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Abstract. Space plays an important role in the dynamics of collective adaptive
systems (CAS). There are choices between representations to be made when we
model these systems with space included explicitly, rather than being abstracted
away. Since CAS often involve a large number of agents or components, we focus
on scalable modelling and analysis of these models, which may involve approxi-
mation techniques. Discrete and continuous space are considered, for both models
of individuals and models of populations. The aim of this tutorial is to provide an
overview that supports decisions in modelling systems that involve space.

1 Introduction

Collective adaptive systems (CAS) are systems which consist of a number of compo-
nents which interact (directly or indirectly) to achieve goals, by collaboration, and in
some instances, by competition. These components may be static or mobile, as in the
case of a robot swarm. Various smart transport systems provide examples of CAS; for
example, bike-sharing schemes and ride sharing. Because movement is fundamental in
these systems, space and spatial aspects are important characteristics and influence the
behaviour that these systems demonstrate. Therefore, we wish to understand the dynam-
ics of these systems and how these may vary with changes in the implementation of the
system, and changes in use of the system. In the bike-sharing example, incentives can
be offered to users to influence their behaviour in terms of the station a bike is returned
to, or alternatively a system may suddenly show very poor performance when the user
base grows beyond a certain size. Alterations to timetables of other public transport
such as trains, could also impact the effectiveness of a bike-sharing scheme. Further-
more, roadworks or new lane markings can modify the space that the bike users travel
through, affecting performance.

We model these systems to understand their behaviour because it is frequently not
possible to experiment with the actual systems, either because of the disruption this
will cause, or because the systems have not yet been constructed. In this chapter, we
focus here on modelling dynamic systems (which we also refer to as time-based) that
involve some notion of space. These are systems where the behaviour of the system
is observed as time passes1. When trying to understand the behaviour of a collective

1 Another approach to space is to consider it topologically, that is to consider the relationships
between points in space. This can be applied to both discrete and continuous space. Details can
be found elsewhere in this volume [19] in the context of spatial and spatio-temporal logics.



adaptive system by developing a model of the system, it can be moderately straightfor-
ward to programmatically construct an agent-based model where the agents move in a
representation of real space. But often, for a realistic number of agents, it is not compu-
tationally feasible to simulate this model a sufficient number of times to understand its
overall behaviour through the use of descriptive statistics. Additionally, an agent-based
model is likely to have a very large states space because it considers individuals sepa-
rately. The computational costs of many other analysis techniques are often dependent
on the number of distinct states that the system can take on, and hence cannot be applied
to these individual-based models.

Thus, detailed agent-based models may lead to more precision but at the cost of
choices for analysis. Typically in modelling, one wishes to retain the details that the
model is designed to answer, and to abstract from everything else. Therefore, care-
fully chosen abstractions are crucial, and this tutorial provides details about a particular
type of abstraction and associated approximation of results, that of population-based
modelling, rather than solely modelling individuals. These abstractions contribute to
scalable analysis. By this, we mean that when modelling large systems with many com-
ponents, our analysis can be computed in a reasonable time (with reasonable memory
requirements), and as the system becomes larger, this analysis remains feasible. Con-
comitant with the scalability is a requirement that any analysis technique that involves
approximation remains within reasonable distance from the true value. Obviously, there
will be a system size at which the analysis becomes infeasible. In that case, possible so-
lutions are then to consider whether size can be reduced by working with a more abstract
model, or to consider a different approximation technique which is more scalable.

Furthermore, we focus on stochastic models. Stochasticity allows model behaviour
to vary, and hence captures the variation we observe in the systems we wish to model.
Specifically, we use random length durations drawn from exponential distributions. The
exponential distribution is suitable and convenient for modelling because it has a sin-
gle parameter (which is the inverse of the average duration), it is memoryless (which
means that what happens next is only dependent on the current state, as opposed to any
previous states, and this negates the need when simulating to keep track of prior states
or amount of time elapsed), and other distributions can be approximated by combina-
tions of exponential distributions. In their most basic form, our models are continuous-
time Markov chains (CTMCs) and their discrete version, where probabilities are used
to determine the next state, discrete-time Markov chains (DTMCs). We also consider
extensions and variations of these models, but in general, any stochasticity in our mod-
els occurs because of exponentially-distributed durations or probabilistic choices. One
extension that we may use in some cases is allowing the exponential rate (and probabil-
ities) to be functional and depend on time or other aspects of the model. This introduces
time inhomogeneity into our models, and this is often important to capture variations in
behaviour at different times of day, for example. The disadvantage of allowing time in-
homogeneity is that it can reduce the number of analysis techniques that are applicable.

This presentation does not consider any languages for specifying models but instead
focusses on mathematical representations of systems (which we will refer to as models)
to which analysis techniques can be applied. The choice of representation for a model
is often influenced by the type of analysis and approximation techniques that are avail-



able, and the aim of this tutorial to support such decisions when modelling space. This
chapter starts with a discussion of the type of mathematical representations and analysis
techniques that can be used if space is not considered explicitly, and then moves onto
consider these with the addition of space. Techniques for discrete space are considered
in detail in Section 3, followed by those for continuous space in Section 4. In these two
sections, general concepts are introduced for the type of space, followed by a high-level
discussion of the basic model and analysis techniques. Details are given of techniques
that have relevance to CAS, followed by a brief review of how they have been used in
different disciplines. Finally in Section 5, techniques that can be applied to both types
of space, or to models containing both types of space are considered.

2 Representations for dynamic modelling

Before considering the role of space, we introduce a number of dimensions that we
consider germane to our modelling, so that we can develop a classification of dynamic
modelling techniques relating to the modelling context described in the introduction.
Even without considering space, there are already a number of choices that lead to dif-
ferent ways in which to model dynamic systems in a quantified manner. We consider
the dimensions and the choices on each dimension. For example, the time dimension
considers how time is treated in different types of Markov chains. There are other as-
pects of time such as non-determinism and causality, but these are not a strong focus of
our general modelling approach, and so are not included in the classification.

Time: Time is non-negative, strictly increasing and infinite, and can either be a non-
negative real or integer. In some models, a finite end-point may be used to delimit
the period of interest.
discrete: In the context of this tutorial, discrete time is used in those modelling

approaches where choices are probabilistic. At each clock tick (which can be
associated with an integer if useful for the specific model), the next state is
chosen probabilistically from all possible next states. For example, discrete
time Markov chains (DTMCs) use this approach [53, 70].

continuous: In this case, time is represented by the non-negative real numbers.
Actions such as changing state have a duration associated with them. In the
case of continuous time Markov chains (CTMCs), stochasticity is introduced
by having random durations that are drawn from exponential distributions [70].

State: States can be viewed as capturing a quality or attribute of an individual. An
individual is assumed to be in a single state at each point in time2.
discrete: Usually when the states associated with an individual are discrete, there

are a finite number of them. However, in the case of an attribute like year-of-
birth, there may be a countably infinite number of values.

continuous: A continuous-valued state can be interpreted as measurement of some
quantity associated with the individual. An example of this would be tempera-
ture or height.

2 An individual could have more than one attribute, and then the individual’s state is multidi-
mensional with a value for each attribute. In this case, the individual’s state is a tuple of values.



TIME discrete
AGGR none (individuals) state (populations)
STATE discrete continuous discrete continuous

DTMC [70] LMP [73] population difference equations,
DTMC [10] ODEs [10, 67]

TIME continuous
AGGR none (individuals) state (populations)
STATE discrete continuous discrete continuous

CTMC [70] CTMP [24] population population
CTMC [10, 58] ODEs [10, 58]

Fig. 1. Classification of mathematical models in terms of time, aggregation and state (DTMC:
discrete time Markov chain, LMP: labelled Markov process, ODE: ordinary differential equation,
CTMC: continuous time Markov chain, CTMP: continuous-time Markov process

Aggregation: Individuals can be considered separately, or the focus can be on the num-
ber of individuals in each state. This is more relevant to discrete state approaches
than continuous state. In the continuous case, aggregation can be described by a
function, or discretisation can be applied to obtain frequency data.
none: Behaviour of each individual is considered separately. This is often referred

to as agent-based or individual-based.
state-based: The behaviour of groups of individuals is considered by counting the

number of individuals in each state over time (giving a non-negative integer
value), or by having a non-negative real-valued approximation to this num-
ber. This approach appears under a number of different names in the literature
including population-based, state frequency data, numerical vector form, and
counting abstraction. The term occupancy measure is used when counts are
normalised by the population size.

These dimensions can be expressed in a table, which can then be populated with mathe-
matical modelling techniques from the literature. Figure 1 illustrates this and describes
the modelling techniques that fit each possible combination of elements for each di-
mension. There is the possibility of hybrid approaches for the state and aggregation
dimensions and we discuss these briefly in Section 5.2.

2.1 Scalable modelling and analysis techniques

As mentioned in the introduction, we focus on Markov chain models. Basic defini-
tions can be found in the appendix. An important aspect of our modelling approach is
the application of the mean-field technique where the analysis of a population CTMC
or DTMC can be approximated by an analysis using ordinary differential equations



(ODEs) [58, 10]. As the number of states of a Markov chain increases (the “state-space
explosion” problem), the analysis of the Markov chain becomes intractable. Modelling
a large number of individuals can lead to a very large Markov chain. This can be miti-
gated by using a population Markov chain where behaviour is considered at a popula-
tion level rather than at an individual level. The choice of a population Markov chain
means we are interested in how many individuals from a population PA are in each local
state Ai, given by NAi , and the states in the Markov chain have the form (NA1 , . . . ,NAn).
However, for large systems this may still not be sufficient to obtain reasonable analysis
times, and an approximation using ODEs obtained from the population Markov chain
can be used. This gives a system of ODEs for the variables (XA1 , . . . ,XAn). The popu-
lation Markov chain considers non-negative integer-valued population counts whereas
the ODEs take a fluid approach and population quantities are non-negative real values
XAi . Considering the modelling techniques in Figure 1 for both discrete time and con-
tinuous time, the Markov chain obtained by considering many individuals (in the first
column) can be transformed into a smaller Markov chain (in the third column) which
can then be approximated by ODEs (in the fourth column).

