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A hybrid scheme for simulation of planar rigid bodies with impacts and friction1

using impact mappings2

Shane J. Burns∗, Petri T. Piiroinen3

School of Mathematics, Statistics & Applied Mathematics,4

National University of Ireland, Galway,5

University Road, Galway, Ireland6

Abstract7

This article introduces numerical techniques necessary for the implementation of impact maps derived from an
energetic impact law for rigid-body impacts with friction at isolated contact points. In particular the work focuses
on methodologies for long-term simulation with behaviours such as dynamic transitions and chatter. The methods
are based on hybrid event-driven numerical solvers for ordinary differential equations together with system states
to deal with the transitions. A slender rod impacting a periodically oscillating surface is used as an example to
illustrate implementation and methods. The numerical scheme for the rod system is used to show how symmetry can
play an important role in the presence of friction for long-term dynamics. This will show that surface oscillations
with low frequencies tend to lead to periodic motions of the rod that are independent of friction. For higher
frequencies however the periodic solutions are not that common and irregular motion ensues.

1. Introduction8

Collisions or impacts in mechanical systems are very common and in many mechanical engineering applications9

they can cause undesired wear and noise and thus be very problematic and expensive. Two experimental examples10

of systems with such issues include an engine cam follower [32] and a magnetic bearing system [22].11

In many applications energy is dissipated during impacts through motion in both the normal and tangential12

direction (friction) and how this happens has wide reaching effects on both the short-term and long-term dynamics.13

The understanding of the forces and impulses that occur at impact, together with an impact law, allows for some14

prediction of post-impact dynamics of impacting systems. By an impact law we mean a physical law that is based15

on theory and experimentation and used to describe the physics of a collision between bodies. Many impact law16

models have been developed, some of which include friction [7, 8, 11, 21, 28, 40, 18] and some which do not [9, 10].17

Impact laws can be split into two main classes, those suitable for compliant rigid bodies ad those suitable for18

non-compliant rigid bodies. The first class of impact laws allows for deformation of the contacting regions of the19

bodies [5], whereas the second class of impact laws requires perfect rigidity together with some rigidity constraint20

[8].21

The impact law used in this paper will be for non-compliant rigid-body impacts with friction. Typically, the22

main assumptions for non-compliant impacts are: (i) there is no deformation of the contact regions, (ii) an impact23

occurs at an isolated contact point, (iii) there is no moment impulse during impact, (iv) the contact duration is24

infinitesimal, (v) there is no change in generalised coordinates throughout the impact phase and (vi) the finite25

active forces can be neglected during impact, [8, 19].26

The dynamics of rigid-body systems with impacts and friction is usually found by numerical integration of27

systems of ordinary differential equations (ODEs) corresponding to the mechanical system under question. There28

are two main schemes for how this is usually done, namely, time-stepping and event-driven schemes. How to choose29

one over the other depends on the class or type of mechanical system that is being analysed, how the impact law30

is resolved, and the type of numerical analysis one would like to perform. Time-stepping schemes consist of a31

time discretisation of the dynamics in which each time step is advanced by solving an appropriate complementarity32

problem [1]. In these schemes the moment of each collision or when changes in relative velocity between bodies33

occurs is not exactly located but instead some level of penetration can occur. This is the price to pay for using34

rigidly formulated time-stepping methods. These schemes are however very advantageous for the simulation of35

systems with a large number of degrees of freedom with multiple contacts, for example flows in a granular material36

or masonry structures. Event-driven schemes are also basically time-stepping schemes but the time for which a37

trajectory reaches a constraint or discontinuity surface is located as precisely as possible to avoid penetration. This38
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class of schemes can in turn be divided into two separate categories, the complementarity methods and the hybrid39

methods. As the name suggests, in the complementarity method a complementarity problem is solved as the event40

is located, whereafter the standard time-stepping scheme continues as discussed above [1].41

In the hybrid methods, which are the focus of this paper, the integration is terminated when an event is42

located and a discrete map is applied to describe how the state changes at the event. When the map is applied43

the time-stepping scheme is restarted with the post-event states as the initial conditions with a new set of ODEs44

that reflect the new circumstance. Hybrid methods have some obvious drawbacks but also some very important45

advantages that we will use in this paper. The main complication of hybrid methods is that, since each event has46

to be identified and resolved individually, the complexity of all different combinations of events and ODEs grows47

very quickly with the number of possible events. Another complication is that for each event a mapping has to be48

found that reflects, in the case of this paper, what the impact law dictates. These issues make hybrid schemes only49

feasible for systems with relatively few different discontinuity surfaces [2, 35, 36]. However, on the positive side it is50

worth raising at least four different points. First, since the events are not included in the time stepping only ODEs51

with smooth dynamics have to be integrated and it is thus possible to use a suitable high-order integrator with52

well-known convergence properties so that trajectories can be found with high accuracy. Second, since no events will53

be lost during simulation hybrid methods are useful for the brute-force bifurcation analysis and in particular when54

discontinuity-induced bifurcations (DIBs) are involved. An example of a DIB, and something that will be seen in55

this article, is a grazing bifurcation. A grazing bifurcation occurs when, under parameter variation, a trajectory of a56

periodic orbit makes tangential contact with the discontinuity surface, resulting in a change in the system dynamics57

[30, 15]. Third, hybrid methods make the stability analysis of periodic orbits relatively straight forward since it is58

possible to calculate saltation matrices that ”glue” fundamental solution matrices together for trajectories passing59

through regions between different events. Fourth, despite the common misconception, there are methods born out60

of hybrid schemes for impacting systems that can deal with the accumulation of impacts, sometimes referred to61

as chatter or Zeno behaviour, and also calculate the corresponding saltation matrices [31]. As mentioned above,62

event-driven schemes are particularly useful for systems with relatively few degrees of freedom, but with multiple63

spatially and temporally separated contact points. Some examples include turbine blade dampers, friction clutch64

vibrations, landing gear dynamics [33], passive walkers [2, 34] and braille printers [13].65

The use of nonsmooth system theory to predict and understand the kinematics of colliding rigid bodies in the66

presence of impact and friction is a useful commodity in engineering in particular and research of such systems67

in general [6, 16, 22, 25, 33, 37]. It is well known that nonsmooth systems can exhibit complex behaviour that68

cannot be found in smooth systems. The class of systems with combinations of ODEs and maps, that we use69

here for mechanical systems with impact and/or friction, are often termed as piecewise-smooth (PWS) systems. In70

recent years the interest of DIBs found in PWS systems have increased dramatically, and as mentioned above the71

main driver of the analysis of DIBs have been the hybrid system approach, where local behaviour can numerically72

be pinpointed with high accuracy [3, 12, 15, 30, 31]. In particular DIBs in impacting systems without friction73

have been studied extensively and some classification methodologies have been developed in [14, 27, 24], but also74

impacting systems with friction have been studied from a DIB point of view [23, 17, 28]. As already mentioned,75

a type of behaviour that is very specific to impacting systems with rigid body impacts is chatter, which is the76

phenomenon whereby a system goes through an infinite number of impacts in a finite time period. Previous works77

on chatter have considered both frictionless systems [9, 12, 31] and systems with impacts and friction [23, 28, 29].78

