stability condition conserdi¢dtom a heart of a t-structure: for
—% < ¢ < i weletP(¢) C A be the subcategory of _4-semistable objects with slope
corresponding to the ra§~ - ¢/™?; this gets extended to all € R via P(¢ + n) = P(¢)[n]
forn € Z.

This allows one to define a topology on the set of very weakilgtalsonditions; it is
the coarsest topology such that the maps+ Z ando +— ¢Z(E) are continuous, for all
E € D?(X). Our first goal is to show tilt-stability conditions vary doruously; note that we
use a slightly different normalization of the central cleatigan in Sectior2:

Proposition B.2. There is a continuous family of very weak stability condiiparameterized
byR-o x NS(X)r given by

(a,B) + (Za,p, Coh™P (X))
where
- 1
Zop = H?ch +i <H ch? —§a2H3 ch69> :

For rational B, this stability condition can be constructed by provingedily that the pair
(Za, . Coh™ P (X)) admits Harder-Narasimhan filtrations, s@T14, Lemma 3.2.4]. We
will extend this to arbitraryB by deformations, and show simultaneously that these deform
tions glue to give a single family of very weak stability carahs.

Let us first indicate the key difficulty that prevents us fropplying the methods ofri07,
Sections 6 and 7] directly. Lef be a small interval containiné; then thequasi-abelian
categoryP(I) is not Artinian: ifz € X lies on a curvel’ C X, then... — O¢(—2z) —
Oc¢(—z) = Oc is an infinite chain of strict subobjects 6 in P(1) C P(I). Therefore,
the proof of Bri07, Lemma 7.7] does not carry over.

We now explain how to circumvent this problem. kixB with B rational; we will use
7 = Z,,p for the corresponding central charge. By the rational ca3éeorem3.5, proved
in Section3, the central charg€ satisfies the support propeftyLet C > 0 be the constant
appearing in the support property; we also witdéor the associated slicing.

Now consider a central chargd’ := 70/, B, Whereo/, B’ are sufficiently close tev, B
such thatV satisfieg| W — Z|| < &, for some sufficiently small > 0; recall that this implies
that the phases ef-semistable object change by at masiVe choose < % and small enough
such tha{ H%(B' — B)| < aH? is automatically satisfied. For simplicity we also assuna th
H?(B' — B) < 0; the other case can be dealt with analogously.

Let I = (a,b) be a small interval withu + € < % < b — ¢; the key problem is to construct
Harder-Narasimhan filtrations of objects/(I) with respect td/. Our first observation is
that due to our assumptioH?(B’ — B) < 0, central charges of objects () can only
“move to the left”; this is again based on the Bogomolov-@kes inequality forr-stability:

LemmaB.3. If E € P((a,b)) is o-semistable wittRZ (E) < 0, then alsoRW (E) < 0.

“4Note that definitionsA.2 andA.3 both apply verbatim in this situation: they allow fa(ve (E)) = 0 fora
stable objecE if and only if vy (E) = 0.
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Note that the assumption is equivalentfos Coh™ " (X)[1] N P((a,b)) =P ((3,b))-
Proof. By assumption we havkZ(E) = H? ch?(E) < 0 and
RW (E) = RZ(E) — H*(B' — B) cho(E).

The casethg(E) < 0 s trivial due to the assumptioH?(B’ — B) < 0. Otherwise, note that
SZ(E) > 0implies

2H ch? (E)H? cho(E) — o (H? cho(E))* > 0.
By using Theoren3.5, applied to the rational clag3, we also have
2H chf (E)H? cho(E) — o (H? cho(E))? < (H? chP(E))? — o (H? chy(E))>.

Therefore, we deduce
H?chB(E) < —aH? chy(E).
Using |H?(B’ — B)| < aH?, this implies the claim. O

As in [Bri07, Section 7], we define the set of semistable obj&2({®) to be objects of
P((¢p—e, p+e)) that arelV -semistable in a slightly larger category, e.gPA( ¢ —2¢, ¢+ 2¢)).
The key lemma overcoming the indicated difficulty above ésftiilowing:

Lemma B.4. GivenE € P((a,b)), there exists a filtratio) = Ey — E; — E, — E3 such

that

e E; € CohP'(X)[1] and E; has no quotients; — N in P((a, b)) with RW (N) >
0;

o Ey/E; € Coh™ B (X) is W-semistable ifP((a, b)) with RW (Ey/Ey) = 0;

e E3/E; € Coh™P'(X) and E3/E, has no subobjectd/ < Es3/E, in P((a,b))
with RW (M) < 0.