This transformation uses the mean-field approximation technique which comes from
physics, where it refers to the approach where movement of an individual particle is
considered in the field generated by other particles rather than trying to solve the more
complex problem of many particles interacting [68]. In modelling of systems, it has
come to mean an approach where it is assumed that when the number of individuals
in a stochastic system becomes very large, the population-level behaviour of the sys-
tem can be expressed as ODEs which provide an “average” behaviour. Results such as
those proved by Kurtz [58] demonstrate that under certain conditions, convergence oc-
curs, namely as the number of individuals tends to infinity, the difference between the
stochastic trajectories of the subpopulation sizes and the deterministic trajectories of
the subpopulation sizes tends to zero. Practically, in many cases, good approximations
using the ODE approach over the stochastic approach can be achieved at relatively low
numbers of individuals [85] and there are error bounds on the approximations [21]. The
mean-field approach is discussed in more detail elsewhere in this volume [9].

Additionally, we will consider moment closure approaches to approximation. For a
PCTMC, it is possible to obtain ODEs that describe how the moments (expected val-
ues) of variables and products of variables vary over time. Typically, this results in an
infinite system of ODEs, because the ODE for each moment is dependent on higher
moments. For example, the ODE for E[X ] may involve not only E[X ] and E[Y ] but also
E[X2], E[Y 2] and E[XY ]. Likewise, the ODE for E[XY ] may involve expectations of
the product of three variables. Moment closure techniques provide approximations for
these higher-order moments through a number of techniques that will be described later
in this tutorial, thus providing ODEs that give an approximation for the moments. The
mean-field approach described above can be seen as a specific instance of moment clo-
sure where second order moments are replaced by the products of expectations (E[XY ]
is approximated by E[X ]E[Y ], for example) under certain conditions relating to mass
actions and pairwise interactions. This is equivalent to assuming that variances and co-
variances are zero, and is a reasonable assumption to make if they are likely to be small
enough to be safely abstracted from. Typically, in the spatial case, we wish to consider



covariances and other higher moments to ensure that spatial variation is included and
not abstracted from.

Returning to Figure 1, Markov processes (in the second column of the figure) do not
fit into this work flow (of transforming an individual-based model to a population-based
model and then using an ODE approximation) and seem different from the other mod-
elling techniques, as they are characterised by a continuous state space which can also
be interpreted as any continuous aspect of a model, including space. We do not consider
labelled Markov processes (LMPs) further in this chapter, but we will comment further
on continuous-time Markov processes (CTMPs) in Section 4.1.

The research surveyed in this chapter involves transformation and analysis tech-
niques. Transformations of models may be necessary for a different analysis to be ap-
plied. The counting abstraction as described above is an aggregation technique, and
treating population sizes as being real-valued rather than integral, is fluidisation. An-
other form of aggregation is when multiple locations are considered as a single location.
Finally, discretisation happens when some continuous value is transformed to a discrete
value, such as transforming real space to discrete space. Hybridisation which can in-
volve fluidisation to make some parts of a discrete model continuous, or discretisation
to make parts of a continuous model discrete, is discussed in Section 5.2.

2.2 Introducing space

In this tutorial, Space will be considered in two different ways.

continuous: Here, space is represented by real values in the case of one-dimensional
space, pairs of real values in the two-dimensional case and triples of real values in
the three-dimensional case. It is always (uncountably) infinite but may be bounded
in extent. Continuous space used in this way can be seen as an exact representation
of actual physical space.

discrete: Approaches that use discrete space assume a number (usually finite) of dis-
tinct locations where connectivity between locations is described by an adjacency
relation3. At each location, there may be multiple individuals, although in some
cases, such as cellular automata [49], this may be restricted to a single individual.
A location may be an abstraction or aggregation of actual space.

The table in Figure 2 shows the mathematical models for the different combinations
of time, aggregation, state and space. Here, we have chosen to focus on continuous
time models; however there are discrete time models of various approaches, for exam-
ple, some variants of interacting particle systems (IPSs) use probabilities [29]. We now
consider each entry of the table in Figure 2 briefly together with illustrative diagrams.

2.3 Discrete space illustrated

The approaches in the discrete-space category consider space to consist of a (usually)
finite number of locations that have connections between them. The most straightfor-

3 For CAS, we are usually interested in the adjacency of different regions of space, and as we
will see later, we use graphs to describe this relationship. Another approach is where space has
a nested arrangement, as seen in biological modelling. This containment relationship can be
represented graphically by trees, but we do not focus on this arrangement of space further.



TIME continuous
AGGR none (individuals) state (populations)
STATE discrete continuous discrete continuous

SPACE

discrete CTMC, TDSHA [12] patch population patch population
IPS [29] PDMP [22] CTMC ODEs

[17] [17]

continuous molecular CTMP spatio-temporal PDEs [46]
dynamics [20] [24] point processes
agents [78]

Fig. 2. Classification of mathematical models in terms of time, aggregation, state and space
(CTMC: continuous time Markov chain, IPS: interacting particle systems, TDSHA: transition-
driven stochastic hybrid automata, PDMP: piecewise deterministic Markov process, ODE: or-
dinary differential equation, CTMP: continuous-time Markov process, PDE: partial differential
equation)

ward way is to consider these models as graphs with the locations as nodes and the links
as edges. Discrete space is illustrated in Figures 3 and 4, showing the general case of
an arbitrary graph, and the case of a more regular graph structure, respectively. Regular
space models are those that have a regular pattern of locations [28, 29]. For example, the
locations could be laid out in the rectangular grid, or a hexagonal tiling. The locations
that represent space can be situated at the nodes of the regular graphs or in the spaces
(faces) created by the regular graph as shown in Figure 4. Regular space will be more
formally defined in Section 3.

In the diagrams, we assume individuals are from two populations. The first, PA
consists of red and white tokens, and has states A1 and A2. The second, PB consists of
blue and white tokens with states B1, B2 and B3. The current state of an individual is
indicated on the top of the token. The four diagrams in each figure represent four single
points in time and do not show change over time4.

Figures 3(1) and 4(1) show discrete-space models of individuals with discrete states,
hence there is no aggregation into populations. Some models only allow one individual
in each location, such as interacting particle systems (IPSs) [29] and cellular automata
(CA) [49], but others may allow multiple individuals. In the case of single individuals
at a node, this can be indicated by a flat token as illustrated in Figure 6.

Models of discrete space without aggregation and with continuous state are shown
in Figures 3(2) and 4(2). The continuous state is indicated by a solid token where the
height indicates the value of a single continuous state. This is an inherently continuous
value rather than the notion of population size approximation by continuous values
described earlier in this section, and could be a measurement such as strength of radio

4 For two-dimensional and three-dimensional space, the best visualisation method for change
over time is video. For one-dimensional space, a graph with two axes can be used.
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Figure 3: Discrete space: (1) no aggregation, discrete state; (2) no aggregation, continuous state; (3)
aggregation of state, possible aggregation of space, discrete state (4) aggregation of state, possible
aggregation of space, continuous state

The distinction between a topological map and a graph is that although both represent relationships
between points, the topological map is a continuous deformation of the original map, and it also
is a two-dimensional representation of a graph. A graph is more abstract and has no specific two-
dimensional representation. Note that planarity (the lack of overlapping edges when embedded in the
plane) is not required for topological maps or graphs. Any topological map can be abstracted to a
graph of locations, hence defining discrete space.

A table has been constructed to identify mathematical models for the di↵erent combinations of
time, aggregation, state and space (see Figure 2). Here, we have chosen to focus on continuous time
models; however there are discrete time models of various approaches, for example, some variants of
interacting particle systems (IPSs) use probabilities [DL94b].

All the models appearing in the table consider changing behaviour over time. Characteristics of
space may or may not change as time passes4. In the case where there are no changes, space can be
considered independently of time and represented as a topological space. When there are changes in
the characteristics of space over time, the characteristics of space at a specific point in time can be
considered topologically.

The next section considers each entry of the table in Figure 2 and illustrates the ideas using a
consistent diagrammatic framework.

2.5 Spatial modelling techniques

The techniques described in this section are mainly continuous time, although some have discrete time
analogues, as mentioned above.

4An example of this would be o↵-peak road closures for the painting of road markings.
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Fig. 3. Discrete space: (1) no aggregation, discrete state; (2) no aggregation, continuous state; (3)
aggregation of state, possible aggregation of space, discrete state (4) aggregation of state, possible
aggregation of space, continuous state

signal or length of battery life. Different colours have been used in the diagram to
make it clear that the values are continuous but not a population approximation. In
Figures 3(2) and 4(2), there is an assumption of at most one individual per node and
face, respectively, and two values associated with that individual.

Next we consider discrete-state aggregation in the context of discrete space, as il-
lustrated in Figures 3(3) and 4(3) by the fact that individual tokens are grouped into
stacks at nodes in the network, and it is the size of the stack that is relevant rather than
the location of each individual. Finally, in the case of continuous state aggregation in
discrete space, each region or point is associated with approximations to the discrete
population shown in Figures 3(3) and 4(3). These are illustrated in Figures 3(4) and
4(4). At each node, for each state in each population, there is a real number that ap-
proximates the number of individuals in that state. This is illustrated by a token with a
real-valued height for each state in each population. Note that in Figure 3(4), the lowest
node has a non-zero value for blue tokens in state B3 although there were none in the
CTMC model in Figure 3(3), illustrating that approximation can occur.