An interesting example of an engineering-based frictionless system is analysed in [26], where the problem of gear79

rattle (chatter) in Roots blower vacuum pumps is considered, and where the rattle is induced from the gear teeth80

losing and regaining contact. Similarly, in cam-follower systems for certain conditions the follower detaches from81

the cam, resulting in a series of unwanted impacts or chatter [3, 4, 32].82

With this in mind, the emphasis of this paper is two-fold. First, we will show how the impact mappings for83

impacts with friction derived in [28] can be implemented for reliable simulations of systems with impacts and84

friction. Second, we want to exploit the fact that we have reliable simulation routines to analyse the long-term85

qualitative behavior of an unconstrained mechanical system with impacts and friction. Since previous research86

has mainly considered long-term dynamics for systems with impacts but without friction [3, 14, 31] the analysis of87

the unconstrained object will show that it is feasible to also consider long-term simulations for mechanical system88

with impact and friction. For this purpose we chose a hybrid event-driven technique as opposed to a time-stepping89

method in order to resolve DIBs in brute-force bifurcation analysis as well as deal with accumulation of events90

(chatter). We will use the example of a planar slender rod impacting with an oscillating surface to show how to91

implement these techniques. This can be seen as a generalisation of a system where a machine element detaches92

and is free to vibrate in the presence of friction or an item that lies on a vibrating conveyor belt. We will show93

how rattle is affected by the presence of friction.94
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This article is organised as follows. The equations of motion for a collision between two rigid bodies with an95

isolated contact point are derived in Section 2.2 along with an extension of the energetic impact law derived in [28]96

to allow for a two-body collision. Section 3 summarises the numerical methods necessary for the implementation of97

the chosen impact law. In Section 3.1 we will introduce the notion of system states and how this idea is used in the98

simulation of impacting systems. The model example of a slender rod impacting a periodically oscillating surface99

is introduced in Section 4 and the basic setup that is used in the numerical simulations is presented in Section 4.1.100

The paper concludes with a discussion in Section 5 that provides an insight for engineers and other researchers101

working with impact and friction.102

2. Planar rigid-body impacts with friction103

In this section we will derive a general framework for a planar rigid-body collision between two unconstrained104

objects. We will present an extension of the energetic impact mapping derived in [28], which will be used for the105

model example in Section 4. The extension derived here is more general than the mapping presented in [28] in106

that the mapping in [28] is for the specific case of a slender rod impacting a stationary non-compliant surface, but107

where we allow both bodies to be unconstrained.108

2.1. Equations of motion109

Consider two planar rigid bodies H and H ′ whose configuration relative to an inertial reference frame can be110

described in terms of vectors of generalized coordinates. Further impose that the bodies at any moment have a111

finite number of isolated contact points and contact can not occur at two separate points simultaneously. For this112

purpose we derive the equations of motion for two separate cases, when the bodies are in free flight, see Fig. 1113

(a), and when they are in contact at an isolated point C, see Figs. 1 (b) and (c). The corresponding dynamics

β
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R
R

R′
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Y
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Figure 1: (a) A free-body force diagram for two planar bodies in free flight. (b) Geometry of two planar rigid bodies H and H′ in
contact at a point C. (c) A free-body force diagram corresponding to the figure in (b). (d)A schematic the showing angle of rotation
β between the two frames used for modelling and analysis.

114

can be described using a Lagrangian formulation or using a Newtonian formulation. In Sections 2.1.1 and 2.1.2 we115

consider a Newtonian formulation.116

2.1.1. Free flight117

Consider the two bodies H and H ′ in free flight as shown in Fig. 1(a). The position and rotation of the centre
of mass G of body H can be described in the X − Y plane by the coordinates qX and qY and the angle α, and
similarly q′X and q′Y are the coordinates and α′ the rotation of the centre of mass G′ of body H ′ (see Fig. 1(a)).
Next we let

r = (qX , qY , α)
T , r′ = (q′X , q′Y , α

′)T ,

ṙ = (q̇X , q̇Y , α̇)
T , ṙ′ = (q̇′X , q̇′Y , α̇

′)T ,
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r̈ = (q̈X , q̈Y , α̈)
T and r̈′ = (q̈′X , r̈′Y , α̈

′)T .

The equations of motion for the two bodies can now be written as118

Mr̈ = FT and M ′r̈′ = F ′T , (1)

where M and M ′ are, respectively, the mass matrices for H and H ′ given by119

M =





m 0 0
0 m 0
0 0 I



 and M ′ =





m′ 0 0
0 m′ 0
0 0 I ′



 ,

and F and F ′ are, respectively, the external forces and torques acting on H and H ′ given by120

F = (FX , FY , R) and F ′ = (F ′

X , F ′

Y , R
′) .

Here m and m′ are the masses and I and I ′ are the moments of inertia of H and H ′, respectively. Further FX , F ′

X121

and FY , F
′

Y represent the force components in the X − Y plane and R and R′ are the external torques acting on122

H and H ′, respectively, as shown in Fig. 1(a).123

2.1.2. Contact124

Next we derive the equations of motion for the system when the two objects are in contact, as shown in Figs. 1(b)
and (c). To do this we define a new coordinate system n1 − n2, rotated by an angle β about the origin relative to
the coordinate system X − Y , where n1 is the tangential vector to the contact plane and n2 is the normal vector
to the contact plane (see Fig. 1(d)). We also define θ = α− β and θ′ = α′ − β and let

q = (q1, q2, θ)
T = (qX cos(β)− qY sin(β), qX sin(β) + qY cos(β), α − β)

T
,

and
q′ = (q′1, q

′

2, θ
′)T = (q′X cos(β) − q′Y sin(β), q′X sin(β) + q′Y cos(β), α′ − β)

T
.

Further, defining L as the distance from G to C and L′ as the distance from G′ to C, the positions qC and q′C of125

the contact point C relative to both bodies in the n1 − n2 frame can be written as126

qC := (q1 − L cos(θ), q2 − L sin(θ))
T

(2)

and127

q′C := (q′1 − L′ cos(θ′), q′2 − L′ sin(θ′))
T
. (3)

Note that we do not deal with the problem of finding the contact points in the general case but assume that there128

are well-defined contact points on each object. Let d = qC − q′C be the relative distance between the contact129

points of the two bodies. Then the unilateral constraint between the two bodies is d = (0, 0)T or equivalently when130

qC = q′C .131

This is a useful framework to work with, particularly when deriving an impact mapping. It is also straightforward
to translate back positions and angles to the original X − Y coordinate system. The derivation of the impact
mapping introduced in [28] splits contact forces into tangential and normal components in relation to the contact
plane, i.e. using the n1 − n2 coordinate system. In order to relate how the contact forces will affect the centre of
mass in terms of translations and rotations we need to consider

∂qC

∂q
=

(

1 0 L sin(θ)
0 1 −L cos(θ)

)

and
∂qC

∂q′
=

(

1 0 L′ sin(θ′)
0 1 −L′ cos(θ′)

)

.

Now, the equations of motion for H and H ′ during contact can, respectively, be written as132

Mq̈ = F̂T +

(

∂qC

∂q

)T

λT (4)

and133

M ′q̈′ = F̂ ′
T
+

(

∂qC

∂q′

)T

λ′T , (5)
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where F̂ and F̂ ′ are, respectively, the external forces and torques acting on H and H ′ given by134

F̂ = (F1, F2, R) = (FX cos(β)− FY sin(β), FX sin(β) + FY cos(β), R) ,

and135

F̂ ′ = (F ′

1, F
′

2, R
′) = (F ′

X cos(β) − F ′

Y sin(β), F ′

X sin(β) + F ′

Y cos(β), R′) ,

where the subscripts 1 and 2, respectively, represent the components of the external forces acting in the tangential136

and normal direction, and R and R′ are as above the external torques acting on the bodies as shown in Fig. 1 (c).137

In a similar way we define λ and λ′ as the forces generated at impact of each body given by138

λ = (λ1, λ2) and λ′ = (−λ1,−λ2) .