Proof. The t-structure associated @h’? (X) gives a short exact sequenté— E — E”
in P((a,b)) with £ € Coh™>?(X)[1] andE” € Coh™P(X). Any quotientE’ — N would
necessarily satisfV € P((3,b)); by LemmaB.3, this impliesRWW (N) < 0. Thus, given a
filtration as in the claim foZ”, its preimage inE will still satisfy all the claims.

We may therefore assunié € Coh>?(X). Note thatCoh "' (X) can be obtained as a
tilt of Coh’:P(X): there exists a a torsion pair

T = Coh™B'(X)[1] N Coh™B(X),  F = Coh™P' (X) N CohB(X).

Moreover,
TeT=RW(T)<0 and F e F=RW(T) >0.

Let £; — E — F be the short exact sequence associateH tda this torsion pair. Since
T is closed under quotientdy; satisfies all the claims in the lemma; similarly, only has
subobjects wittRW (__) > 0.

The existence of, now follows from the fact thaf'oh "’ (X') admits a torsion pair whose
torsion part is given by objects with1V(_) = 0; this is shown in the first paragraph of the
proof of [BMT14, Lemma 3.2.4], which does not use any rationality assumsgtio O

The existence of Harder-Narasimhan filtrationsFgfand E'3 / E5 can now be proved with
the same methods as iBri07, Section 7]; the same goes for ahyc P((a,b)) when(a,b)
is an interval not intersecting the s§t+ Z; this is enough to conclude the existence of HN
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filtrations for arbitraryE € D?(X), see the arguments at the end of Section 7BirQ[7].
Similar arguments apply in the cag® (B’ — B) > 0.

We have thus proved the claim that the tilt-stability coioditc deforms to a very weak
stability conditions’ with central chargél’. Moreover, by the construction in LemrBa4, its
associated t-structure is exacph’ 7B/(X ); this finishes the proof of Propositidh 2.

Letus also observe that fere §+Z, the subcategorP(¢)N{E € D*(X) : vy (E) = 0}
is unchanged under deformations: it consists of O-dimesitorsion sheaves, shifted by
¢ — % These are the only semistable objects with central chaggal ¢o zero; we will use
this fact to show that tilt-stability conditions satisfy liwbehaved wall-crossing:

Proposition B.5. Fix a classc € A. There exists a wall-and-chamber structure given by a
locally finite set of walls iR~y x NS(X)r such that for an objecE with vy (E) = ¢, tilt-
stability is unchanged a&v, B) vary within a chamber. Each of the walls is locally given by
one of the following conditions ofi = Z,, 5:

(@) Z(F)is proportional toZ (E) for some destabilizing subobjeEt— E withv (F) #
0#vyg(E/F),or
(b) Z(F) is purely imaginary (if there exists a subobject or quotinwith v (F') = 0).

Proof. As indicated above, the second type of walls correspondse@ase wheré’ has a
shift of a zero-dimensional torsion sheaf as a subobjectiotient. Otherwise, any possibly
destabilizing short exact sequenEe— E — FE/F must have the properties given ig,(to
which the usual arguments (e.g. Br[08, Section 9]) based on support property apply.[

This allows us to complete the proof of the Bogomolov-Giesdipe inequalities:

Proof of Theoren.5, caseH 2B non-rational. Consider a,, z-semistable objedt. We may
assume havél? ch? (F) # 0. Using LemméB.7, we can assume thét is in factu,, z-stable.
By PropositionB.5, there is an open chamberlii. x NS(X)g in which E is tilt-stable; this
chamber contains points with ration&! therefore, our claim\y; (E) > 0 follows from
caseH” B rational proved in Sectio. O

Remark B.6. (a) Alternatively, the statements of this appendix coulgptmved via the rela-
tion of tilt-stability to a certain polynomial stability oalition (in the sense offay09); see
Sections 4 and 5 oBMT14], in particular Proposition 5.1.3. The advantage is thatdlicing
associated to this polynomial stability condition is Idgdinite.

(b) Let us also explain precisely the problem with the stateinof BMT14, Corollary
3.3.3]: if we allow arbitrary deformations of € NS(X)g, rather than just those proportional
to a given polarizatiorff, we would need to prove the support property for tilt-stadidgects
with respect to a non-degenerate quadratic form on thedatti

1
A=H(X)®NS(X) @ SNi(X),  v(B) = (cho(E), chi(E), cha(E)) .
However, none of the variants of the classical Bogomologs8ker inequality discussed in
Section3 give such a quadratic form, as they only depend®ehs, rather tharch, directly.
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