2.4 Continuous space illustrated

We first consider continuous space with no aggregation and discrete state. This covers
approaches where each individual’s location and state are modelled separately from
those of other individuals. An example of this type of model is where the movement
and interaction of each molecule is modelled individually, as in molecular dynamics [7].
Agent-based models take a similar approach. Figure 5(1) illustrates this. The continuous
space is indicated by a bounded area and each individual is shown at its own location.
These models are typically computationally expensive to simulate.
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Figure 4: Regular discrete space: (1) no aggregation, discrete state; (2) no aggregation, continuous
state; (3) aggregation of state, possible aggregation of space, discrete state (4) aggregation of state,
possible aggregation of space, continuous state

Continuous space, no aggregation, continuous state: In contrast with the previous category,
the state is now continuous rather than discrete [DP03]. Since there is no aggregation, this approach
models individuals rather than populations. The continuous space is indicated by a bounded area and
each individual is shown at its own location. The continuous state is indicated by the varying heights
of the tokens, and in Figure 5(2), it is assumed that there is only one (non-spatial) measurement per
individual, although two di↵erent qualities may be measured.

Continuous space, aggregation, discrete state: In these techniques, each point in space can be
filled by one or more individuals [SBG02]. Hence for each point in space, it is possible to aggregate
the number of individuals in each state. Figure 5(c) shows a fairly sparse number of individuals but
much denser arrangements are also possible.

Continuous space, aggregation, continuous state: At each point in space, there is a real value
describing an approximation to the number of individuals at that point [OL01, CPB08]. In the case
of two-dimensional space, the population of each state can be represented in three-dimensions by
surfaces. Figure 5(d) illustrates a surface describing the number of individuals at each point for state
A1. In contrast to Figure 5(c), this figure illustrates a very dense situation.

As is the case with techniques that do not include space, presented in Figure 1, the techniques
using continuous state without aggregation (the second column of models in Figure 2) seem distinctly
di↵erent to the other approaches. The techniques that can be applied to models without space
described early in this document (approximation by ODEs of a population DTMC or CTMC) can be
applied to discrete space since the Markov chain involved is a population Markov chain that takes
location into account. Furthermore, taking the hydrodynamic limit of IPS models provides PDEs
[DMP91]. This subsection has not considered movement which will be examined now.

QUANTICOL 10 8 April 2014

Fig. 4. Regular discrete space: (1) no aggregation, discrete state; (2) no aggregation, continuous
state; (3) aggregation of state, possible aggregation of space, discrete state (4) aggregation of
state, possible aggregation of space, continuous state

Moving on to state that is continuous rather than discrete, leads to continuous-time
Markov processes (CTMPs) [24], if we assume some of the continuous dimensions
relate to space and the others to state. Since there is no state-based aggregation, this
approach models individuals rather than populations. The continuous space is indicated
by a bounded area and each individual is shown at its own location. The continuous state
is indicated by the varying heights of the tokens, and in Figure 5(2), it is assumed that
there is only one (non-spatial) measurement per individual, although multiple different
measurements are possible.

For the case of aggregation with discrete state, each point in space can be filled
by zero, one or more individuals [78]. Hence for each point in space, it is possible to
aggregate the number of individuals in each state. Figure 5(3) shows a fairly sparse
number of individuals but much denser arrangements are also possible. Finally, when
aggregation is continuous in nature, then at each point in space, there is a real value
describing an approximation to the number of individuals at that point [71, 20]. In the
case of two-dimensional space, the population of each state can be represented in three-
dimensions by surfaces as defined by partial differential equations (PDEs). Figure 5(4)
illustrates a surface describing the number of individuals at each point for state A1. In
contrast to Figure 5(3), this figure illustrates a very dense situation.

2.5 Summary

As is the case with techniques that do not include space, presented in Figure 1, the
techniques using continuous state without aggregation (the second column of models
in Figure 2) seem distinctly different to the other approaches. The techniques that can
be applied to models without space described earlier in this chapter (approximation by
ODEs of a population DTMC or CTMC) can be applied to discrete space since the
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Figure 5: Continuous space: (1) no aggregation, discrete state; (2) no aggregation, continuous state;
(3) aggregation, discrete state; (4) aggregation, continuous state.

2.6 Movement

In all of the models described in the previous section, there may be interaction between individuals
(even if this interaction is expressed at the population level). Opportunity for interaction is often
related to colocation or proximity (which requires some notion of neighbourhood or distance). Many
models capture movement of individuals explicitly and then use colocation or proximity to determine
the possibility of interaction, although there are some models that only use proximity without move-
ment such as IPSs and CA. In these two modelling techniques, space is regular and discrete and at
most one individual is present at each location.

Because of the importance of movement in the modelling of smart transport, we must consider
the choices that can be made, and they are now discussed for the two di↵erent types of time-based
spatial modelling techniques, described in Section 2.4. However, in the case of continuous space, this
discussion is split into modelling techniques where there is aggregation and those where there is none.

2.6.1 Discrete space

Assuming an undirected graph of locations, the presence of an edge between two locations describes the
fact that movement or interaction along that edge is possible in at least one direction. The absence
of an edge can be interpreted as meaning that movement and interaction can never take place, in
either direction. As we will see in Section 3, parameters associated with an edge express (possibly in
a time-varying manner) the propensity for movement or interaction in either direction. If it is zero
at a particular time for a particular direction, it means that no active interaction or movement can
take place at that time point. Hence, the graph of locations provides a skeleton for describing what
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Fig. 5. Continuous space: (1) no aggregation, discrete state; (2) no aggregation, continuous state;
(3) aggregation, discrete state; (4) aggregation, continuous state.

Markov chain involved is a population Markov chain that takes location into account.
Furthermore, taking the hydrodynamic limit of IPS (which are discrete space models
without aggregation) models provides PDEs [23].

In all of the models described in the previous section, there may be interaction be-
tween individuals (even if this interaction is expressed at the population level). Oppor-
tunity for interaction is often related to colocation or proximity (which requires some
notion of neighbourhood or distance). Many models capture movement of individuals
explicitly and then use colocation or proximity to determine the possibility of interac-
tion, although there are some models that only use proximity without movement such
as IPSs and CA. We discuss movement in more detail when we consider the analysis
techniques for the two different kinds of space.

3 Discrete-space modelling techniques

We now consider discrete space in more detail and formality, so we introduce both
notation and concepts relevant to discrete space. We will focus here on the continuous-
time models, with pointers to the discrete-time models where appropriate.

In the most general case, we assume a finite (or at most countably infinite) set of
points or locations L with some naming convention [41]. Most generally, the set of
locations L can be taken as the vertices of an undirected graph, and the connections
between locations (the adjacency relation) can be defined as edges in that graph. The



edges of the graph EL are drawn from the subsets of size two of the location set P2(L),
so EL ⊆P2(L). Each edge has the form {l1, l2}, and edges of the form {l, l} are permit-
ted. We have chosen to use an undirected graph which is to be understood as allowing
movement or interaction in at least one direction between the two locations. The ab-
sence of an edge means that movement and interaction can never take place, in either
direction. Parameters associated with an edge express (possibly in a time-varying man-
ner) the propensity for movement or interaction in either direction. If a parameter is
zero at a particular time for a particular direction, it means that no active interaction or
movement can take place at that time point. Hence, the graph of locations provides a
skeleton for describing what movement or interaction is possible.

Locations in discrete space models can have two main sources, either they are es-
sentially locations on a map, such as bike-stations or bus stops, or alternatively each
location represents a region on a two-dimensional map, and space is aggregated. These
are called patch-based models. The edges of the graph can be determined by various fac-
tors. Adjacency of regions is an obvious choice, but there may be other context-specific
elements, for example, presence of connections between regions such as railway lines
or similar. A topic whose exploration is beyond the scope of this chapter is that of how
to divide a map in regions. A simple approach is to base it on a tiling of the plane using
triangles, quadrilaterals or hexagons. More complex approaches involve taking local in-
formation into account and creating irregular patches. Computer networks can be seen
as being located in discrete space, either physically or logically.

An issue for discrete space (and continuous space) is determining what happens at
the boundaries of the space. One approach is to ensure there are none by working with
infinite structures such as infinite graphs, or alternatively boundaryless structures such
as tori. A rectangular region can be transformed into a torus by joining the top and
bottom edges (to form a cylinder) and then joining the left and right ends (by curving
the tube). Other approaches work with boundaries and either choose to keep individuals
inside the region (by reflection or other techniques) or to treat boundary locations as
sources and/or sinks.

The discrete space approach as described above is very general as it allows arbitrary
graphs over locations, as well as heterogeneity for parameters. In the literature there are
modelling techniques that are defined for specific graph subclasses and we will discuss
some of these below.

3.1 Spatial parameters and regularity

A modelling technique with discrete space will have parameters that depend on loca-
tions, or links between locations. We can consider two groups of parameters; those that
are associated with locations, namely with vertices of the graph and those that are asso-
ciated with interaction or movement, namely the edges of the graph, and we define two
functions to describe these parameter sets as follows

– λ (l) for l ∈ L, and
– η(l1, l2) and η(l2, l1) for {l1, l2} ∈ EL.

The range of these functions will remain abstract for the purposes of this discussion.
Note that although the edges of the graph are not directed, the function η is sensitive



to direction. Movement is obviously directional but interaction can be undirected when
considering an abstract view of effect or communication. Alternatively, it can be di-
rected if one party is the sender and the other the recipient. Our choice of an undirected
graph allows these details to be expressed in parameters. In the rest of this chapter, the
term transfer will be used to refer to both movement and interaction.