This setup is general and does not specify the mechanism that generates the tangential force λ1. For this work139

however we assume that any tangential force arises due to friction at the contact point of the colliding bodies and140

here we use the Amontons-Coulomb friction law141

λ1 = ±µλ2 (6)

for some non-negative constant µ representing a coefficient of friction. The sign assigned to the tangential force142

λ1 is positive (+) when the relative tangential contact point velocity between the two bodies is negative and it is143

negative (−) when the relative tangential contact point velocity is positive.144

2.2. Energetic Impact Law145

For collisions between rigid bodies, dissipation of energy in the direction normal to the contact plane is modelled146

using a coefficient of restitution. A coefficient of restitution gives a relation between the normal impulse applied147

during the restitution phase to that applied during compression. Typically a Newtonian coefficient or a kinematic148

coefficient is used for this purpose [38], however, for situations where the direction of slip can vary throughout149

the impact phase both these coefficients will violate energy conservation [39]. Stronge [38] views the impact phase150

as being composed of a compression phase followed by a restitution phase. During compression, kinetic energy is151

stored as internal deformation energy until the normal relative contact point velocity is brought to zero. At this152

point the restitution phase begins and the stored energy is released.153

For this purpose Stronge defines an energetic coefficient of restitution e∗ as follows:154

Definition 1. The square of the coefficient of restitution is the negative ratio of the elastic strain energy released155

during restitution to the internal energy of deformation absorbed during compression,156

e2
∗
= −

W (Pf )−W (Pc)

W (Pc)
,

where W =
∫ t

0 Fvdt′ and for a significantly short contact duration the force can be related to the differential of157

impulse, dP = Fdt′ so that158

e2
∗
= −

∫ Pf

Pc
v(P )dP

∫ Pc

0 v(P )dP
, (7)

where P is the impulse, v(P ) is the relative normal velocity, Pc =
∫ tc

0 λNdt is the normal impulse for compression,159

with tc the time taken for the contact point velocity to reach zero, λN the normal component of the contact force160

and Pf is the final impulse achieved at separation.161

This energetic restitution coefficient allows for the various stick-slip processes that can occur throughout the162

impact phase and thus is a restitution coefficient that will not violate energy conservation. It is notable that the163

kinematic and Newtonian coefficients do not allow for situations where the direction of slip can vary throughout164

the impact phase, and the consequence of this is that the final impulse is not calculated correctly. Further, the165

energetic restitution coefficient forms the basis for the impact mapping derived in [28], a brief description of which166

will be given below. When we refer to the impact phase we are considering velocity changes which occur as a167

function of normal impulse. This impulse formulation is a natural framework to use given that we assume the168

impact is of infinitesimal contact duration.169

In order to map pre-impact velocities to post-impact ones it is necessary to consider the terminal impulse Pf170

for the given collision. Incorporating Amontons-Coulomb friction law (6) and the energetic restitution coefficient171
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(7) allows for a variety of stick-slip processes, each of which need to be considered and the corresponding Pf in172

each case determined. We will consider the equations of motion for a planar two-body collision. It is necessary to173

consider velocity changes as a function of normal impulse P instead of the time variable t. Consider (4) translated174

to the contact point qC so that175

dq̇C

dt
=

∂qC

∂q
q̈ =

∂qC

∂q
M−1

(

∂qC

∂q

)T

λT +
∂qC

∂q
M−1FT = w−1λT + f(F1, F2, R, q, q̇) (8)

and176

dq̇C

dt
=

∂qC

∂q′
q̈ =

∂qC

∂q′
(M ′)−1

(

∂qC

∂q′

)T

λ′
T

+
∂qC

∂q′
(M ′)−1F ′

T

= (w′)
−1

λ′
T

+ f ′(F ′

1, F
′

2, R
′, q′, q̇′), (9)

which is the rate of change of the contact point velocities as a function of time and where w−1 and (w′)
−1

are the
symmetric matrices given by

w−1 =
∂qC

∂q
M−1

(

∂qC

∂q

)T

=

(

A B

B C

)

,

(w′)
−1

=
∂qC

∂q′
(M ′)−1

(

∂qC

∂q′

)T

=

(

A′ B′

B′ C′

)

,

where

A =
1

m
+

L2 sin2(θ)

I
, B =

− sin(θ) cos(θ)

I
, C =

1

m
+

L2 cos2(θ)

I

A′ =
1

m′
+

L′2 sin2(θ′)

I ′
, B′ =

− sin(θ′) cos(θ′)

I ′
, C′ =

1

m′
+

L′2 cos2(θ′)

I ′
.

In this context we do not need to consider terms which do not change throughout the impact phase and therefore177

we can neglect the functions f and f ′. Further, during the impact phase we also have that178

dP

dt
= λ2 (10)

for H and by Newton’s third law of motion179

d(−P )

dt
= −λ2 (11)

for H ′, since the normal impulse is a uniformly increasing scalar function during contact. Now, (8), (10) and (11)180

allow us to replace the independent variable t with P in (10) and (11) to give181

dq̇C

dP
=

1

λ2
w−1

(

λ1

λ2

)

, (12)

which is the rate of change of contact point velocities with respect to H as a function of normal impulse. In a182

similar way, using (9), (10) and (11), we also have183

dq̇′C
dP

=
1

λ2
(w′)

−1
(

−λ1

−λ2

)

. (13)

Subtracting (13) from (12) yields184

d ˙̃qC
dP

:=
dq̇C

dP
−

dq̇′C
dP

=
1

λ2

(

w−1 + (w′)
−1

)

(

λ1

λ2

)

, (14)

or in the notation of [28]185

d ˙̃qC
dP

=
1

λ2

(

Â −B̂

−B̂ Ĉ

)(

λ1

λ2

)

, (15)

which is the relative change in contact point velocities as a function of normal impulse. Expanding Eq. (15) and186

writing it in terms of tangential and normal components, respectively, gives187

d ˙̃q1C
dP

= Â
λ1

λ2
− B̂,

d ˙̃q2C
dP

= −B̂
λ1

λ2
+ Ĉ, (16)

which will be used to define the rate constants used for the impact mappings presented below.188

Stronge [38] describes four possible impact-phase processes and calculates the terminal impulse and the post-189

impact velocity components for each phase. The four phases are:190

6



Unidirectional slip during contact. In this case slip does not cease throughout the impact phase, and the191

tangential forcing acts in a direction opposite to the motion of the body.192

Slip reversal during compression. In this situation initial sliding is brought to rest and then reverses direction.193

Slip-stick transition during compression. The case whereby initial sliding is brought to rest. The contact194

point sticks if the friction coefficient µ is sufficiently large or undergoes reverse slip if it is not. It is also195

required that the initial sliding velocity is sufficiently small, otherwise this motion can not occur.196

Jam. This is the process whereby there is an increase in normal acceleration at the contact point due to a large197

rotational acceleration. This motion occurs during an initial period of sliding.198