We present the following definitions, leading to a definition of spatial homogeneity
(a term which is used in the literature but not formally defined), by considering the
location-related parameters. A spatial model is

– location homogeneous if λ (li) = λ (l j) for all locations li, l j ∈ L.
– transfer homogeneous if η(li, l j) = η(l j, li) = η(li′ , l j′) = η(l j′ , li′) for all edges
{li, l j},{li′ , l j′} ∈ EL.

– (spatially) parameter homogeneous if it is both location and transfer homogeneous.
– spatially homogeneous if it is parameter homogeneous, and its location graph is

complete5. Regular connections between locations which do not give total connec-
tivity are discussed below.

Models with spatial homogeneity have a symmetry that can allow for analyses that
are not possible for more complex models. Examples are the bike-sharing system con-
sidered in [39] where the metrics of interest are the number of empty and full bike
stations.

Spatial inhomogeneity/heterogeneity can be introduced in two ways: the first in-
volves connectivity where equal accessibility is no longer assumed, and the second
where all locations are still accessible from all locations, but parameters vary between
locations. Note that if a parameter ρi, j ∈ η(li, l j) is constant for all i and j but other
parameters vary by locations, then the model is spatially inhomogeneous.

Regular discrete space covers those discrete space models where the organisation
of space is regular (rather than an arbitrary graph where each vertex may have an ar-
bitrary number of edges). By contrast to spatial homogeneity, regularity of space is
more difficult to define formally when starting from a graph (and we do not give details
here), although it is very straightforward to identify visually [72]. Terms such as lattice,
grid or mesh are frequently used to describe a graph based on a square or rectangular
tiling of the plane. The other two regular tiling possibilities are equilateral triangles
and regular hexagons. Alternatively, a graph with regular structure can be constructed
by identifying points in Z×Z or R×R, and adding links. We will not attempt that
level of generality for discrete space beyond saying that regular space should have the
property that at each location (except possibly at boundary locations) there is a uni-
form way to determine the immediate neighbours6. One-dimensional regular space can
be represented simply as an undirected path. We do not tackle a formal definition of
three-dimensional regular space.

5 A complete undirected graph has an edge {l, l′} between each pair of vertices l and l′.
6 We exclude from this definition n-hop neighbours in an arbitrary graph (see definition of n-hop

in the next subsection).



3.2 Neighbours and neighbourhoods

In an undirected graph of locations representing discrete space, the links between lo-
cations are used to define neighbours. Given a location l, its immediate neighbours are
those vertices l′ such that {l, l′} is an edge in the graph. Its n-hop neighbours are those
that can be reached through a path in the location graph of at most n steps (but usu-
ally excluding the location l itself). In the case of a regular grid graph, the immediate
neighbours (west, north, east and south) are referred to as the Von Neumann neighbour-
hood. The larger neighbourhood that includes the northwest, northeast, southeast and
southwest points as well as the immediate neighbourhood is known as the Moore neigh-
bourhood. Both types of neighbourhoods can be extended to n-hop neighbours and also
applied to hexagonal and triangular regular location graphs, with obvious adaptations.

This is a purely spatial approach to defining neighbourhoods. However, in some
cases, it can be the entity or process itself that defines its neighbourhood depending
on its capabilities. Other approaches use a (perception) function that determines the de
facto neighbours of an individual by specifying the other individuals with which it can
interact.

3.3 Techniques for individual discrete-space models

We now consider the different modelling techniques that have been applied to discrete
space starting with those that do not involve aggregation of state. When there is no
aggregation and state is discrete, the focus is on individuals and an example is an agent-
based system over discrete space. Each individual has some state and is located at ex-
actly one location. There may be a restriction to one individual per location. To describe
these models in their most general form, we assume that each individual I (where I is a
unique name for the individual) has associated time-based information:

– loc(I, t) ∈ L which is its location at time t
– state(I, t) ∈ {A1, . . . ,An} which is its state7 at time t

Additionally there are rules that describe how an individual can change location or
change state. Since this is a continuous time model, these rules specify rates to describe
how long it takes on average for the changes to occur. Each rate defines an exponential
distribution, and may be constant or the rates may be functions that depend on the
presence of others at that location, the characteristics of the location or the current time
(thus introducing time-inhomogeneity). The behaviour of the agents in this modelling
technique is thus described as they individually change state and/or location. Assuming
a fixed population size, we can model this system as a CTMC, where each state in the
CTMC is a tuple consisting of information about each individual in the system. If we
assume N individuals then a state has the following form(

(loc(I1, t),state(I1, t)), . . . ,(loc(IN , t),state(IN , t))
)

7 If the population PA has multiple attributes A[1], . . . ,A[p], then state(I, t) = (A[1]
i1 , . . . ,A

[p]
ip
) rep-

resents a tuple of attributes.
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Fig. 6. A graph-transformation rule applied to an individual discrete-space model with discrete
state

There are (L×n)N states in this Markov chain if there are L locations, n states and every
combination of state and location is possible for all individuals.

Simulation suits this type of model, and techniques for simulating systems where
behaviour is based on functional exponential rates are well understood [43]. They can
also be analysed using standard numerical CTMC techniques for steady state and tran-
sient behaviour. However, a large number of individuals can make this computationally
infeasible.

Next, we consider discrete space modelling techniques without aggregation but
where the state is continuous. Therefore, instead of having a rule describing how (dis-
crete) state change can happen, there needs to be a rule describing how the continuous
state changes over time. A good candidate for this type of rule is an ODE. These tech-
niques are hybrid in that they exhibit both continuous behaviour with respect to state
and stochastic behaviour with respect to space. Transition-driven stochastic hybrid au-
tomata (TDSHAs) [12] and piecewise deterministic Markov chains (PDMPs) [22] are
suitable modelling techniques. Both of these also introduce the possibility of instanta-
neous behaviour.

3.4 Pair approximation: spatial moment closure based on structure

The technique called pair approximation, which we will refer to as structure-based mo-
ment closure, provides ODEs which describe the changes over time in the probabilities
of certain pairs (adjacent locations) in the model [91, 66]. From these ODEs, the pro-
portion of locations in a particular state can be determined.

It is applied to a specific class of discrete-space models of individuals with discrete
state, namely graph-transformation models. In these models, each node either represents
a single individual or a single position in space or location which can take on exactly
one of a small number of states. Whether the node itself is modelled or an individual at
the node is modelled, the node is the agent in the model. Hence there is no distinction
between location and agent, unlike in population discrete-space models.

The dynamics of the model are defined in terms of graph transformation rules with
associated exponential rates (when using continuous time). A graph transformation rule
describes how a small subgraph or pattern can be transformed in another pattern. There



are two possible types of transformation: those that change the state of the nodes in the
graph and those that modify the graph by removing or adding nodes or edges. Here,
we investigate a static model of space and so we only consider the first type of trans-
formation in this chapter. An example of such a rule is given in Figure 6. The lack of
distinction between location and agent is indicated by the fact that the disks are flat
rather than raised tokens, as mentioned earlier.

As an example, consider a graph-based SIR model8 where each node is an individ-
ual who can be in one of a number of states (susceptible, infected, recovered, hence
the abbreviation SIR) and the edges of the graph link individuals that can affect each
other. The graph-transformation rules include a linked pair consisting of one suscepti-
ble and one infected being modified to a linked pair consisting of two infected nodes
(as illustrated in Figure 6), and a infected node being modified to a recovered node. In
ecological modelling, nodes may represent a patch of ground which can be in a number
of states including filled by a plant of a specific species, empty but suitable for growth
or infertile. Often the nodes are laid out in a grid pattern, and the transformation rules
describe how plants spread, and how nodes become fertile or infertile.

The stochastic graph transformation model is used to obtain ODEs which describe
the change in how often each pattern appears over time. By patterns, we mean small
graphs consisting of nodes with states of interest. The reason this technique is called
pair approximation is because one can consider the patterns of interest to be a graph
consisting of two linked vertices, with the two vertices having specific states, and one
wants to know how many times this pattern appears in the graph of the model. Much of
the existing research assumes a finite grid/lattice [91, 66], but one can also consider the
more general case of arbitrary graphs rather than regular ones.

Deriving the ODE for a particular pattern may involve understanding how often a
different pattern occurs (because the one pattern is transformed into the other by the
stochastic process). Typically, to understand the various pair patterns that can occur, the
number of certain triplet patterns must be known, and at the next step of obtaining ODEs
for triplet patterns, the number of specific quadruplets must be known. This generation
of ODEs is similar to that of the moment ODEs described in Section 2.1 and leads to
an infinite system of ODEs. This system of ODEs can be closed using certain closure
techniques (which will be discussed in more detail in Section 3.6) and thereby give an
approximation to the true value. Structure-based moment closure has also been consid-
ered as a multi-scale technique [31]. In this case, different sizes of neighbourhood are
used for different types of interaction.

3.5 Techniques for population discrete-space models

We now move on to consider discrete space when aggregation of state occurs resulting
in populations, whose sizes are either integral or real-valued. It is assumed that we have
many individuals to whom the same set of rules apply with the same parameters, and
we choose to view them as a population and to reason about them as a population.

8 This is different to the population SIR model that appears in another chapter in this volume [9]
because there is at most one individual at each node in the graph, and that individual has an
associated state, rather than subpopulations in each state.
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Fig. 7. Behaviour in a population discrete-space model with discrete state

These models are population CTMCs where subpopulations in different locations are
viewed as separate subpopulations. These are also called patch-based models and there
are various examples in the literature [17, 93].

We consider a population PA. At each point in time, each individual in PA is in
exactly one of its local states A1, . . . ,An. Let NAi(t) refer to the number of individuals
in population PA that are in state Ai at time t. These are called subpopulations. The
total number of individuals in the population at time t can be expressed as NA(t) =
∑

n
i=1 NAi(t). Furthermore, if no births or deaths are assumed, and an individual must be

in one of the available states9, then NA(t1) = NA(t2) for all times t1 and t2 and the size
of PA is a constant NA. We use XAi(t) ∈ R≥0 to represent a non-negative real-valued
description of the population PA which is an approximation to NAi(t).

If we assume that we have a fixed number of locations, l1, . . . , lL, we can now obtain
the counts of subpopulations at each location. So for PA, we have a value N(k)

Ai
which is

the number of individuals at location k in state i. Additionally

NAi =
L

∑
k=1

N(k)
Ai

and N(k)
A =

n

∑
i=1

N(k)
Ai

and NA =
n

∑
i=1

NAi =
L

∑
k=1

N(k)
A

We can create a continuous time Markov chain smaller than that of the previous section
consisting of at most (NA +1)L×n states where each state has the form(

N(1)
A1

, . . . ,N(1)
An

, . . . ,N(k)
A1

, . . . ,N(k)
An

, . . . ,N(L)
A1

, . . . ,N(L)
An

)
This provides a discrete aggregated representation of individuals in space where for
each location, we know how many individuals are in each state without knowing ex-
actly which individual at that location is in which state. An example of behaviour in
such a model is illustrated in Figure 7 where an individual in state B3 moves from one
location to another and the population sizes at those locations change as a result of this
movement.

In the case of continuous state aggregation, the notation X (k)
Ai

is used for the real
value that describes the quantity of individuals in state i at location k. Since this can

9 In some models, births and deaths can be included for a fixed size population by introducing a
“dead” state. However, this requires that there is a finite maximum population size.



be a non-integer value, it is an approximation to the actual count N(k)
Ai

. Since the sub-
population sizes are treated as continuous values, a standard modelling technique is to
express the change in this quantity in terms of an ODE.

dX (k)
Ai

dt
= Fi,k

((
X (1)

A1
, . . . ,X (1)

An
, . . . ,X (k)

A1
, . . . ,X (k)

An
, . . . ,X (L)

A1
, . . . ,X (L)

An

)
, t
)

This is a population ODE because it tracks the changes in subpopulation sizes over
time. There are L×n variables in total; one for each combination of state and location.
The inclusion of t as an argument to Fi, j indicates that it can be a time-inhomogeneous
ODE. This ODE often has the following form

dX (k)
Ai

dt
= fi,k

(
X (k)

A1
, . . . ,X (k)

An

)
+

L

∑
j=1, j 6=k

(
gi,k, j

(
X (k)

A1
, . . . ,X (k)

An
,X ( j)

A1
, . . . ,X ( j)

An

)
−hi,k, j

(
X (k)

A1
, . . . ,X (k)

An
,X ( j)

A1
, . . . ,X ( j)

An

))
where fi,k captures the local behaviour which only depends on the subpopulation sizes
locally, gi,k, j describes the inflow of population from location j to location k, hi,k, j de-
scribes the outflow of population from location k to location j, and these flows depend
only on the subpopulation sizes in location k and location j. This is a time-homogeneous
ODE since change over time is only dependent on subpopulation sizes (that are depen-
dent on time) rather than on time directly. For both the general and regular space cases
and assuming only movement/interaction between 1-hop neighbours, then a term X ( j)

Ai
should only appear in the right hand side of the ODE if {lk, l j} is an edge in the location
graph.

In both models, discrete population and continuous population, rates are functional
and there is no specific requirement for them to be continuous, although discontinuities
in rate functions may affect the applicability of certain analysis techniques.

Since PCTMCs with locations are PCTMCs then the usual linear algebra numerical
techniques that can be applied to PCTMCs to understand the probability of being in a
specific state at steady state, or at a particular time during transient behaviour, can be
applied. The computational feasibility is limited by the size of the state space.

Simulation is also applicable to simulate individual trajectories of behaviour using
an algorithm such as that proposed by Gillespie [44]. A basic assumption is that the
model has the property of being well-mixed, that is the entities in the model are evenly
distributed throughout space and hence there is no spatial heterogeneity. If sufficient
trajectories are simulated, statistical measures can be calculated across all trajectories.
In the case of PCTMCs with locations, the assumption of well-mixedness must be made
for each location.

Finally, the techniques based on Kurtz’s result [58] that express the average be-
haviour of a PCTMC as ODEs also apply to the fluidisation of a PCTMC with locations.
The assumption of well-mixedness also applies, as with Gillespie simulation. Although
the ODEs provide an approximation to the true values, this is achieved much faster as it
is easier to calculate the trajectory of a set of coupled ODEs than it is to do multiple sim-
ulations for statistical analysis. Techniques such as exact fluid lumpability and related



approximation techniques [87, 88] identify when it is possible to apply an aggregation
when dealing with ODEs and these techniques are discussed further elsewhere in this
volume [90].

We can also consider homogeneity of parameters. In the case of spatial homogene-
ity, the fact that parameters are identical may make the model amenable to an analytic
approach, rather than requiring simulation [39]. However, variations in parameters and
rates do not affect the speed of analysis, although it may make the description of the
PCTMC more complex. This is because these analyses consider each possible transition
(or term in the ODEs) individually and have no way to speed up analysis by consider-
ing transitions with the same rate (or identical terms in the ODEs) together (either as a
group or to reduce calculation).

Another issue to consider that relates to spatial heterogeneity is that of dynamic
space where nodes can leave and join a network and links can be added or removed.
Although we do consider that time-homogeneity may be a feature of our PCTMCs and
associated ODEs because rates are dependent on time, we do not consider dynamic
location graphs here, because of the complexity introduced by this additional change in
behaviour over time.

3.6 Aggregate moment closure: spatial moment closure based on averages

We now consider existing techniques from the literature referred to as spatial moment
closure that can abstract from the details of space but still provide a spatially based ap-
proach. We will use the term aggregate moment closure for the techniques that are ap-
plicable to population discrete-space models because it is more descriptive. Aggregate
moment closure requires fluidisation of the population model, derivation of moment
ODEs, and application of an approximation technique to close the moment ODEs.

In this approach, moment ODEs (see the appendix for a definition) are obtained for
averages over all locations (or values for a specific attribute) for various subpopulations.
When applied to spatial models, it is a spatial abstraction technique because information
about what happens in individual locations is lost. The basic approach is to obtain an
ODE for each subpopulation for the ensemble 10 of the average over all locations for that
subpopulation. This will then (in most cases) be expressed in terms of the expectation
of the product of two variables (a higher order moment). The ODE for this can then be
derived and this again is likely to contain even higher order moments. In most cases, the
system of ODEs is not closed (or it is not reasonable to determine whether it is closed),
and it can be closed by approximating higher order moments after a certain level. Earlier
it was mentioned that the mean-field approximation (in the sense of Kurtz) is given by
the first moment ODEs with approximations for variances and covariances based on an
assumption that these were zero or negligible (see also [9] in this volume). Because the
covariance captures spatial variation, we must have ODEs for at least second moments
but third and higher moments can be approximated. There are four ways to approach
this approximation.

10 The mean (at time t) over all stochastic realisations (at time t).



– Assume that the higher order moments above this level provide negligible contri-
butions and ignore them by approximating them with zero. A related approach is to
assume that higher order cumulants are zero [65].

– Use the technique of stochastic linearisation which approximates the expectations
of products with the product of expectations for higher order moments above this
level. It is not sufficient to express second order terms as the product of first order
terms as mentioned above, hence this technique can only be applied to third and
higher order moments [61]. The modified mean-field approach from ecology takes
a similar approach by approximating higher moments with powers of first order
moments [74].

– Assume that the data has a particular distribution and use that distribution to de-
termine the values of the higher order moments above this level. The log normal
distribution is frequently used because of its positive support which makes it suit-
able for population modelling [61, 62].

– Apply a Taylor expansion of moments, as used in scale transition theory [18] which
formalises how local dynamics relate to global dynamics, particularly in the case
of nonlinearity.

Most applications of this technique assume a complete graph, or alternatively when
neighbourhood is used in an incomplete graph, approximate the results with those ob-
tained from a complete graph [62].

Another approach to moment closure is language-based where information from
the model specification language is used to determine which moments are likely to be
negligible [36]. A neighbourhood relation is derived from the (language-based) model
to determine when it is appropriate to approximate the expectation of a product with the
product of expectations. This relation could also use spatial information to determine
approximation.

3.7 Multi-scale techniques based on differences in rates

As mentioned previously, rates can vary, and it may be possible to exploit this varia-
tion in the analysis techniques. There are well-known techniques that use differences in
interaction rates between entities, such as the Quasi-Steady-State Assumption (QSSA)
which assumes an equilibrium for the parts of the system that have fast interaction rates
and then derives expressions for the slower parts of the system [45, 79]. This can be done
both within a stochastic approach and a deterministic approach using ODEs. Another
technique is timescale decomposition applied to CMTCs which have the characteristic
that its states can be partitioned into groups such that transitions between group mem-
bers are fast, and transitions between groups are slow. This permits an approximation
technique that allows for the CTMC represented by each group of states to be solved
separately and then combined into a solution for the whole CTMC [80].