Nordmark et al. [28] extend this theory by describing 10 different impact regions from which an impact law199

consisting of three mappings is derived. The impact mappings in [28] map the relative tangential and normal200

contact point velocities before the impact phase ˙̃q−C to the post-impact phase velocities ˙̃q+C . Using Eq. (16) and201

following [28] we define the rate constants k+T , k
−

T , k
+
N , k−N , k0T and k0N . These rate constants describe how stick and202

positive and negative slip can occur throughout the compression and restitution phase. For the various stick-slip203

processes described above Nordmark et al. [28] define the rate constants204

k+T = −B̂ − µÂ, k+N = Ĉ + µB̂,

205

k−T = −B̂ + µÂ, k−N = Ĉ − µB̂,
206

k0T = 0, k0N =
ÂĈ − B̂2

Â
,

from which207

kT =







k+T , in positive slip,
k−T , in negative slip,
k0T , in stick,

(17)

and208

kN =







k+N , in positive slip,
k−N , in negative slip,
k0N , in stick,

(18)

can be determined, where µ = λ1

λ2

. It is worth mentioning that µ is taken as an absolute here and the rate constants209

described above consider all cases of positive and negative slip so it is not necessary to assign a sign to µ. Nordmark210

et al. [28] also define the constants k′T and k′N , which are assigned one of the values of k+T , k
−

T , k
+
N , k−N , k0T and k0N ,211

and determined by the system parameters and pre-collision conditions. For full details we refer to [28]. From this212

and using Eq. (7) the following three maps, for pre-impact to post-impact contact point velocities ˙̃q−C 7→ ˙̃q+C can be213

derived:214

215

Map I:216

˙̃q+1C = ˙̃q−1C − (1 + e∗)
kT

kN
˙̃q−2C (19)

˙̃q+2C = −e∗ ˙̃q
−

2C (20)

217

Map II:218

˙̃q+1C =
k′T
k′N





kN

kT
˙̃q−1C − ˙̃q−2C +

√

(

1−
k′N
kN

)(

kN

kT
˙̃q−1C − ˙̃q−2C

)2

+ e∗2
k′N
kN

(

˙̃q−2C
)2



 (21)

˙̃q+2C =

√

(

1−
k′N
kN

)(

kN

kT
˙̃q−1C − ˙̃q−2C

)2

+ e∗2
k′N
kN

(

˙̃q−2C
)2

(22)
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219

Map III:220

˙̃q+1C =
k′T
k′N





kN

kT
˙̃q−1C − ˙̃q−2C + e∗

√

(

1−
k′N
kN

)(

kN

kT
˙̃q−1C − ˙̃q−2C

)2

+ e∗2
k′N
kN

(

˙̃q−2C
)2



 (23)

˙̃q+2C = e∗

√

(

1−
k′N
kN

)(

kN

kT
˙̃q−1C − ˙̃q−2C

)2

+
k′N
kN

(

˙̃q−2C
)2

(24)

for kN 6= 0 and221

˙̃q+1C = 0 (25)

˙̃q+2C = e∗

√

(

˙̃q−2C
)2

+
2k′N

˙̃q−1C
˙̃q−2C

kT
(26)

for kN = 0.222

As mentioned above, the different combinations of segments of stick and relative slip can be described by ten223

different regions, each of which corresponds to one of the three maps given above. It is worth noting that in [40] an224

equivalent energetic coefficient of restitution is used together with the Amontons-Couloumb friction law to describe225

the contact and impact dynamics for the case of a bouncing dimer.226

2.3. Dynamics227

As the type of mechanical system considered for this work is unconstrained away from the discontinuity surfaces,228

various possible modes of sustained motion can occur. To highlight this, in Fig. 2 we consider a schematic of the229

time history of a point p(t) on a rigid body that occasionally acts as a contact point during impacts with a non-230

compliant surface. We only need to define three modes of motion, namely, unconstrained free flight, chatter and

External impact

Stick

Free flight

Chatter

Time

p(t)

Figure 2: A schematic detailing the time history of a contact point p(t) in an impacting system.

231

stick. For our purposes, unconstrained free flight could describe, for example, the motion of a projectile that is free232

to rotate about all axes and is entirely unconstrained. Note that constrained free flight could describe, for example,233

the motion of a double pendulum. The system is constrained to move in a plane with two degrees of freedom due234

to the upper arm of the pendulum being constrained to a fixed point. It is also necessary to distinguish between235

two types of chatter, namely, complete and incomplete chatter [31]. Complete chatter is where an object undergoes236

an infinite number of impacts in finite time and eventually transitions to stick. This motion can be observed in237
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reality where a bouncing a ball, for example, undergoes a large number of impacts and eventually comes to a stop238

and transitions into a stick state. Incomplete chatter is where the system undergoes a large number of impacts in239

a short time frame but transitions to free flight due to a change in the relative acceleration.240

At an impact, after free flight, a system can evolve in a number of different ways: It can continue in free flight241

motion, go into a stick regime or go through a chatter sequence. A feature which is also present in the schematic242

Fig. 2 is an External impact, where another point of the rigid-body system impacts and thus causes a change in243

the dynamics of the point p(t). For analysis purposes it is important to be able to distinguish between the different244

features and subtle changes in order to understand the mechanisms that cause them. There are typically also a245

number of system-specific long-term dynamical behaviours present. In Section 4.1 and 4.3 we discuss such examples246

for the case of a slender rod impacting an oscillating surface.247

3. Numerical methods248

In this section we will give a very brief description of the different numerical methods employed for simulation249

of the rigid-body system with impacts and friction described in Section 4. We mainly follow the methodologies250

described in [31] and [36] with some extensions and some simplifications, as we will describe below. The methodology251

we use here is, as mentioned in Section 1, sometimes referred to as the hybrid or event-driven approach, where252

continuous dynamics, described by a system of smooth ODEs, is combined with discrete events, described by253

maps. The maps are used when a solution trajectory reaches an event surface defined by the system variables254

and parameters. In this context we consider the continuous dynamics as the motion between the impacts or other255

transitions and the maps correspond to the actual impacts or transitions. The transitions are typically changes256

from free-flight dynamics to stick or to chatter.257

To solve a system of smooth ODEs in Section 4 we mainly use the Matlab’s ODE solver ode45 and to locate258

the event surfaces we use Matlab’s built-in event-detection routines. However, the methodology described here259

can equally well be implemented in any environment that has an ODE solver and event location capabilities. The260

ODE solver requires at least two vector fields (one for the free-flight phase and one for stick, but see further Section261

4 for a specific implementation), simulation times, initial conditions, error tolerances and integration step sizes.262

In order to accurately locate the event surfaces, event functions need to be described that are derived from the263

geometries of the impacting rigid bodies. Finally, impact maps, like those described in Section 2.2 have to be264

defined together with a process that determines what impact map to use for the specific impact.265

In general, when dealing with rigid bodies, it is more than likely that the overall system can have multiple266

contact points and a large number of events can occur (impacts or vector field transitions). These two factors can267

generally give rise to a number of computational complications, making the analysis of long-term dynamics difficult.268

One such useful example is to define an additional artificial term on the vector fields that makes the surface locally269

attractive when the system is in stick. This ensures that the contact point does not drift away from the surface270

due to numerical errors. A similar approach was used in [36] for Filippov systems.271

Following the setup of system states presented in [36, 31] we can achieve a robust numerical code capable of272

simulating the system to examine long-term dynamics. By robust we mean, using this method, the numerical273

simulator is capable of handling the events and transitions which can occur, without breaking down. This is274

presented in Section 3.1, followed by a discussion in Section 3.2 on brute-force bifurcation analysis in general and275

stability analysis of symmetric period-1 solutions.276

3.1. System States277

One of the many difficulties associated with using a hybrid strategy for finding the solution to a dynamical278

system with discontinuities is the accumulation of events, for instance when an incomplete or a complete chattering279

sequence is encountered (see Section 2.3 and [4]). To deal with this in a systematic manner it is advantageous to280

introduce the notion of system states in a similar way as was done in [36, 31]. For a general system we can define n281

discrete states Sn in which one of the defined vector fields Φn is being used. Each vector field Φn either corresponds282

to free-flight or sticking motion, which has to be defined by the user. A transition diagram can be used to decide if283

a system should transition from one state to another at an event, and also provides a means for numerically dealing284

with a complete chatter sequence.285

The number of free-flight and stick states depends mainly on the geometry of the impacting rigid bodies. This286

point will be illustrated further in Section 4.2 for a model example showing a slender rod impacting an oscillating287

plane.288

The mechanism for switching between the states Sn at impact involves evaluating relative normal contact point289

accelerations and velocities, whereafter a transition diagram together with a decision tree can be used to evaluate290
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what state the system should be in after the impact. The contact point velocities are mainly used to calculate291

post-impact velocities. This is in contrast to the contact point accelerations that are used to determine when the292

system should release from stick to free flight. The specific implementations have to be assessed on a case-by-case293

basis.294

3.2. Bifurcation diagrams and stability analysis295

A common way in which to make an initial assessment of the long-term dynamics of a mechanical system is to296

plot brute-force bifurcation diagrams. In Section 4.3 we highlight some aspects of how the long-term dynamics of297

a mechanical system with impacts is affected by friction through bifurcation diagrams. The bifurcation diagrams298

shown in Section 4.3 are made up of, on the one hand, period-1 solutions found by a semi-analytic continuation299

method based on a shooting method and, on the other hand, other recurrent motions found by brute-force simulation300

methods. For the period-1 solutions the stabilities are found by calculating the eigenvalues of the fundamental301

solution matrix that is found by solving the variational equations of the piecewise-smooth system. For this purpose302

saltation matrices are used to merge together fundamental solution matrices for trajectories that switch from one303

state to another. These methods have successfully been implemented in [2, 13, 34] and particularly in [31] which304

reports the stability analysis for impacting systems without friction but with complete chatter.305

4. Dynamics of a slender rod impacting a periodically-oscillating surface306

In this section we will use a basic planar model of a rigid slender rod impacting a periodically oscillating surface307

to illustrate the techniques discussed in Section 2. The model will also be used to describe how the numerical308

methods discussed in Section 3 can be implemented and what the dynamical features presented in Section 2.3 look309

like for this specific case. We will also use this setup to show how friction affects chaotic rattling behaviour of the310

rod.311

4.1. The model, system states and vector fields312

As discussed above we consider a planar uniform slender rigid rod and let q1, q2 be the tangential and normal313

position of the centre of mass, relative to the contact plane, and let θ be the angle of rotation of the rod (see314

Fig. 3(a)). For this model example the tangential and normal direction correspond to the n1 and n2 directions,315

respectively, as discussed in Section 2 and shown in Fig. 1. The rod is subjected to gravity and where either of316

the two isolated end points, named P1 and P2, can impact, get stuck to or slide along the periodically oscillating317

surface. The slender rod can essentially be in four different states: free flight (Fig. 3(a)), one of the two end points318

is stuck to the surface (Fig. 3(b) and (c)), or both end points are stuck to the surface (Fig. 3(d)). The fourth state319

here also allows for the release of the two end points at the same time, which in effect leads to a lower-dimensional320

dynamical system that can be treated as a simple impacting particle.

P1

P1P1

P1

P2
P2

P2

P2
a) b) c) d)

θ = 0θθ

θ

D(t) D(t) D(t) D(t)

Figure 3: The four possible main states of the slender rod. (a) Free-flight motion. (b) End point P1 constrained to the surface. (c)
End point P2 constrained to the surface. (d) Symmetric free-flight motion (dashed) and symmetric stick motion (solid).

321

Without loss of generality and following the general setup in Section 2, we let the mass of the rod be m = 1 and322

the distance from the centre of mass to either of the two end points be L = 1. This gives the moment of inertia323

I = 1
3 and the radius of gyration k2r = 1

3 . We further assume that the vertically oscillating surface is not affected324

by the rod at impact and thus let D(t) represent the oscillating surface with frequency ω, amplitude A and where t325

is time, so that D(t) := A sin(ωt) (see Fig. 3). This means that we only need to consider one of the two impacting326

bodies introduced in Section 2.1.1 as the mass of the surface can be assumed to be much greater than that of the327

rod and thus only one of the two systems of differential equations, say Eq. (4), needs to be considered. For future328

reference we let q4 = q̇1, q5 = q̇2, q6 = θ̇ and introduce τ as the phase of the oscillating floor. We also let d1 be the329

distance between the end point P1 and the surface in the normal direction and let d2 be the distance between the330
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end point P2 and the surface in the normal direction. The unilateral constraints for this model example are thus331

d1 = 0 (see Fig. 3 (b)),or d2 = 0 (see Fig. 3 (c)) or simultaneously d1, d2 = 0 (see Fig. 3 (d)). Further, using Eq. (2)332

we find333

d1 = q2 − sin(θ)−A sin(ωt), (27)
334

d2 = q2 + sin(θ)−A sin(ωt),

from which we obtain the relative velocity between the end point P1 and the floor as335

ḋ1 = q̇2 − cos(θ)θ̇ −Aω cos(ωt), (28)

and the relative velocity between the end point P2 and the floor as336

ḋ2 = q̇2 + cos(θ)θ̇ −Aω cos(ωt),

the relative acceleration between the end point P1 and the floor as337

d̈1 = q̈2 + sin(θ)θ̇2 − cos(θ)θ̈ +Aω2 sin(ωt), (29)

and the relative acceleration between the end point P2 and the floor as338

d̈2 = q̈2 − sin(θ)θ̇2 + cos(θ)θ̈ +Aω2 sin(ωt).

Now, we are ready to introduce the five system states, which we will use for simulating this mathematical model339

of the planar rod, together with the corresponding vector fields.340

State 1 – Free flight. Since we make the assumption that there is no external torque or no horizontally acting341

forcing present, we have that R = 0 and F1 = 0 in Eq. (4). The only external force acting in the vertical direction342

is due to gravity, and so F2 = −g. Following this, the equations of motion of the rod in free flight is given by343

q̈1 = 0, (30)

q̈2 = −g, (31)

θ̈ = 0, (32)

and the corresponding dynamical system is

(q̇1, q̇2, θ̇, q̇4, q̇5, q̇6, τ̇)
T = (q4, q5, q6, 0,−g, 0, 1)T := Φ1(t)

that will be used for the numerical simulation of the free-flight motion. Notice that we have included the phase τ344

in the dynamical system in order to have better control of the periodic influence of time.345

State 2 – End point P1 is stuck to the floor. We will derive a new vector field for the system when P1 is346

stuck to the floor. First, from Eq. (4) we get that the equations of motion for the constrained bar is347

q̈1 = λ1, (33)

q̈2 = −g + λ2, (34)