In ecological modelling, spatial aggregation methods consider the combination of
different time scales that are location-based [1]. Starting with an assumption that inter-
actions that occur at a location are slow and movement between locations is fast, the
usual ODEs for a population model can be derived, consisting of terms for migration
and terms for local interaction. It is assumed that the terms for migration are multiplied



by the inverse of the scale parameter, a value much smaller than 1. This expresses the
difference between the fast migration and slow local interaction. Through a change of
variables from subpopulation size at a location to a pair consisting of density at a loca-
tion and total subpopulation over all locations, with a related change in the time variable
that divides time by the scale parameter, a slow-fast system can be obtained to which
either the quasi-steady-state assumption or Fenichel’s theorem [37, 92] can be applied
to obtain a reduced system. This technique can perform much better than the spatial
moment technique when there is substantial demographic variation across patches but
it does require differences in rates.

In other models outside of ecology, particularly those involving computer systems,
it is likely to be the case that the pattern will be the opposite as movement between
locations is typically physical, whereas interaction within locations may be computer-
based and much faster than physical movement and then techniques based on QSSA is
more appropriate.

3.8 Applications of discrete space models

In this section, some applications of the discrete space models that have been presented
are now discussed briefly. For a detailed survey of the applications of discrete space
models, the reader is referred to [41].

Ecology: Space plays a crucial role in many ecological models and ecologists are
interested in global qualities of the whole space such as whether species persist
or can co-exist, as well as dynamic patterns such as stationarity, oscillatory be-
haviour, chaos or multistability [68]. Berec [5] provides a classification of spatial
models where he considers the time, space and population as different dimensions.
Reaction-dispersal networks (also called metapopulation models) are continuous-
time, discrete-space, continuous-population models that describe change over time
by a system of ODEs over species in locations. They are the same as ODE patch
models in our terminology. Coupled-map lattices are a discrete-time model de-
fined systems of difference equations [51] and regular discrete space, and allow
continuous population sizes. Morozov and Poggiale [68] highlight that the term
“mean-field” can be used in the ecology literature to both describe the non-spatial
Kurtz-based approximation technique as well spatial approaches.

Biology: Bittig and Uhrmacher [7] identify five distinct methods for spatial modelling
in cell biology that offer different granularities in their approximation of physical
reality. Two of these are continuous space approaches and are discussed in Sec-
tion 4.5. The discrete-space models are those that use compartments as a nested
arrangement of space, discrete-space lattice approaches with a single molecule
at each face of the lattice, and discrete-space lattice approaches where multiple
molecules are permitted at each face. For an overview of techniques to model dif-
fusion, both stochastically and continuously, see [33]. Patch models are also used
to model biochemical reaction systems [61]. Pattern formation is also important
in biology and Turing’s paper gave an initial insight into this process [89]. Pattern
formation is considered in [19] in this volume.



Epidemiology: Riley [75] identifies four distinct approaches to disease spread mod-
elling that considers different levels of interaction: patch-based, distance, multi-
group and individual. Patch-based or metapopulation models11 are used extensively
in modelling of epidemics [27]. These models often focus on the calculation of the
basic reproduction number, R0, which determines whether a disease will die out or
spread to the whole population. Individual discrete space models have also been
used for disease modelling [59], as illustrated in Section 3.4.

Networking: Computer networks, in particular ad hoc networks and mobile networks,
often require spatial modelling for evaluation. For example, computer and mobile
phone virus spread modelling involves spatial aspects and much of this research
draws on epidemiological approaches [48, 55]. Routing protocols may have spatial
aspects that can be discrete or continuous [95]. Patch models have been used to
model information transmission between mobile nodes [17, 94, 35].

Forest fires: Propagation of forest fires is investigated using Multi-class Multi-type
Markovian Agent Model (M2MAM) [16]. The approach models individual agents
in discrete space and from this, a patch ODE model is derived. Forest fires have
also been modelled using stochastic cellular automata in a climate model [60].

Robotics: A robotics case study consists of a swarm of robots that have to collectively
identify a shortest path [63]. The division of a path into separate sections which are
considered as discrete locations provides a way to approximate the traversal time
by real robots and the convergence on the shortest path.

Emergency egress: The modelling of evacuation from a multi-story building [64] in-
volves a multi-story building with building elements such as rooms, corridors and
stairwells, doors and exits. To model the movement of people and the time to evac-
uate the building, a discrete-space model using patches was developed.

Crowd behaviour: Spontaneous drinking parties are a common phenomenon in cities
in the south of Spain [76]. A model shows that the introduction of small variations
that break symmetry, both in space and in the degree of connectivity between loca-
tions and in the behaviour of the individuals can lead to new behaviour [11]. This
example is considered elsewhere in this volume [90].

Bike sharing: Bike sharing systems have been modelled with homogeneous discrete
space using a population CTMC approach with an associated mean-field model
[39]. When space is not homogeneous, a clustering approach has been used to group
similar locations together [40]. This example is also considered in this volume [90].

A number of the above examples are CAS. Other CAS examples where discrete-space
techniques are applicable include smart transport and smart grids. The next section
considers modelling with continuous space.

4 Continuous-space modelling techniques

Continuous space is more straightforward to define than discrete space. In this section,
we will focus on two-dimensional space; however, both one- and three-dimensional
11 The basic epidemiological SIR model is called the compartment model [13] and this consists

of a single population with no spatial aspects. It should not be confused with the compartment
models in biology which are patch-based models.



space may be useful in various contexts. Continuous space can either be the Euclidean
plane extending infinitely in all directions, R×R, or it can be a bounded connected
(contiguous) subset of this plane. Points in the plane can be referred to by their coordi-
nates (x,y) ∈ R×R. As with discrete space, we can consider two cases, depending on
whether we focus on individuals or populations.

This section starts with considering individual-based continuous-space models. Next,
population continuous-space models are presented, followed by two techniques that are
relevant for population discrete-space modelling, but involve continuous-space models
or techniques as well. The section ends with examples of the application of continuous-
space techniques in various disciplines.

4.1 Techniques for individual continuous-space models

In these models, we consider identifiable individuals. There are many different models
of the movement of individuals through two-dimensional space, such as models of ani-
mal movement and models for ad hoc and opportunistic networks [14]. These are often
stochastic and capture the probability of movement in a particular direction at a certain
speed. Additionally, it may be necessary to determine what happens at the boundary of
the space. Often, it is assumed that the space is the surface of a torus and hence has no
boundaries – this is more common than assuming the surface of a sphere, as it is hard
to map subsets of R×R to the sphere. There are also models to describe the movement
of a related group of individuals through the space [14]. Connectivity models on the
other hand, describe interaction (for example, contact duration and time between con-
tacts) rather than location [52] so they are implicit movement models. Interaction can
be interpreted as dynamic graphs with the individuals as the nodes.

Next, we consider the form that these models can take. If I is an individual, then it
has associated information, similar to the discrete state case.

– loc(I, t) ∈ R×R which is its location at time t, and
– state(I, t) ∈ {A1, . . . ,An} which is its state12 at time t.

There are rules which describe how the individual changes state and these may take
into account the individual’s current location, and rules that describe an individual’s
movement through space which may take into account the individual’s state. As with
discrete space, the rates for state change are exponential and can be functional. Unlike
with discrete space, it is not useful to construct a Markov chain whose states are ob-
tained from the locations and states of each individual. Discrete event simulation can
be used to explore the behaviour of these systems [38].

In the case that the state is continuous, then

– state(I, t) ∈ Rn for n≥ 1, which is continuous and represents its state at time t.

As with the discrete space case, some way is required that describes the change of state
over time, and an ODE can be used for this. Some models require both discrete and con-
tinuous non-aggregated states and this requires a hybrid solution. Agent-based models

12 As with discrete space, if the population PA has multiple attributes A[1], . . . ,A[p], then
state(I, t) = (A[1]

i1 , . . . ,A
[p]
ip
) representing a tuple of attributes.



in continuous space are examples of an individual continuous-space model where indi-
viduals can take on discrete states or continuous values.

A different approach to modelling continuous state with continuous time is that
of continuous time Markov processes (CTMP) [24]. A CTMP is a tuple (S,Σ ,R,L)
where (S,Σ) forms a specific type of topological manifold and R : S×Σ → R≥0 is a
rate function which is measurable in its first coordinate and a measure on its second
coordinate. L is a state labelling function. Applying this in the context of space, the
manifold is (R×R,Σ) where Σ consists of the open sets of R×R, hence defining a
σ -algebra. A notion of path through this space can be defined describing the behaviour
of an individual. Furthermore, if there are additional continuous quantities associated
with the individual then additional dimensions of R can be used.

4.2 Techniques for population continuous-space models

When individuals are aggregated into populations, there is no need to keep track of
them individually and densities become more important. In spatio-temporal point pro-
cesses13, each point in space (x,y) has an associated integral count for a state in a
population at a specific point in time t. We can denote this as NAi((x,y), t) and its be-
haviour is described by a function λ ((x,y), t). In general, λ can depend on all preceding
events, but in the case of a Poisson process, it only depends on (x,y) and t [78]. If λ is a
constant, then there is no spatial heterogeneity. If the equation defining λ includes com-
parison with other points, then either clustering or inhibitory behaviour can be defined.
If time and space are independent then λ can be defined by λ ((x,y), t) = λ1(x,y)λ2(t).
The form of λ may also describe a reduction in the population at a specific point (x,y)
and dispersal of that population to other points, thus capturing movement.