θ̈ = 3 sin(θ)λ1 − 3 cos(θ)λ2. (35)

Next, we need to find the forces λ1 and λ2 needed to constrain P1 to the oscillating surface. Substituting Eq. (34)348

and Eq. (35) into Eq. (29) and using the Amontons-Coulomb friction law λ1 = sµλ2 gives349

d̈1 = −g + λ2 + sin(θ)θ̇2 − 3 cos θ sin(θ)sµλ2 + 3 cos2(θ)λ2 +Aω2 sin(ωt), (36)

where s is either +1 or −1, depending on the relative tangential velocity at impact. Further, using the fact that350

d1 = ḋ1 = d̈1 = 0 when the end point P1 is in contact with the surface and solving for λ2 gives351

λ2 =
g − sin(θ)θ̇2 −Aω2 sin(ωt)

1 + 3 cos2(θ)− 3s cos(θ) sin(θ)µ
, (37)

which is the normal forcing required to ensure that the contact point will remain constrained to the plane.352

Last, we can write the vector field for the rod with the end point P1 stuck to the floor as

(q̇1, q̇2, θ̇, q̇4, q̇5, q̇6, τ̇ )
T = (q4, q5, q6, α1, α2, α3, 1)

T := Φ2(t)
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where353

α1 =
sµ

(

g − sin(θ)θ̇2 −Aω2 sin(ωt)
)

1 + 3 cos2(θ)− 3sµ cos(θ) sin(θ)
,

α2 = −g +
g − sin(θ)θ̇2 −Aω2 sin(ωt)

1 + 3 cos2(θ) − 3sµ cos(θ) sin(θ)
,

α3 =
(3sµ sin(θ)− 3 cos(θ))

(

g − sin(θ)θ̇2 −Aω2 sinωt
)

1 + 3 cos2(θ)− 3sµ cos(θ) sin(θ)
.

State 3 – End point P2 is stuck to the floor. Similarly, using symmetry, we can write the vector field for the
rod with the end point P2 stuck to the floor as

(q̇1, q̇2, θ̇, q̇4, q̇5, q̇6, τ̇ )
T = (q4, q5, q6, α4, α5, α6, 1)

T := Φ3(t)

where354

α4 =
sµ

(

−g + sin(θ)θ̇2 −Aω2 sin(ωt)
)

3sµ cos θ sin(θ) − 1− 3 cos2(θ)
,

α5 = −g +
−g + sin(θ)θ̇2 −Aω2 sin(ωt)

3sµ cos θ sin(θ) − 1− 3 cos2(θ)
,

α6 =
(3sµ sin(θ)− 3 cos(θ))

(

−g + sin(θ)θ̇2 −Aω2 sin(ωt)
)

3sµ cos θ sin(θ)− 1− 3 cos2(θ)
.

State 4 – Symmetric motion. We define symmetric motion as one where θ mod π = q6 = 0 for all time, which355

means that the two end points will impact the floor at the same time. The dynamical system will be the same as356

in the free-flight case albeit the motion is heavily constrained, and thus the vector field Φ1 can be used.357

State 5 – Both end points P1 and P2 stuck to the floor. If both end points are stuck to the floor it means
that the centre of mass will oscillate as D(τ) and thus the vector field in this case is trivially

(q̇1, q̇2, θ̇, q̇4, q̇5, q̇6, τ̇ )
T = (q4, q5, q6, 0,−ω2A sin(ωτ), 0, 1)T := Φ4.

4.2. State transitions and impact mappings358

For the planar rod model described above in Section 4.1 we introduced five system states, two for free flight359

and three for stick. Our proposed scheme for dealing with chatter involves constraining the respective end point360

to the impact surface when that corresponding end point is going through a chatter sequence. The system then361

acts as a sliding hinge. For this purpose we define the critical normal contact point relative velocity as Vtol and362

use this, along with the end point accelerations, as criteria for deciding when the system is going through a chatter363

sequence. Vtol is chosen based on the system in question and what makes physical sense. In this paper we typically364

let Vtol be ≤ 10−6. When an impact occurs the critical normal contact point relative velocities ḋ1 and ḋ2 together365

with the critical normal contact point relative accelerations d̈1 and d̈2 are evaluated. These values are then used366

with a decision tree to decide if the system should transition to another state. It is important to note that when367

calculating the relative contact point accelerations when in a stick state, we use the unconstrained values. This368

approach ensures that the system will naturally release from stick due to the change in relative acceleration. At369

impact the impact law needs to be applied to determine what type of transition should occur. For the model370

example described here the rate constants defined in Section 2.2 now take the form371

k+T = −3 sin(θ) cos(θ) − µ
(

1 + 3 sin2(θ)
)

, k+N = 1 + 3 cos2(θ) + 3µ sin(θ) cos(θ)

for positive slip,372

k−T = −3 sin(θ) cos(θ) + µ
(

1 + 3 sin2(θ)
)

, k−N = 1 + 3 cos2(θ)− 3µ sin(θ) cos(θ)

for negative slip, and373

kT0 = 0, kN0 =
4

1 + 3 sin2(θ)
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for the stick regime. These rate constants are used in the mappings for the numerical implementation together374

with a decision tree. The process involves deciding what region the impact corresponds to depending on initial375

conditions and assigning the corresponding rate constants and impact map accordingly, see further [28]. However,376

apart from deciding what will happen at a specific impact the system can also switch between the different states377

described in Section 4.1. The transition diagram describing what transitions are possible for the rod system are378

given in Fig. 4, where S1 − S5 are the states introduced in Section 4.1.

I, II

III

V

IV

V I

V II

V III

IX

S1

S2

S3

S4

S5

X

XI

XIII

XII

XIV

XV

XV I

Figure 4: A transitions diagram for the planar rod system showing the five states, S1 − S5 and the state transitions I −XV I. See also
Table 1 for a list of event types and transition criteria.

379

Transition Type Event Transition Criteria Contact angle θ State

I I d1 = 0 |ḋ1| > Vtol, 6= 0 S1 → S1

II I d2 = 0 |ḋ2| > Vtol 6= 0 S1 → S1

III C d1 = 0 |ḋ1| < Vtol, 6= 0 S1 → S2

IV C d2 = 0 |ḋ2| < Vtol 6= 0 S1 → S3

V R d̈1 > 0 6= 0 S2 → S1

VI R d̈2 > 0 6= 0 S3 → S1

VII L d1 = 0, d2 = 0 |ḋ1,2| > Vtol, θ mod π < θCrit 0 S1 → S4

VIII TR d̈2 > 0 0 S2 → S3

IX TR d̈1 < 0 0 S3 → S2

X T d2 = 0 |ḋ2| > Vtol 0 S2 → S4

XI T d1 = 0 |ḋ1| > Vtol 0 S3 → S4

XII TC d2 = 0 |ḋ2| < Vtol 0 S2 → S5

XIII TC d1 = 0 |ḋ1| < Vtol 0 S3 → S5

XIV R d̈1,2 > g 0 S5 → S4

XV TC d1 = 0, d2 = 0 |ḋ1| < Vtol, |ḋ2| < Vtol 0 S4 → S5

XVI T d1 = 0, d2 = 0 |ḋ1| > Vtol, |ḋ2| > Vtol 0 S4 → S4

Table 1: Table corresponding to the transition diagram in Fig. 4. The different types of transitions are I - Impact, C - Chatter, R -
Release, L - Limit,T - Two-point impact, TR - Two-point impact with Release and TC - Two-point impact with Chatter.

A summary of all states and transitions are given in Table 1 and brief descriptions of the 16 transitions (I -380

XVI) in Fig. 4 are given here:381

Transition I. Impact of end point P1 with |ḋ1| > Vtol. The system will remain in free flight State 1.382

Transition II. Impact of end point P2 with |ḋ2| > Vtol. The system will remain in free flight State 1.383

Transition III. If at impact |ḋ1| < Vtol. The system will transition to stick State 2.384
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Transition IV. If at impact |ḋ2| < Vtol. The system will transition to stick State 3.385

Transition V. If at any moment during the constrained motion d̈1 > 0, then the system will transition to free386

flight State 1.387

Transition VI. If at any moment during the constrained motion d̈2 > 0 then the system will transition to free388

flight State 1.389

Transition VII. In the limiting case where the impact angle θ approaches zero with each impact and eventually390

reaches a predefined threshold in which the angle can be assumed to be zero. The system transitions to the391

symmetric State 4.392

Transition VIII. If at impact d̈1 > 0 and d̈2 < 0, then the system will transition to stick State 3.393

Transition IX. If at impact d̈2 > 0 and d̈1 < 0, then the system will transition to stick State 2.394

Transition X. If at impact |ḋ2| > Vtol, then the system transitions to the symmetric State 4.395

Transition XI. If at impact |ḋ1| > Vtol, then the system transitions to the symmetric State 4.396

Transition XII. If at impact |ḋ2| < Vtol, then the system will transition to the symmetric stick State 5.397

Transition XIII. If at impact |ḋ1| < Vtol, then the system will transition to the symmetric stick State 5.398

Transition XIV. The system will remain in State 5 unless the frequency of oscillation exceeds a critical value ω∗
399

given by ω∗ =
√

g
A sin(ωτ) . When this value is exceeded the system will release from stick and transition to400

the symmetric State 4. For a given ω value, ω∗ will vary sinusoidally depending on the phase of oscillation401

τ . When the floor acceleration is maximal, ω∗ will be minimized, and when the floor acceleration is minimal,402

ω∗ will be maximized.403

Transition XV. If d̈1,2 < 0 or |ḋ1,2| < Vtol, then the system will transition to the symmetric stick State 5.404

Transition XVI. If at impact d̈1,2 > 0, ḋ1 > Vtol and ḋ2 > Vtol the system will remain in State 4.405

4.3. Results406

Here we will focus on the numerical analysis of some aspects of the long-term dynamics of the impacting rod407

introduced in Section 4.1. The purpose of this is twofold. First, we want to show the robustness of the numerical408

techniques presented in Sections 4.1 and 4.2, and second, we want to display some of the behaviour that one can409

expect from a rattling object where energy that is dissipated both through the impact and friction. In this context410

we will focus both on steady-state dynamics and transients.411

As discussed in Section 4.1 and shown in Fig. 3 the system can essentially be in five different states between412

events (impacts or transitions). On top of this numerical experiments have shown that the more energy that is413

removed from the system at impact through friction the faster the system tends from asymmetric to symmetric414

motion (see Fig. 5). In terms of the model example presented in this work, asymmetric chaos refers to chaotic415

motion when in State 1, and symmetric chaos refers to chaos when in State 4. This indicates that if the energy416

that is added into the system is acting in the normal direction relative to the impact then the friction, which only417

acts in the tangential direction, will reduce the rotational energy over time and only symmetric motion will remain.418

To highlight this the example in Fig. 5(a) shows a time history of the angle θ when the system goes through a419

transition from asymmetric to symmetric motion. Recall that θ = 0 or θ = π means that the rod is aligned parallel420

to the surface. In Fig. 5(b) we see a close up of how the actual transition in this case happens over a very short421

time interval. In principal it is an accumulation of alternative impacts between the two ends, i.e. very similar to422

what we see in complete chatter, but here we do not necessarily have stick. In Fig. 5(c) we see a similar example,423

where the time history of the position of each of the two end points are shown to highlight how the transition424

between transient asymmetric chaos and transient symmetric chaos can occur. We note that up to approximately425

t = 302 there are two separate trajectories, one for each end point, but suddenly the two trajectories converge and426

the two end points move in synchrony and the rotation of the rod ends. The figure also indicates that the system427

stays chaotic but where all the rotational energy has dissipated due to friction. This will not always be the case428

however, as seen in Figs. 6 (a) and (b). After t = 790 the system still remains in asymmetric chaos. A comparison429

of Fig. 6 (b) with Fig. 5(c) shows the difference between asymmetric and symmetric chaos. In Fig. 6 (b) the system430
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Figure 5: Time histories showing (a) the rod angle θ mod 2π, (b) a close-up of (a) showing the transition from asymmetric to symmetric
motion, and (c) the surface S(t) and the end points P1(t) and P2(t) for the rod before and after the transition from asymmetric to
symmetric motion occurs. Here ω = 4.4050, e∗ = 0.8, A = 1 and µ = 0.05.
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has still not reached symmetric chaos (transitioned to state 4) and it is possible that it never will. In Fig. 5(c) the431

system has reached symmetric chaos (transitioned to state 4).432
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Figure 7: A schematic detailing the possible transitions from transient asymmetric chaos to transient symmetric chaos and periodic
orbits that can occur in the system.

In Fig. 7 a schematic transition diagram for transient motions found in the rod system is shown. Note that this433

schematic is based on observations from numerical experiments of the rod system and not on analytically derived434

conditions. In many cases, for general initial conditions, the rod system undergoes motion akin to asymmetric435

chaos until the rotational energy has dissipated and the symmetric (transient) chaos takes over. Depending on the436

frequency of the external forcing the symmetric chaos may persist or the motion turn periodic. Again, depending437

on the frequency and the value of the restitution coefficient the periodic orbits may have periods of stick. The438

effect of this is that, at least for low frequencies ω, all long term motions that we have come across, are symmetric439

and thus brute-force bifurcation diagrams only show stable solutions, where the dynamics is symmetric. It is worth440

noting that in the limit, where the impact times between the end points as well as the tangential impact velocities441

go to zero, Map I (see Section 2.2) is succesively applied and once the transition to symmetric motion has occured442

Map I reduces to the standard Newtonian restitution law, which is in-line with what is discussed in [28]. For the443

rod system in question this means that the long term behavior can simply be approximated by a one-dimensional444

system of a mass impacting an oscillating surface. While the general one-dimensional system has been analysed445

before, see particularly Holmes [20], we will present some specific results for the system analysed here in order to446

give us an idea on what we can predict regarding the long-term behaviour for specific parameter values.447
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Figure 8: Bifurcation diagrams showing how the steady-state of the position of the centre of mass q2 varies as the frequency ω is varied.
In (a) e∗ = 0.9, A = 1 and µ = 0.05 and in (b) e∗ = 0.8, A = 1 and µ = 0.05. The period-1 orbit is labeled in (a) and the period-2 and
period-3 orbits are labeled in (b).