For continuous aggregation of populations, we now consider the classical model of
movement in continuous space, that of partial differential equations. For populations
described by XAi((x,y), t), the general form is

Fi
(
x,y, t,XA1 , . . . ,XAn ,

∂XAi

∂x
,

∂XAi

∂y
,

∂XAi

∂ t
,

∂ 2XAi

∂x2 ,
∂ 2XAi

∂xy
,

∂ 2XAi

∂y2

)
= 0

if we assume that we are interested in second order partial derivatives over space only
for the population XAi((x,y), t). Note that writing the PDE in this form simply allows
it to be described as a function over all the derivatives of interest rather than as a sin-
gle partial derivative being equal to a function of other derivatives. When interactions
between populations are to be modelled, diffusion-reaction PDEs are used since they
can express movement as diffusion and interaction as reactions [20, 89]. The diffusion
terms can also capture drift which accounts for obstacles or external stimuli such as
wind, the likelihood of continuing in the same direction, the effect of the density of
other individuals, and the impact of environmental characteristics. The reaction term
describes interactions between individuals. Examples are given in the following sec-
tions. There are various techniques for solving PDEs which we will not consider here,
many of which involve discretising the plane into a mesh [81].
13 In contrast to spatio-temporal point processes, spatial point processes describe distributions in

space, and do not include a notion of change over time [3] and hence are not relevant in this
context.



We now consider two approaches to modelling discrete space where continuous
space plays an important role, in the sense that transformation from one type of space
to another is involved.

4.3 PDE-based analysis of discrete-space models

Tschaikowski and Tribastone [88] have considered an approach which involves taking a
discrete space model with random walks to continuous space through spatial fluidisation
and then using PDE analysis techniques to get good approximation results.

They studied population-based CTMCs where agents are subject to a random walk
on the uniform lattice R := {(i∆s, j∆s) | 0 ≤ i, j ≤ K} in the unit square [0;1]2 with
∆s := 1/K and K ≥ 1. Each agent may attain one of the local states A1, . . . ,AL while
being at any point in R, meaning that the CTMC state

A := (A(x,y)
1 , . . . ,A(x,y)

L )(x,y)∈R

provides the agent populations in each local state at each region. Agents in the same
region may cooperate with each other by performing local interactions from a rich class
of functions. The spatial domain is assumed to have absorbing or reflective boundary
conditions. The former can be used to model a hostile environment, while the latter
account for closed environments. It can be shown that the CTMC of size O(NL·K2

)
converges to the solution of an ODE system of size O(L ·K2) as N→∞. While this is a
major improvement because the complexity drops from exponential to polynomial, the
ODE system may be hard to solve if K is large.

Fortunately, it is possible to identify a finite difference scheme [42] which solves
the ODE system of size O(L ·K2) and that can be also interpreted as a finite difference
scheme [84] of a PDE system of size L. By combining this with the former result,
one then proves that the solutions of the ODE system of size O(L ·K2) converge, as
K→∞, to the solution of a PDE system of size L. This is not a purely theoretical result
because one solves PDE systems by discretising them to large ODE systems and the
discretization induced by a PDE solver is purely dependent on the PDE system itself
and thus may be substantially coarser than the one induced by the spatial domain R
which can be arbitrarily fine. Indeed, substantial speed-ups have been reported in [86,
88], thus showing that a characterization of mobile systems in terms of PDEs gives rise
to shorter calculation times.

4.4 Fluid approximation and spatial discretisation applied to agent-based
continuous space models

The use of fluid approximation of population and spatial discretisation has been applied
in an ad hoc manner to a 2-dimensional space model of delay-tolerant networks [35].
A general approach based on Markovian agents has been proposed for 1-dimensional
space which aggregates and fluidises individuals and discretises space.

Feng developed a continuous-space model with individual agents (using the pro-
cess algebra stochastic HYPE) for a delay-tolerant network which used wild animals
as nodes. Due to computational limitations, the analysis was restricted in terms of how



many nodes could be modelled. The model was then transformed to a discrete-space
model by dividing up space according to waterhole locations, and using the continuous
space model to derive parameters for movement [35]. This enabled the population-based
modelling of systems with many more nodes and still provided good approximations.

More recently, a proposal has been made to apply this process in a general way
to 1-dimensional space. Specifically, it considers models which consist of Markovian
agents (MAs) moving on a bounded one-dimensional continuous space. Markovian
agents are a formalism that involves message-passing between agents, and whose over-
all behaviour can be expressed as a CTMC or a set of ODEs [15]. A detailed definition
of Markovian agents is beyond the scope of this tutorial.

The analysis of interest is the transient evolution of the state density distribution of
agents of class c in state i at position l and at time t. The change in this value over a small
amount of time can be expressed in terms of those agents at location l who change state
and those agents who move to l. The movement speed of MAs solely depends on the
current state of the agents. A new term to describe the agents that move can be derived
from the Taylor expansion of the movement term. The change in value can be then be
expressed as a PDE in terms of both time and distance (in 1-dimension). Assuming
upper and lower bounds, the upwind semi-discretisation technique [47] can be applied
to discretise the distance aspect of the PDE leading to a set of ODEs expressing the
change of state density at each discretised location.

4.5 Applications of continuous space

As with the case for discrete space, the aim of this section is to briefly consider various
applications and a survey can be found in [41].

Ecology: Spatio-temporal point processes have been used to model plant growth and
dispersal [8] and other applications [25]. Markov random graphs on continuous
space over continuous time can also be considered as spatio-temporal point pro-
cesses [50]. Holmes et al [46] review the use of PDEs in ecological applications,
and consider the different forms of PDEs that are used for different models includ-
ing Brownian (random) motion, drift and the telegraph equation.

Biology: Bittig and Uhrmacher [7] describe two continuous space approaches for cel-
lular modelling: particle space and PDEs. In the former, each molecule is modelled
separately and these models can be simulated more efficiently by assuming that
each particle is only affected by nearby events. When using PDEs, often only sim-
ple diffusion based on Brownian motion is required. Fange et al [34] describe three
different techniques for spatially heterogeneous stochastic kinetics as microscopic
when each individual particle is considered in terms of its position (continuous-
space), as mesoscopic when the Reaction Diffusion Master Equation (RDME) is
used (discrete space) and as macroscopic when PDEs are used. PDEs can also be
obtained by taking the hydrodynamic limit of IPSs, namely as the number of par-
ticles tends to infinity [23, 30]. Pattern formation is important in biology and an
important PDE in this context is the Swift-Hohenberg equation [82].

Epidemiology: Spatial point processes have been used to model the spread of foot and
mouth disease [26]. Kendall [54] proposed the first spatial epidemic PDE model



based on the Kermack-McKendrick nonspatial compartment model, and this has
been extended to the Diekmann-Thieme model where traits of individuals affect
both their susceptibility to infection and their infectiveness to other individuals [77].

Networking: There is a substantial amount of work on mobility models, both at the
analytical level and experimentally through traces in the domain of networking [14,
69]. Connectivity models provide an abstraction of mobility models in that they
provide information about intercontact time [52]. Stochastic geometry has been
applied to wireless networks [2] and epidemiological approaches using PDEs have
been used for routing in networks [57].

Continuous-space techniques can be applied to CAS modelling when individual move-
ment is to be tracked, or when it is possible to aggregate movement using PDEs because
of the large subpopulation sizes. However, any techniques that tracks individuals is un-
likely to be scalable. In the next section, hybrid approaches are considered that can be
used to mitigate this problem.

5 Other approaches to modelling space

The techniques discussed in this section are not specific to whether a model is an in-
dividual or a population model and may also apply to models that have characteristics
of both. Using logic-based approaches, spatial and spatio-temporal model checking can
be applied to either sort of model and are addressed in another chapter in this volume
[19].

5.1 Crowding

In biological modelling of cells, crowding (occupation of space) is an important issue,
because cells have limited volume and it can be important to consider how much space
various molecules take up, and how this may affect reactions, as well as the health of
the cell. Models range from those that model continuous space in which each entity
has a volume and collision between molecules are explicitly modelled, to grid-based
approaches where there is space for only one entity in each location [56, 83]. The lattice-
based approaches can be similar to individual discrete-space models but use regular
graph rather than arbitrary graphs.

For population discrete-space models, crowding can be modelled by imposing max-
imum quantities on locations. Functional rates for movement into a location can be de-
fined to be zero when the maximum population count for a location has been reached
This can lead to discontinuous rate functions. Crowding can be important in CAS, as
we may want to impose occupation limits, such as the number of people in a shared
taxi, or the capacity of a bike station in a bike-sharing scheme.

5.2 Hybrid approaches

Hybridness is a ubiquitous feature in many models of real systems. As far as space is
concerned, there are many ways in which one can construct hybrid models. Here we list
some possibilities for future research, with CAS examples from smart transport.



– Space may be seen or modelled differently depending on which kind of agent we
are considering in the model. An example taken from biology is in the description
of large and small molecules. The former are often modelled as individual objects
having a precise position in continuous space. The latter are described as popula-
tions, and hence represented by counting variables, in subregions of space [6]. This
produces a model combining individual objects moving in space with discretised
stochastic diffusion process. If we consider models of interaction of pedestrians
with public transportation, we can investigate a scenario in which buses are mod-
elled as individual entities moving in continuous space, while pedestrians or bus
users are modelled as populations moving from one discrete location in the city to
another, or on and off a bus. Alternatively, buses outside the city centre could be
modelled as moving in continuous space, whereas those within the city centre are
modelled as a population with movement rates that are determined by the number
of buses.

– Another source of hybridness in spatial modelling can be related to different rep-
resentations of space at different scales or in different locations. The simplest sce-
nario to consider is a high level representation of space in terms of locations, and a
low level description of space inside each location in terms of a grid or continuous
space. In this case, one has to define appropriate interfaces between the dynamics at
the two scales, in terms of abstraction and concretisation functions mapping the low
level into the high level and vice versa. By contrast to the previous example, one
may wish to model details of the bus movement within the city centre but represent
the flow of buses in and out of the centre to different suburbs in a discrete-space
style.