To describe how possible transitions between different types of long-term motion in the symmetric (one-448

dimensional) rod system occur we show in Fig. 8 (a) and (b) two brute-force bifurcation diagrams, ω vs. q2,449

for two different values of the restitution coefficient, e∗ = 0.9 and e∗ = 0.8, respectively. Fig. 8(a) shows three coex-450

isting period-1 solutions that undergo period-doubling sequences, at three different values of ω, until the branches451

disappear in grazing bifurcations at ω ≈ 3.5. The figures also shows that regions of chaos start at ω ≈ 3.5, with two452

periodic windows (a period-1 and a period-3 orbit, see Fig. 9(a)) also existing within the chaos. The bifurcation453
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diagram in Fig. 8(b), where the restitution coefficient is lower, we see that the onset of chaos occurs at ω ≈ 3.8454

and thus the periodic orbits are sustained longer when more energy is taken out of the systems at impact. To show455

what some of the symmetric period-1 solutions look like in Fig. 9(a) a time series of the end points of the period-1456

orbit highlighted as p1 in Fig. 8(a) (p1) is shown. In Fig. 9(b) a time series of the end points of the period-2457

orbit highlighted as p2 in Fig. 8(b) is shown. Similarly in Fig. 9(c) a time series of the end points of the period-3458

orbit highlighted as p3 in Fig. 8(a) is shown. This shows that freely rattling objects subject to periodic forcing459

have co-existing recurrent motions, periodic and/or chaotic, as has been shown before [20]. The three co-existing460

period-1 orbits in Fig. 8(a) are reached from different initial conditions, i.e. the rod system is initially impacting461

the surface at different phases of the surface oecillation. The time history illustrated in Fig. 9 (c) corresponds to462

initial conditions taken from the the period-1 orbit in Fig. 8.463
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Figure 9: Time histories for q2 showing (a) a period-3 solution (see label p3 in Fig. 8(a)), (b) a period-2 solution (see label p2 in
Fig. 8(b)) and (c) a period-1 solution (see label p1 in Fig. 8(a)). In (a) and (c) ω = 3.0, e∗ = 0.9, A = 1 and µ = 0.05 and in (b)
ω = 3.55085, e∗ = 0.8, A = 1 and µ = 0.05.

A useful technique for understanding the long-term behaviour in this system is to examine how the period-1464

solutions behave under parameter variations. In Fig. 10(a) we plot bifurcation diagrams using continuation methods465

for five different e∗ values under ω variation. The figure shows that period-1 orbits are born at a smaller frequency466

ω the bigger the e∗ value is. It seems obvious that if less energy is taken out at impact then less energy is needed467

from the oscillating surface to sustain a similar periodic orbit. In the inset I we highlight how the branches of468

periodic orbits retract as e∗ is increased. In Fig. 10(b) we show a magnification of the region II in Fig. 10(a)469

to highlight that the stable branches born at saddle-node bifurcations (SN) undergo period-doubling bifurcations470

(PD) for increasing ω, which we also see in Fig. 8(a). Figure 10(b) also shows how the unstable periodic orbits471

born at SN bifurcations disappear at grazing bifurcations (G). As mention above, these results are qualitatively in472

agreement with what is presented in [20]. The conclusion of this is that if the set of parameters are such that they473

lie to the left of the corresponding saddle-node bifurcation SN in Fig. 10(b) the long-term motion is stick and if474

they lie to the right of the period-doubling bifurcation PD the long-term motion is symmetric period-n (n > 1) or475

symmetric chaos. If the set of parameters are such the system is in-between SN and PD we can expect symmetric476

period-1 orbits in the long term.477

5. Discussion478

In this paper we introduced a framework for the numerical simulation of rigid-body systems with impacts and479

friction, specifically using the impact maps first derived in [28]. We present the framework for a general one-point480

rigid-body collision and show how the impact maps derived in [28] can be extended to allow for an impact between481

two unconstrained rigid bodies. Further we implemented the impact maps in a hybrid simulation environment in482

Matlab, allowing for simulation of long-term dynamics of a planar rod where the two end points can impact an483

oscillating surface. For this purpose we introduced a framework that includes an ODE solver, system states and484

a transition diagram. This allowed us to reliably simulate the system in free flight, through impacts, in sticking485

and through complete chatter. For instance, the approach involved switching vector fields when the system is486

transitioning between stick and free flight motion, where the vector field for stick was found by calculating the487

normal force required to constrain the contact point to the surface.488

In Table 1 together with Fig. 4 we presented a summary of what is needed to detect an event and what state489

transition the system will encounter. One of the shortcomings of our approach, and an area of future research, is490
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that we end a complete chattering sequence when the contact point velocity reaches an a priori defined velocity491

threshold Vtol, albeit small. This is in contrast to the method that was derived in [31] for impacts without friction,492

where at the end of a complete chatter sequence a jump in space and time is done to minimize local numerical493

errors. An improvement here would be to extrapolate through chatter sequences, using a similar approach as in494

[31], until the relative velocity is zero. Another related issue that is not fully resolved in this paper is in the limiting495

case whereby two impact events accumulate, and in our case where the rod angle θ approaches zero. In this case496

we, again, define a tolerance θcrit a priori for when the transition from asymmetric to symmetric motion should497

occur. This was necessary to ensure robustness in the numerical scheme.498

As mentioned above, we implemented this framework for the model example of a slender rod impacting a499

periodically forced surface. This example highlighted some of the phenomena present in impacting systems with500

friction, and in particular symmetric systems. The model example can, in some sense, be likened to the problem501

of machine rattle, whereby a machine element becomes detached and is free to undergo unconstrained mechanical502

vibration. For the rod system we examined the dynamics under variation of the frequency of surface oscillation503

ω. We showed that for high values of the restitution coefficient and low frequencies multiple periodic solutions504

coexist, however they do not survive an increase in ω, but instead chaotic regimes take over. Another aspect that505

was highlighted for low frequencies ω is how friction removes rotational energy so that mainly symmetric motions506

(impacts of both end points of the rod at the same time) persists. One of the main limitations of the symmetric507

rod system is that once it is in symmetric motion it can not get back to asymmetric motion. If an external torque508

was included or if the bar was not completely uniform then such a transition could occur and most likely make the509

system even more unpredictable. Although both generalisations would be possible to implement, they have not510

been considered for this work since the main goal was to introduce a framework for simulating long-term dynamics511

for a rigid-body system with impacts and friction and to highlight some interesting features that can be observed512

through long-term simulations.513

The model example we chose to illustrate our techniques, albeit a simple geometry, was entirely unconstrained.514

Incorporating a more complex geometry, with more contact points, but with one or more constraints, would lead to515

a less complicated transition diagram than the one presented in Fig. 4. The advantage of the techniques presented516

in this paper is that they can be easily extended to and implemented for other mechanical systems, with relatively517

few contact points, where impacts and stick motions can occur. The implementation of our method would become518

increasingly difficult for an unconstrained system with more than two contact points, and it then may be necessary519

to consider a time-stepping scheme. However, it would then not be possible to perform the careful stability analysis520

techniques illustrated in this article. Further, the numerical scheme does not need to handle large number of events521

at one time and it is possible to deal with complete chatter sequences. The algorithm described here can also be522

exported directly to methods that locate periodic orbits and determine their stability using a shooting method,523

which is the only useful method to date that can be be used for periodic orbits with incomplete or complete chatter.524

This article has opened up new research questions regarding numerical methods, as mentioned above, but also525
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the exact role friction has in dissipating rotational energy in general rattling objects. It may be possible to find526

a relationship between the energy removed due to friction and the energy introduced into the system through the527

periodic forcing. Such analysis may be a useful predictive tool for engineers working with unconstrained impacting528

systems with friction.529
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