– A similar situation to the previous one is a scenario in which one special location
of interest is treated in detail, while the rest of the system is approximated in a
coarser manner as a single component. The detailed model of a region may be
either continuous or grid-based, while the rest of the system can be abstracted as
a location-based model, possibly homogeneous, hence resorting to some kind of
aggregate moment closure technique. An example of collective adaptive system
of this kind may be a crowd movement scenario, in which different squares of a
city are described in detail, and the flow of people in and out of each square is
represented in a location-based style.

– Similarly, there may be situations in which different locations require a different
level of detail in their treatment. For instance, in a crowd movement scenario, we
may be interested in tracking the density of people on bikes in the streets or in a
square, which calls for a continuous space representation and a PDE dynamics, but
coupling this model with a model describing the number of people at bike stations,
in order to keep track of the inflow and outflow of people from the streets or the
square.

– From a more classical perspective, we can imagine hybrid models in space where
small and large populations are both present [9]. This may be location specific, and
change as the system evolves. Then, we can construct hybrid models in which some
populations are kept discrete in some locations, but are approximated continuously
in other ones.



Analysing hybrid spatial models can be challenging, but also opens new ways of us-
ing locally different forms of spatial abstraction techniques. As an example, consider
a multi-scale scenario where the local space is described as a fine grid, while glob-
ally space is represented by a collection of locations. In such a situation, we may use
structure-based moment closure approximation locally (if that is accurate enough), de
facto reducing the model to a standard location population ODE. In the case of the hy-
brid treatment of populations, simulation of TDSHA (transition-driven stochastic hy-
brid automata) [12] or PDMPs (piecewise deterministic Markov processes) [22] can be
used.

6 Conclusion

To conclude, this tutorial has provided information about the choices than can be made
when modelling space in a quantified manner, focussing on the modelling of CAS. Scal-
ability of techniques have been considered, with specific references to moving away
from individual-based modelling to population modelling, using both exact and ap-
proximate techniques. There has been an exploration of techniques for both discrete
and continuous space, as well a review of how techniques have been applied in the
literature, and specific details of techniques that have been considered for CAS.
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Appendix: Discrete and continuous time Markov chains

This section briefly introduces these concepts, as they would be used in stochastic mod-
elling both without aggregation of state and with aggregation of state (population-based
Markov chains) [4, 10].

Definition 1. A discrete time Markov chain (DTMC) is a tuple MD = (S ,P) where

– S is a finite set of states, and
– P : S ×S → [0,1] is a probability matrix satisfying ∑S′∈S P(S,S′) = 1 for all

S ∈S .

A DTMC is time-abstract [4] in the sense that time is viewed as a sequence of dis-
crete steps or clock ticks. It describes behaviour as follows: if an entity or individual is
currently in state S ∈S then the probability of the entity being in state S′ at the next
time step is defined by P(S,S′). Under certain conditions, the steady state of the DTMC
can be determined and this describes when the DTMC is at equilibrium and gives the
(unchanging) probability of being in any of the states of S . By contrast, transient state
probabilities can be determined at each point in time before steady state is achieved.

Definition 2. A continuous time Markov chain (CTMC) is a tuple MC = (S ,R) where

– S is a finite set of states, and



– R : S ×S → R≥0 is a rate matrix.

CTMCs are time-aware [4] since they use continuous time. If an entity is currently in
state S, then R(S,S′) is a non-negative number that defines an exponential distribution
from which the duration of the time taken to transition from state S to state S′ can
be drawn. As with DTMCs and under certain conditions, transient and steady state
probabilities can be calculated which describe the probability of being in each state at
a particular time t or in the long run, respectively.

Let E(S) = ∑S′∈S R(S,S′) be the exit rate of state S′. Then the embedded DTMC
of a CTMC has entries in its probability matrix of the form P(S,S′) = R(S,S′)/E(S) if
E(S) > 0 and P(S,S′) = 0 otherwise. DTMCs and CTMCs can be state-labelled (usu-
ally with propositions) or transition-labelled (usually with actions). The research in
QUANTICOL focusses on transition-labelled Markov chains. We next consider popu-
lation Markov chains, both discrete time and continuous time. Instead of considering
an entity with states, we now consider a vector of counts X that describes how many
entities are in each state; thus it is a population view rather than an individual view.
Our definition in the continuous-time case is slightly simpler than that appearing in
another chapter in this volume [9] since transitions do not have guards and we do not
parameterise the Markov chain with the population size.

Definition 3. A population discrete time Markov chain (PDTMC) is a tuple XD =
(X,D ,T ) where

– X = (X1, . . . ,Xn) is a vector of variables
– D is a countable set of states defined as D = D1× . . .×Dn where each Di ⊆ N

represents the domain of Xi
– T = {τ1, . . .τm} is the set of transitions of the form τ j = (v, p) where
• v = (v1, . . . ,vn) ∈ Nn is the state change or update vector where vi describes

the change in number of units of Xi caused by transition τ j
• p : D → R≥0 is the probability function of transition τ j that defines a sub-

probability distribution, namely ∑τ∈T pτ(d)≤ 1 for all d∈D , such that p(d)=
0 whenever d+v 6∈D

Definition 4. A population continuous time Markov chain (PCTMC) is a tuple XC =
(X,D ,T ) where

– X and D are defined as in the previous definition,
– T = {τ1, . . .τm} is the set of transitions of the form τ j = (v,r) where
• v is defined as in the previous definition,
• r : D→R≥0 is the rate function of transition τ j with r(d) = 0 whenever d+v 6∈

D .

In both types of population Markov chain, the associated Markov chain can be obtained.
In both cases, D is the state space S . For the population DTMC, the probability matrix
of its associated DTMC is defined as

P(d,d′) = ∑
τ∈T ,vτ=d′−d

pτ(d) whenever d 6= d′



and since probability functions define sub-probabilities then the rest of the probability
mass must be accounted for by defining

P(d,d) = 1 − ∑
τ∈T ,vτ 6=0

pτ(d).

For the population CTMC, the rate matrix of its associated CTMC is

R(d,d′) = ∑
τ∈T ,vτ=d′−d

rτ(d) whenever d 6= d′

and if the summation is empty, then R(d,d′) = 0.
As the size of the population increases, it has been shown [58] under specific con-

ditions that cover a large range of models that the behaviour of an (appropriately nor-
malised) population CTMC at time t is very close to the solution of a set of ODEs,
expressed in the form X(t) = (X1(t), . . . ,Xn(t)) defining a trajectory over time. The
ODEs can be expressed in terms of a single vector ODE as

Ẋ =
dX
dt

= f(X)

where f(X) is a function derived from the specifics of the PCTMC (see [9] in this
volume for details). It is also possible to approximate the moments of a PCTMC using
the ODEs [32]

d
dt

E[M(X(t))] = ∑
τ∈T

E[(M(X(t)+vτ)−M(X(t)))rτ(X(t))]

where M(X) denotes the moment to be calculated, vτ and rτ(X(t)) represents the update
vector and the rate of a transition τ , respectively.
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34. Fange, D., Berg, O., Sjöberg, P., Elf, J.: Stochastic reaction-diffusion kinetics in the micro-
scopic limit. Proceedings of the National Academy of Sciences 107, 19820–19825 (2010)

35. Feng, C.: Patch-based hybrid modelling of spatially distributed systems by using stochastic
HYPE – ZebraNet as an example. In: Proceedings of QAPL 2014 (2014)

36. Feng, C., Hillston, J., Galpin, V.: Automatic moment-closure approximation of spatially dis-
tributed collective adaptive systems. ACM TOMACS (2015), accepted for publication

37. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana University
Mathemetics Journal 21, 1972 (1971)

38. Fishman, G.: Discrete-event Simulation. Springer-Verlag (2001)
39. Fricker, C., Gast, N.: Incentives and regulations in bike-sharing systems with stations of finite

capacity. arXiv preprint arXiv:1201.1178 (2012)
40. Fricker, C., Gast, N., Mohamed, H.: Mean field analysis for inhomogeneous bike sharing

systems. DMTCS Proceedings 01, 365–376 (2012)
41. Galpin, V., Feng, C., Hillston, J., Massink, M., Tribastone, M., Tschaikowski, M.: Review

of time-based techniques for modelling space. Tech. Rep. TR-QC-05-2014, QUANTICOL
(2014)

42. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice
Hall (1971)

43. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical
Chemistry 81, 2340–2361 (1977)

44. Gillespie, D.: Stochastic simulation of chemical kinetics. Annual Review of Physical Chem-
istry 58, 35–55 (2007)

45. Gorban, A., Radulescu, O., Zinovyev, A.: Asymptotology of chemical reaction networks.
Chemical Engineering Science 65, 2310–2324 (Apr 2010)

46. Holmes, E., Lewis, M., Banks, J., Veit, R.: Partial differential equations in ecology: spatial
interactions and population dynamics. Ecology 75, 17–29 (1994)

47. Horton, G., Kulkarni, V., Nicol, D., Trivedi, K.: Fluid stochastic Petri nets: Theory, appli-
cations, and solution techniques. European Journal of Operational Research 105, 184–201
(1998)

48. Hu, H., Myers, S., Colizza, V., Vespignani, A.: WiFi networks and malware epidemiology.
Proceedings of the National Academy of Sciences 106, 1318–1323 (Jan 2009)

49. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific (2001)
50. Isham, V.: An introduction to spatial point processes and Markov random fields. International

Statistical Review/Revue Internationale de Statistique 41, 21–43 (1981)
51. Kaneko, K.: Diversity, stability, and metadynamics: Remarks from coupled map studies. In:
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